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We show that for qubits and qutrits it is always possible to perfectly recover quantum coherence by
performing a measurement only on the environment, whereas for dimension d > 3 there are situations
where recovery is impossible, even with complete access to the environment. For qubits, the minimal
amount of classical information to be extracted from the environment equals the entropy exchange.
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Decoherence is universally considered, on one side, as
the major practical limitation for communication and pro-
cessing of quantum information. On the other side, deco-
herence yields the key concept to explain the transition
from quantum to classical world [1] due to the uncontrolled
and unavoidable interactions with the environment. Great
effort in the literature has been devoted to combat the effect
of decoherence by engineering robust encoding-decoding
schemes: by storing quantum information on a larger
Hilbert space—as in quantum error correction [2]—or
by protecting the quantum information in a decoherence-
free subspace [3], or else via topological constraints [4].
Moreover, some authors have recently addressed a differ-
ent approach to undo quantum noises by extracting classi-
cal information from the environment [5] and exploiting it
as an additional amount of side information useful to
improve quantum communication performances [6].

The recovery of quantum coherence from the environ-
ment is often a difficult task, e.g., when the environment is
‘‘too big’’ to be controlled, as for spontaneous emission of
radiation [7]. By regaining control on the environment the
recovery can sometimes be actually accomplished, for
example, by keeping the emitted radiation inside a cavity.
However, in some cases, the full recovery of quantum
coherence becomes impossible even in principle, namely,
even when one has complete access to the environment.
This naturally leads us to pose the following question: in
which physical situations is it possible to perfectly recover
quantum coherence by monitoring the environment?

In this Letter we will show that for qubits and qutrits it is
always possible to perfectly cancel the effect of decoher-
ence by monitoring—i.e., measuring—the environment.
On the contrary, for quantum systems with larger dimen-
sion d, namely, for qudits with d > 3, there are situations
where the recovery is impossible even in principle. In order
to prove the above assertion we will give a complete
classification of decoherence maps for any finite dimension
d, showing that they are always of the form of a Schur map.
For qubits we will also evaluate the minimal amount of
classical information that must be extracted from the en-
vironment in order to invert the decoherence process.

A completely decohering evolution asymptotically can-
cels any quantum superposition when reaching the sta-

tionary state, making any state diagonal in some fixed
orthonormal basis—the basis depending on the particular
system-environment interaction. In the Heisenberg picture
we say that such a completely decohering evolution
asymptotically maps the whole algebra of quantum observ-
able into a ‘‘maximal classical algebra,’’ that is a maximal
set of commuting—namely jointly measureable—observ-
ables. It is also possible to consider partial decoherence,
i.e., preserving superpositions within subspaces of the total
system, reducing the initial state into a block-diagonal
form. Here, however, we focus our attention on the worst
case scenario of complete decoherence, and also show how
the present results can be easily generalized to partial
decoherence.

Let us denote by Aq the ‘‘quantum algebra’’ of all
bounded operators on the finite dimensional Hilbert space
H , and by Ac the ‘‘classical algebra’’, namely, any
maximal Abelian subalgebra Ac ! Aq. Clearly, all op-
erators in Ac can be jointly diagonalized on a common
orthonormal basis, which in the following will be denoted
as B " fjkijk " 1; . . . ; dg. Then, the classical algebra Ac
is also the linear span of the one-dimensional projectors
jkihkj, whence Ac is a d-dimensional vector space.
According to the above general framework, we call (com-
plete) decoherence map a completely positive identity-
preserving (i.e., trace-preserving in the Schrödinger pic-
ture) map E which asymptotically maps any observable
O 2 Aq to a corresponding ‘‘classical observable’’ in
Ac, namely, such that the limit limn!1En#O$ exists and
belongs to the classical algebra Ac for any O 2 Aq. Here
we denote with En the nth iteration of the map E, implicitly
assuming Markovian evolution.

It is easy to see that the set of decoherence maps is
convex (i.e., if we mix two decoherence maps we obtain
again a decoherence map). Such a convex set will be
denoted by D. Moreover, D is a subset of the convex set
of maps that preserve all elements of the classical algebra
Ac. Such maps have a remarkably simple form:

Theorem 1 (Schur form).—A map E preserves all ele-
ments of the maximal classical algebra if and only if it has
the form

E #O$ " ! %O: (1)
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A % B denoting the Schur product of operators A and B,
i.e., A % B & !d

k;l"1AklBkljkihlj, fAklg and fBklg being the
matrix elements of A and B in the basis B, and !kl being a
correlation matrix, i.e., a positive semidefinite matrix with
!kk " 1 for all k " 1; . . . ; d.

Proof.—Consider a Kraus representation of the map E:

E #O$ "
X

r

i"1

Ey
i OEi: (2)

Exploiting a result by Lindblad [8], we know that a map E
preserves all elements of an algebra A if and only if its
Kraus operators commute with the algebra itself, i.e.,
'Ei;O( " 0 for any O 2 A. Since in our case the algebra
is the maximal Abelian algebra Ac, such a commutation
relation implies Ei 2 Ac, therefore

Ei "
X

d

k"1

e#i$k jkihkj: (3)

Substituting Eq. (3) into Eq. (2), we obtain

E #O$ "
X

d

k;l"1

!klOkljkihlj; (4)

where

!kl &
X

r

i"1

e#i$)k e#i$l : (5)

By definition, the matrix !kl is positive semidefinite, and
the identity-preserving condition E#1$ " 1 in Eq. (4) gives
!kk " 1 for all k. Vice versa, it is obvious to see that any
map of the form (1) preserves all elements of the classical
algebra. !

In the case of partial decoherence, the Shur form (1)
generalizes to E#O$ " !k;l!klPkOPl, where Pk’s are the
orthogonal projections over the invariant subspaces.

Since there is a linear correspondence between maps
preserving Ac and correlation matrices, the two sets share
the same convex structure, whence the map is extremal if
and only if its correlation matrix is extremal.

Thanks to Theorem 1 the general form of a decoherence
map is immediately recognizable:

Corollary 1.—A map E is a decoherence map if and only
if it has the form (1) where !kl is a correlation matrix with
j!klj< 1 for all k ! l.

Notice that positivity of ! implies j!klj * 1, while the
requirement that limn!1En#Aq$ " Ac needs j!klj< 1
strictly. This also implies the following:

Corollary 2.—The closure "D of the set D of decoherence
maps coincides with the set of maps that preserve the
classical algebra.

As examples of maps on the border of "D, simply con-
sider the identity map, or the map U#+$ " Uy +U, with the
unitary U diagonal on the basis B.

Another relevant property of the decoherence maps is
the following:

Corollary 3.—All decoherence maps commute among
themselves; i.e., their order is irrelevant.

The action of a decoherence map on quantum states is
given in Schrödinger picture by

E S#"$ " !T % "; (6)

where T denotes transposition with respect to the basis B
(also !T is a correlation matrix). As a consequence, one has
exponential decay of the off-diagonal elements of ", since
j'En

S#"$(klj " j!lkjn + j"klj. In other words, any initial state
" decays exponentially towards the completely decohered
state !k"kkjkihkj & "1.

Lemma 1.—A map E is extremal in "D if and only if it is
extremal in the set of all maps.

Proof.—Take E extremal in "D, and suppose by contra-
diction that in the set of all maps there are two maps E1 and
E2 such that E " pE1 , #1- p$E2. Since E leaves all
elements of Ac invariant, for all k one has

jkihkj " E#jkihkj$ " pE1#jkihkj$ , #1- p$E2#jkihkj$:
(7)

But E1 and E2 are positive and identity-preserving maps,
whence necessarily Ei#jkihkj$ " jkihkj for i " 1; 2 and for
all k, namely E1 and E2 are both in "D. But E is extremal in
"D, whence E1 " E2 " E, and E is extremal in the set of all
maps. The converse direction is trivial. !

As a consequence of Lemma 1, the convex structure of
decoherence maps can be obtained by application of the
well known Choi Theorem [9], which states that the ca-
nonical Kraus operators fEig, 1 * i * r, of every extremal
map are such that their products fEy

i Ejg, 1 * i; j * r, are
linearly independent. A relevant consequence of this char-
acterization is the following

Theorem 2.—If E 2 "D is extremal, then r *
!!!

d
p

. For
qubits and qutrits any map in D is random-unitary.

Proof.—Because of linear independence, the dimension
of the linear span of fEy

i Ejg must be r2. But this set of
operators is a subset of Ac, whose dimension is d.
Therefore r2 * d. In particular, for d * 3 one necessarily
has r " 1; i.e., the extremal points of "D are unitary maps.!

This means that for qubits and qutrits every decoherence
map can be written as

E #O$ "
X

i
piU

y
i OUi; (8)

for some commuting unitary operators Ui 2 Ac and
probability distribution pi. Now, in Ref. [5] it is shown
that the only channels that can be perfectly inverted by
monitoring the environment are the random-unitary ones.
Therefore, it follows that one can perfectly correct any
decoherence map for qubits and qutrits by monitoring the
environment. The correction is achieved by retrieving the
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index i in Eq. (8) via a measurement on the environment,
and then by applying the inverse of the unitary transforma-
tion Ui on the system (for pure joint system environment
states the unitary form of the conditioned system trans-
formations also follows from the Lo-Popescu Theorem
[10] for local operations with classical communication).
Therefore, the random-unitary map simply leaks H#pi$ bits
of classical information into the environment (H denoting
the Shannon entropy), and the effects of decoherence can
be completely eliminated by recovering such classical
information, without any prior knowledge about the input
state.

The fact that decoherence maps are necessarily random
unitary is true only for qubits and qutrits. Indeed, for
dimension d . 4 there are decoherence maps which are
not random unitary, since there exist extremal correlation
matrices whose rank is greater than one [11], e.g., the rank-
two matrix

! "

1 0 1
!!

2
p 1

!!

2
p

0 1 1
!!

2
p i

!!

2
p

1
!!

2
p 1

!!

2
p 1 1,i

2
1
!!

2
p -i

!!

2
p 1-i

2 1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

: (9)

The canonical Kraus decomposition of the map E#O$ "
! %O, can be obtained by diagonalizing the operator ! as
! " jv1ihv1j , jv2ihv2j, with hv1jv2i " 0. Then, the ca-
nonical Kraus operators are Ei " !khkjviijkihkj, i " 1; 2,
and the corresponding map E " !iE

y
i + Ei is not unitary

(its canonical Kraus decomposition contains two terms),
nor is random unitary, since it is extremal. Such decoher-
ence maps with r . 2 represent a process which is funda-
mentally different from the random-unitary one,
corresponding to a leak of quantum information from the
system to the environment, information that cannot be
perfectly recovered from the environment [5].

Now we address the problem of estimating the amount
of classical information needed in order to invert a random-
unitary decoherence map. If the environment is initially in
a pure state, say j0ie, a useful quantity to deal with is the
so-called entropy exchange [12] Sex defined as

Sex#"$ " S##"
e $; (10)

where #"
e is the reduced environment state after the inter-

action with the system in the state ", and S#"$ "
-Tr'" log"( is the von Neumann entropy. In the case of
initially pure environment, the entropy exchange depends
only on the map E and on the input state of the system ",
regardless of the particular system-environment interaction
chosen to model E. It quantifies the information flow from
the system to the environment and, for all input states ",
one has the bound [12] jS#ES#"$$ - S#"$j * Sex#"$,
namely, the entropy exchange Sex bounds the entropy
production at each step of the decoherence process.

In order to explicitly evaluate the entropy exchange for a
decoherence process, we can then exploit a particular
model interaction between system and environment. This
can be done starting from Eq. (5) noticing that it is always
possible to write !kl " hekjeli for a suitable set of normal-
ized vectors fjekig. Then, the map ES#"$ " !T % " can be
realized as ES#"$ " Tre'U#" / j0ih0je$Uy(, where the
unitary interaction U gives the transformation

Ujki / j0ie " jki / jeki: (11)

The final reduced state of the environment is then #"
e "

!k"kkjekihekj. Then, in order to evaluate Sex for a decoher-
ence map ES#"$ " !T % ", it is possible to bypass the
evaluation of the states jeii of the environment, using the
formula

Sex#"$ " S# !!!!!!!

"1
p

!
!!!!!!!

"1
p $; (12)

which follows immediately from the fact that
!!!!!!!

"1
p

!
!!!!!!!

"1
p

,
and #"

e are both reduced states of the same bipartite pure
state !i

!!!!!!

"ii
p jiijeii.

The unitary interaction U in Eq. (11) generalizes the
usual form considered for quantum measurements [13],
with the quantum system interacting with a pointer, which
is left in one of the (nonorthogonal) states fjekig. The more
the pointer states are classical—i.e., distinguishable—the
larger is the entropy exchange, and, therefore, the faster the
decoherence process. In the limit of orthogonal states,
decoherence is instantaneous; i.e., ES#"$ " "1. If the state
of the system is a pure classical one " " jjihjj, the entropy
exchange is zero, since #"

e " jejihejj is pure. In this case
the environment evolves freely, with the system untouched.
For mixed classical state " there is a nonvanishing entropy
flow, even if the state of the system does not change. This is
because the entropy flow is well defined only for a closed
system—i.e., described by a unitarily evolving global pure
state, with #Stot " 0—whence in the entropic balance one
must consider also a reference system r purifying ". As an
example, let Ac 3 " " !ipijiihij be purified as j$i "
!i

!!!!!

pi
p jiirjii. Then, the action of 1r /U on j$ij0ie is #1r /

U$j$ij0ie " !i
!!!!!

pi
p jiirjiijeji and the reduced reference ,

system state changes according to

j$ih$j ! R "
X

ij
!ji

!!!!!!!!!!

pipj
p jiihjjr / jiihjj; (13)

corresponding to ES#"$ " Trr'R( & ". In other words, the
non-null entropy exchange results in a decrease of the
correlations between the reference and the system.

When a map can be inverted by monitoring the environ-
ment—i.e., in the random-unitary case—the entropy ex-
change Sex#1=d$ provides a lower bound to the amount
of classical information that must be collected from the
environment in order to perform the correction scheme
of Ref. [5]. In fact, assuming a random-unitary decom-
position (8) and using the formula [12] Sex#"$ "
S#!i;j

!!!!!!!!!!pipj
p Tr'Ui"U

y
j (jiihjj$, we obtain
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Sex#1=d$ * H#pi$: (14)

The inequality comes from the fact that the diagonal en-
tries of a density matrix are always majorized by its
eigenvalues, and it becomes equality if and only if
Tr'UiU

y
j (=d " $ij; i.e., the map admits a random-unitary

decomposition with orthogonal unitary operators.
Moreover, from Eq. (12) we have Sex#1=d$ " S#!=d$.

For qubits, S#!=d$ quantifies exactly the minimum
amount of classical information which must be extracted
from the environment. Indeed, a unitary map in "D corre-
sponds to the rank-one correlation matrix ! " j%ih%j,
where

j%i "
X

d

k"1

ei%k jki: (15)

For d " 2 it is simple to see that any correlation matrix !
can be diagonalized using two such vectors, i.e., ! "
p1j%1ih%1j , p2j%2ih%2j, whence the corresponding
map is random-unitary with Ui " !khkj%iijkihkj.
Clearly, h%1j%2i " 0 implies Tr'Uy

1U2( " 0. Therefore
for qubits H#pi$ " S#!=d$.

Notice that the same decoherence map may be obtain-
able by a random-unitary transformation with more than
two outcomes, and a flattened probability distribution fpig,
corresponding to a larger information H#pi$. However, for
qubits it is always possible to perform a suitable measure-
ment on the environment and to invert the decoherence
map retrieving the minimal amount of information from
the environment.

For dimension d > 2, the bound in Eq. (14) is generally
strict. Already for dimension d " 3, even if all decoher-
ence maps are random unitary, the amount of information
required for perfect correction may exceed S#!=d$ "
Sex#1=d$. As an example, the correlation matrix with non-
degenerate spectrum

! "
1 0 1=

!!!

2
p

0 1 1=
!!!

2
p

1=
!!!

2
p

1=
!!!

2
p

1

0

B

@

1

C

A: (16)

has the eigenvector jvi " j1i - j2i, which is not of the
form (15). This means that it is not possible to write
ES#"$ " !T % " as a convex combination of orthogonal
unitaries.

Finally, it is worth noticing that, when a decoherence
process can be inverted, this can be done regardless of the
number of iterations of the map, since the iterated map is
also random unitary. Clearly one needs to perform the
measurement on a larger Hilbert space for the environ-
ment; however, the complexity of the measurement does

not necessarily increase. In fact, in order to restore the
initial state we only need to know how many times the
unitary Ui for each i has been applied to the system, since
the unitary operators for different i commute and their
order is irrelevant.

In summary, in this Letter we have shown that for qu-
bits and qutrits it is always possible to perfectly invert
decoherence by extracting classical information from the
environment. For dimension d " 4, instead, we gave a
counterexample proving that for d > 3 generally the re-
covery is impossible even with complete access to the
environment. A complete classification of decoherence
maps for any finite dimension d has been given in form
of a Schur product with a correlation matrix !. The mini-
mal amount of classical information needed to invert
decoherence has been evaluated for qubits as the
von Neumann entropy of !=d.
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