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We address the problem of finding the optimal joint unitary transformation on
system + ancilla which is the most efficient in programming any desired channel
on the system by changing the state of the ancilla. We present a solution to the
problem for dim(H) = 2 for both system and ancilla.
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1. Introduction

A fundamental problem in quantum computing and, more generally, in
quantum information processing [1] is to experimentally achieve any theo-
retically designed quantum channel with a fixed device, being able to pro-
gram the channel on the state of an ancilla. This problem is of relevance for
example in proving the equivalence of cryptographic protocols, e. g. prov-
ing the equivalence between a multi-round and a single-round quantum
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bit commitment [2]. What makes the problem of channel programmability
non trivial is that exact universal programmability of channels is impossi-
ble, as a consequence of a no-go theorem for programmability of unitary
transformations by Nielsen and Chuang [3]. A similar situation occurs for
universal programmability of POVM’s [4, 5]. It is still possible to achieve
programmability probabilistically [6], or even deterministically (7], though
within some accuracy. Then, for the deterministic case, the problem is
to determine the most efficient programmability, namely the optimal di-
mension of the program-ancilla for given accuracy. Recently, it has been
shown [5] that a dimension increasing polynomially with precision is pos-
sible: however, even though this is a dramatical improvement compared to
preliminary indications of an exponential grow (8], still it is not optimal.

In establishing the theoretical limits to state-programmability of chan-
nels and POVM’s the starting problem is to find the joint system-ancilla
unitary which achieves the best accuracy for fixed dimension of the ancilla:
this is exactly the problem that is addressed in the present paper. The
problem turned out to be hard, even for low dimension, and here we will
give a solution for the qubit case, for both system and ancilla.

2. Statement of the problem

We want to program the channel by a fixed device as follows
Pv.o(p) = Tra[V(p ® o)V, (1)

with the system in the state p interacting with an ancilla in the state o via
the unitary operator V of the programmable device (the state of the ancilla
is the program). For fixed V the above map can be regarded as a linear map
from the convex set of the ancilla states &/ to the convex set of channels for
the system €. We will denote by Py, the image of the ancilla states &/
under such linear map: these are the programmable channels. According
to the well known no-go theorem by Nielsen and Chuang it is impossible
to program all unitary channels on the system with a single V' and a finite-
dimensional ancilla, namely the image convex Py, C ¥ is a proper subset
of the whole convex ¥ of channels. This opens the following problem:

Problem: For given dimension of the ancilla, find the unitary
operators V that are the most efficient in programming channels,
namely which minimize the largest distance (V') of each channel
C € € from the programmable set Py o :

e(V) = max _ min §(C,P) = max min 6(C,Pv,s)- (2)

PEPv, o
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As a definition of distance it would be most appropriate to use the CB-
norm distance |C —P|cg. However, this leads to a very hard problem. We
will use instead the following distance

d(C,P) =+/1-F(C,P), (3)

where F'(C,P) denotes the Raginsky fidelity [9], which for unitary map
C=U=U-U" is equivalent to the channel fidelity [1]

FU,P) = 3 I Ticiu)p, @

where C = 3, C; - C]. Such fidelity is also related to the input-output
fidelity averaged over all pure states F;,(U, P), by the formula F;, (U, P) =
1+dFU,P)]/(d+1). Therefore, our optimal unitary V will maximize the
fidelity

F(V) = min F(U,V), F(UV)=maxFU,Py,) (5)

3. Reducing the problem to an operator norm

In the following we will use the GNS representation |¥)) = (¥ ® I)|I)) of
operators ¥ € B(H), and denote by X the transposed with respect to the
cyclic vector |I)), i. e. |¥) = (¥ ® I)|I)) = (I ® ¥T)|I)), and by X* the
complex conjugated operator X* = (XT), and write [v*) for the vector
such that (|v)(v| ® I)|I)) = |v)|v*). Upon spectralizing the unitary V as
follows

V=3 e ) (i, (6)
k

we obtain the Kraus operators for the map Py ,(p)

Pv,o(p) = Z CrmpClims Crm = Z g Wk[”;)(”:n]‘l'}c VAm  (7)
nm k

where |v,,) denotes the eigenvector of o corresponding to the eigenvalue \,,.
We then obtain
Y I TCLLUNP = b0 Tr( ol Ut 0o TT U Dy
nm kh (8)
=Tr[cTS(U, V) S(U, V)]

where

SW,V)=Y e ulUy,. (9)
k
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The fidelity (5) can then be rewritten as follows

FU,V) = ZIST V). (10)

4. Solution for the qubit case

The operator S(U, V) in Eq. (9) can be written as follows
S(U,V)=Tnu[UT@I)V"]. (11)

Changing V' by local unitary operators transforms S(U, V) in the following
fashion

S(U, (W1 ® Wa)V (W3 ® Wa)) = WaS(WiUWL, v)W;, (12)

namely the local unitaries do not change the minimum fidelity, since the
unitaries on the ancilla just imply a different program state, whereas the
unitaries on the system just imply that the minimum fidelity is achieved
for a different unitary—say WIT UW-; instead of U.

For system and ancilla both two-dimensional, one can parameterize all
possible joint unitary operators as follows [10]

V = (W1@Ws) expi(a101®01T+a203@02T +a303@037)| (W @W,) . (13)

A possible quantum circuit to achieve V in Eq. (13) can be designed using
the identities

[aa ® 06,08 Uﬁ] =0,

Cloz ® I)C = 05 ® 0z,

C(I®0,)C =—0, 0, (14)
(e_i‘;&“‘ ® e_%r"‘) C(o: ® I)C (e‘Tﬁ"”@iT"“’) = oy ® oy,
where C denotes the controlled-NOT
C=10)(0|®I+|1)(1| ® 0. (15)

This gives the quantum circuit in Fig. 1. The problem is now reduced to
study only joint unitary operators of the form

V =exp|(i(a101 ® 017 + @202 ® 027 + az03 ® 037)]. (16)

This has eigenvectors

7, = %m», (17)
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Figure 1. Quantum circuit scheme for the general joint unitary operator V in Eq. (13).

Here we use the notation Gy = exp(igog) with G = X,Y, Z.

where 05, j = 0,1,2, 3 denote the Pauli matrices o9 = I, 01 = 04, 02 = 0y,
03 = g,. This means that we can rewrite S(U, V) in Eq. (9) as follows

3
S(U,V) = -;- Y e ®io;Ua;,
=0

with

bo=a1+as+az, 6;=2a;—10.

(18)

(19)

The unitary U belongs to SU(2), and can be written in the Bloch form

U=ngl +in- o,
with nx € R and ng + |n|? = 1. Using the identity
0010 = €101, €jo=¢€5; =1, €1 =-1,1#0,j3,
we can rewrite

S(U,V) =l + -0,

3

ik 3

Ry =ting, 0<j<3to=3 No, e,
=0

ti=e 0 4 e 4, 1<5<38, t;=|t;]e", 0<j <3,

It is now easy to evaluate the operator S(U, V)1 S(U, V). One has
S(U,V)IS(U,V) =vol +v- o,

vo =|fiof? + [A[2, v =i [2(FeR") + &" x 7] .

(20)

(21)

(22)

(23)

(24)

Now, the maximum eigenvalue of S(U, V)1 S(U, V) is vy + |v|, and one has

3 3
[of* = 3 1Alfs|” —#%R7 =2 3 [ful|sf” sin® (6 — 65,

(25)
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whence the norm of S(U, V) is given by

3 3
ISW V)P =D n2lt;|* + \J 2 ) n2n2lti|?lt;2sin®(g; — 6;).  (26)
j=0

%,7=0

Notice that the unitary U which is programmed with minimum fidelity in
general will not not be unique, since the expression for the fidelity depends
on {n?}. Notice also that using the decomposition in Eq. (13) the minimum
fidelity just depends on the phases {6;}, and the local unitaries will appear
only in the definitions of the optimal program state and of the worstly
approximated unitary. It is convenient to write Eq. (26) as follows

ISOVIP=u-t+vVu Tu. (27)
where u = (n2,n2,n2,n?), t = (lto|? [t1]?, |t2]2 [t3]?), and Ty =

[t:|2|t;|% sin?(¢; — #;). One has the bounds

w-t+ vVu-Tu>w-t> min|t;|? (28)
J

and the bound is achieved on one of the for extremal points u; = §;; of
the domain of u which is the convex set {w, u; > 0,37 u; = 1} (the
positive octant of the unit four dimensional ball S%). Therefore, the fidelity
minimized over all unitaries is given by

Lo
F(V)= zmin [t51%. (29)

The optimal unitary V' is now obtained by maximizing F(V). We need
then to consider the decomposition Eq. (13), and then to maximize the
minimum among the four eigenvalues of S(U, V)!S(U, V). Notice that ¢; =
>, Hjue®, where H is the Hadamard matrix

e e
§) B icglerigiig
H”i =1 1=k (30)
o s

which is unitary, and consequently 3= [t;|*> = 3, |€!%|> = 4. This implies
that min; [t;| < 1. We now provide a choice of phases 6; such that |t;| =1
for all j, achieving the maximum fidelity allowed. For instance, we can
take g = 0,0, = 7/2,05 = m, 63 = 7/2, corresponding to the eigenvalues
i,1,—1,1 for V. Another solution is 6p = 0,61 = —7/2,6; = 7,05 = —7/2.
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Also one can set 6; — —6;. The eigenvalues of S(U, V)TS(U V) are then
1,1,1,1, while for the fidelity we have

1
ke velﬁ?r‘{xm) F¥)m @

(N Eiitis :-?-, "@&D

1l'-‘n]l-‘

and the corresponding optimal V has the form
V =exp [ﬂ:ig (0: @0, +0,® o'z)] : (32)

A possible circuit scheme for the optimal V is given in Fig. 2,

I Xﬁ:% l
Z;F J"l

Figure 2. Quantum circuit scheme for the optimal unitary operator V in Eq. (31). For
the notation see Fig. 1. For the derivation of the circuit see Eqs. (14).

We now show that such fidelity cannot be achieved by any V of the
controlled-unitary form

>
V=Y Vi®lh)(Wkl,  (¥1l$) =0, Vi,V5 unitary on H~ C2. (33)
k=1

For spectral decomposition V; = 232__1 1Q(J)kﬁ(k))<‘.1'»‘(k)| the eigenvectors

of V are |W)) = |¢'( )H’Gﬂ’k) and the corresponding operators are ¥, =
|¢(k)>(¢'kl namely the operator S(U, V) is

S, V) =Y e % ypyeP U o) ur|, (34)

ak

with singular values 232'=1 e~ 0% (¢§k)|U |¢:§-k)) = Tr[VlU]. Then, the op-
timal program state is |¢p,), with h = arg maxy |’I&'[VJU ]|, and the corre-
sponding fidelity is

1
F(U,V) = 7l DVlU]?, (35)
and one has

F(V) = min F(U, V) =0, (36)

e
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since for any couple of unitaries V} there always exists a unitary U such that
’I‘_r[Ixf,:U] = 0 for k = 1,2. Indeed, writing the unitaries in the Bloch form
(20), their Hilbert-Schmidt scalar is equal to the euclidean scalar product
in R* of their corresponding vectors, whence it is always possible to find a
vector orthogonal to any given couple in R*. The corresponding U is then
orthogonal to both V4, and the minimum fidelity for any controlled-unitary
is zero.
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