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1 INTRODUCTION

In quantum communications the performances of an amplifier depend on the
scheme of the channel in which the device is inserted. For example, both gain and
noise figure of the amplifier depend on the kind of coding at the transmitter, and
detection at the receiver. (1] In an optimized ideal channel, detection and coding
are ideal, and both are "matched” on the same observable; the alphabet proba-
bility is optimized in order to satisfy the physical constraints on the line. In this
case, the channel capacity is already achieved, and there is no need of amplifica-
tion. However, when the channel is nonideal—either because of quantum mismatch
between transmitter and receiver, because of losses along the line, or as a result of
nonunit quantur efficiency at detectors—an appropriate amplification can improve
the transmitted information, ideally achieving the channel capacity for infinite gain.

In this paper we analyze the effect of an amplifier insertion in a quantum nonideal
channel, for coherent and quadrature/squeezed channels. Nonefficient heterodyne
and homodyne detections are described by means of the Wigner and marginal-
Wigner POM’s [2-4] respectively, whereas the quantum evolution along the com-
munication line is given in terms of CP-maps, [5,6] whose infinitesital versions are
"master” and ”Langevin” equations. We show that for a large class of linear ampli-
fiers (attenuators) these equations have differential representations on the POM’s
in form of Fokker-Planck or Ornstein-Uhlenbeck equations, with Gaussian Green-
function solutions. This allows a simple description of the device in terms of drift
and diffusion coefficients.

Within the above approach we show that an ideal amplifier matched with an
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ideal POM has a pure-drift differential representation, corresponding to a POM
rescaling which leaves mutual information invariant. For nonunit quantum efli-
ciency, an amplifier matched with ideal detection can improve the transmitted in-
formation, eventually recovering the channel capacity for infinite gains: this can be
signalled by the fact that the diffusion coefficient becomes negative and, correspond-
ingly, the noise figure becomes lower than unit. When mismatched, an amplifier
can be re-matched with the detector either by "squeezing” the idler, or by means of
meagurement-and-feedback controls, with both measurement and feedback matched
with detection.

2 BASICS OF QUANTUM COMMUNICATIONS

In a quantum communication channel information transmission between source
and ugzer is described as follows. [?] The source consists of a coder which maps letters
f from an alphabet © into a set of density operators pg on the Hilbert space H of the
dynamical system supporting communication. The alphabet © (either a discrete
set, a subset of B¢, or a mixed discrete-continuous set) is distributed according to
an "a priori” probability dP(#), which also determines the mixture of parametrized
states

p=[dP@O)ps . SRS

The set ©, the map g and the probability dP(8) will be globally refereed to as
*coding”, and denoted by C = {dP(#), ps. 0 € ©}. We will consider two main types
of coding: 1) the quadrature/squeezed coding C,., where the parametrized states py
- (A € R) are squeezed states for the quadrature X = 2(a 4—-(1-'*) with average (X) = A;
1) the coherent coding C,, which uses coherent states p, = |a){(¢|, @ € C. Any
device inserted in the communication line produces a Schrédinger evolution p —
. Ag(p) of the density matrix p carrying information: Thus the series "coder--device”
g equivalent to a new coder with coding Co A = {dP(H),Ab(pgj € 0}, where
A= {p— As(p)} denotes the device map.

At the end of the communication line the user determines the transmitted letter
0 as the result of a quantum measurement on the system. This is conveniently
described by means of a probability-operator-valued measure [2-4] (POM) du(()
on H for the outcome ¢ € R¥, namely a resolution of identity [du(¢) = 1 with
du(¢) > 0 [we use nuta’rmn dp(¢) = p(dC)]. The POM’s generalize the customary
or Lhﬂgondl—pro jector-valued measures associated to quantum observables. When
the measurement is performed on the system state p the output probability distri-
bution is given by

APPC) = Telpodp(Q)) . @

Each detection apparatus is described by a POM. [8] In the following we will de-
note the detection by D = {du(¢),¢ € R*}. We will only consider homodyne
detection D, = {du(z),x € R} and hetemd}ne detection D, = {u(e, &), @ € C'}:
the explicit form of the POM for such detectors will be given in the next sec-
tion. If the detector is preceded by a device described by the Heisenberg evolution
dy — Ap(du), the series "devicetdetector” is equivalent to a new defector with
AoD = {Ay(dp(€)),¢ € R}. This equivalence should be compared with that
"coder+device~coder”, and reflects duality Ay = AY under trace (2).



In terms of the detector POM the conditional probability of receiving  is given
by Eq. (2) with p = Ag(pg). The amount of information transfer between the
coder and the detector is described by the "mutual information” / (8; ) between
the random variables § and ¢. Here, also in consideration of the symmetry property
1(8: ¢) = I(¢;8) we prefer to label information with the maps of coding, detection,
and other devices along the line, Then the mutual information is given by

o AoD)= [ aP(e) [ dPlnd dPlool

ItC Ao DJ j dl (9} dPIP#](i} 103 dP[ﬁ] l@j 1 i3>
where dP|pa]/dP|p} is the Radon-Nikodym derivative of Plpg] with respect to P (Al
The maximum of I over dP(0) (with A the identical map) is the "capacity” C
of the information channel: the global maximum ebtained by varying also C and
D is the "ultimate quantum capacity” of the system. Using the Holevo-Ozawa-
Yuen information bound, [7,3] it can be proved that the ultimate quantum capacity
is achieved by number coding/detection, with p as the thermal state for photon
number 7 corresponding to the average power physically allowed along the line. In
the following we are inferested only in coherent and quadrature/squeezed channels.
For such cases the channel capacities are given by

ClC. oD, =log(l +21) , C[Ca 0 Dy] = log(l + 7} . (4)

For the quadrature channel the capacity is achieved by squeezed states [A;7), with
squeezing parameter e = 1 + 27 and zero-average Ciaussian superposition dP())
with variance o = 7 — sinh?s. For the coherent channel again the probability
dP(w, &) is Gaussian, and corresponds to a thermal g with 7 average photons.

3 HOMODYNE AND HETERODYNE DETECTION WITH NON-
UNIT QUANTUM EFFICIENCY

. The photon-count distribution Fy{n} for a phototube cathode small with respect
to radiation coherence length is given by the Bernoulli convolution

Pn(’.fl} £ E (W?) ”?a.(l Az ﬂ)m—ﬂ(,m1pi?n),

m=n \ ",

with 5 denoting the quantum efficiency of the detector. In other words, the detector
is equivalent to an ideal detector (n = 1) preceded by a beam splitter with transmis-
sivity 1. Using this simple rule it is easy to evaluate the POM’s of homodyne and
heterodyne detectors equipped with nonideal photocounters. [9] For a homodyne
detector (with strong local oscillator and two equal photodetectors of efficiency 7))
the POM is simply the Gaussian convolution

') ('], (5)

! da' 2'1’} un
dpy(z) = / e BXD {— (x — fz:’)z}

? Sl =) /2y b=y
where |x) are eigenstates of the quadrature ag = %(atew + ae”) at phase ¢ with
respect to the local oscillator (in the following we will consider either ¢ = 0, or
& = /2, for simplicity). For n = 1 one recovers the POM du(x) = dz|z){z| of the
ideal homodyne detector. For an heterodyne detector with photodetector efficiency
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7 (independent on frequency in the range between signal and image frequencies),
the POM is again a Ganssian convolution of the ideal POM, namely

d*e d?a! [ 7
A1y (v, &) = f , exp | —- 0:*(::""‘] aMa/| . (6
A ) ar Tr(l__n)ju | l—'ij’ 1 F H | \ )
It islt:o:rn-'erllien.l. to write both POM’s (5) and (6) in terms of the Wigner POM
{J? 2 'F c fye gl
w0, @) = s f d; s 1#4-%.«.1{:‘]2)(.5) ; (7)
T

where D(d) = a:a\'p(ﬂr:tT — fa) is the displacement operator. The probability as-
sociated to the POM (7) is the Wigner function W(a, @) for ordering parameter
$. It is nonnegative for s < ~1. Comparing Eqs. (6) and (7) it is easy to show
that d* Hylee, @) = d*wy_g,-1{e, @), whereas the homodyne POM can be written as
marginal POM of d*w,, namely

dy d*w,(z, =
d;t,(i:)———fj‘_r——-ﬁ;({—!——ﬁ , iz el (8)

ln Lq (8 we u:.od the change of variables.a = 2 57 1 N[H’l(‘e that all instrumental
POM are nonnegative for quantum effici leney 0 < i Toarn it o

4 AMPLIFICATION AND LOSS

4.1, . .CP- maps hedfitfins o il T

An mnphhpr is an nprn system {u] w hma the rmlphhed mode of 1<1dmt1nn— the
“signal” mode—resonantly interacts with other modes {parametric amplifier) or
with matter degrees of freedom (active medium amplifier). "Pump” modes provide
the necessary energy for: dmphﬁ-_atmn, whereas “idler” modes account for resonance
condition and phase-matching. Also a beam splitter or a lossy cavity/fiber are open
systems, with the signal mode gradually lost into external modes. The dynamical
evolution of the density Iﬁ'}ilm p.of an upen\m stem is described by a map of the
form - M ' iy :

= 15([{)} == Trp [U; pp & ) Uf] . {QJ

where Uy is a unitary operator, and pp is the density matrix for the "probe”
{(=idler+pump), Corresponding to the Schrodinger-picture (9) one has the Heisen-
berg evolution of POM's dyi, which is defined through duality Ay = A% under trace
(2). The Heisenberg map Ay is.a unit-preserving normal completely positive (CP)
map, [6] and transforms POM’s into POM’s. The Schrédinger map evolves density
matrices, preserving positivity, trace and convex linear. u:unlunat lons. In tormq of
the umlan evolution U, the CP-map A is written as follows

dpy = Ay(dp) = ﬂ_u[ﬁp@ ig} léwif,r[,*_[ (10)

The normal unit preserving CP-maps (and their dlld]) admit the Stinespring repre-
sentation [5)

Ag(dp) =3 VilduVs . Aslp) =3 ViV, T Vivi=1. (11)
k E \ k

f -
itk £ 0
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4.2 Master and Langevin equations

The infinitesimal versions of Egs. (9) and (10) are referred to as "master” and
?Langevin® equations, respectively. Lindblad proved that the most general form of
master equation is [11]

: i
dp=dAs(p) =3 Diap.  DlAlp= ApA' - 5 {A4,p} (12)
: k

{,} denoting the anticommutator, and Ay being (complex) operators. The
Langevin equation corresponding to Eq. (12) is {12]

ddp=dAp(dp) =5 DV[Aldu DY[Aldp = A'dpA - % {ATA, fﬂp;} S 4
k

4.3 Fokker-Planck eguations

When a differential representation of the Langevin equation is available, one obtains
a Fokker-Planck equation (FPE). The explicit form of the FPE generally depends
on the analytic form of the POM under consideration, and coinci des with the differ-
ential equation for the probability distribution. For the Wigner functions W, (o, &)
a differential representation is available for all superoperators that are polynomial
functions of @ and a. In Table 1 the representation of right and left multiplication
of p by @ and a! are reported along with the composition rules for obtaining the
representation of any monormial.

&_pempemi.ur . Wigner repmsnnta;ion t Superoperator | Wigner r(-.prcsent.a:t.;it__!“n_
L» Lia] = a o= 1(s = 1)0; Rle] = -a o — (s + 1)

| L[GT] _;;’r. | @ ——%(54 1), R[af] = gt b (s = 1), _
| L[0:03] = LIOL[O:] " R[0,0s) = RIO3]RIOY]

Table 1: Left and right superoperators and corresponding Wigner differential rep-
resentations. N

For the homodyne POM the FPE [in this case referred to as Ornstein- Uhlenbeck
equation {QUE)] can be obtained from the Wigner representation using marginal
integration (8) and dropping out boundary terms for the exponential decay of W, at
infinity. As an example, the OU representation of D{a] can be obtained as follows

[ocdy o jx gﬂd_ue%(uz-!-v:")r[‘r [D!a]ei.u(X-—J:f]-Hu(Y---y]] =
J—no - 4'}T2 3

—0a

o] "1 = = . ¥ A
f (E_T)i 1_(axf s 8&'5’} + _éi{aix = BB }-I H{S (I"g) e

oo® L2 Lig |
e Lo s oocfyy e
L -z-sz-E + e Bm) L Wz, y), (14)

where ¢ = X + iV is the quadrature decomposition of a. Notice that there are
Wigner differential operators which admit no marginal form [for example, the op-
erator ady = L{x + iy)(0, —0,) has terms linear in y having no marginal represen-
tation]. On the other hand, the OU differential operators are marginal representa-
tions of many different Wigner operators: hence, the OU representation is neither
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injective, nor defined on the whole superoperator algebra, whereas the Wigner re-
presentation is one-to-one. In Table 2 the representation of the superoperators used

within this paper are reported.

| Superoperafor Wi agnm j ’\Imgn‘al»}x
Dial L8ud + 8z0) + L5202,
Dial] | —itasa —aﬁa] it 2d g ilhe 52
[f}.Z‘_ | :_261(1—, s m\
[l =260, + 6% =
e, [a.-]] sza e :11 a:%:z:
fal [al ] 9% 1,

Diag) $0, = (RO e ROEL, ) Lsin® 82,
2 —af2,] by + A8, ) — crdm $62,.) 20,0 — 502,
LiYia. 4+ qT] sl + 4 985,0 e L 5'{&65 4 @by + Jaa + 050 dyw+ L5208

iX, —ia- +- ial] g, + L0+ 5 LC’V {m‘;irt b B0, ~ 0,0 —0z@) |0
i¥ial - +a] _“”@ﬁ s — Hear - li—“ ( a Nl + 80, + Baa + 8:8) | Opx — 1202,
X dal - ial cliege —lkagl 4l ' £92 ;4 tads + @0y — Bary — Fza) | 0

_. “‘[Ys [ﬂTs jl Ty l{a + d;m) : _!Zr:;z:.rn
ilX, fial, ) b0k, +0h) 0

_1_[1, [(I., ]} (dm‘t :u) P, % ﬁi:r; ;
I[}{! [?”]] [Bc‘;cr = 80:1} 0

Table 2: Master equation superoperators and corresponding Wigner and marginal-

X differential representations

In the following we will consider FPE's of the form

W (o 1) = [QBaer + Ba) + 2D, 0% | Waler, a:9)

having Gaussian solution
Wlo,aqt) =

A =

&L

The corresponding marginal OUE is

G Py t) = [Qo‘ oo D ] Bk

again with Gaussian solution

1
Pilzit) = —————ex
( )1 et \/27rd2 t)

2 = mu
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It is elear that Eq. (17) could also be ¢htained as marginal OUE of FPE's different
from (15). Moreover, notice that the diffusion terms in {15) and (17) generally de-
pend on the guantum efficicncy of detection through the parameter s, For negative
drift €) <-0 (amplification) negative diffusion coefficients are admissible, without
violabing peositivity of variances in {16) and (18] during the time evolution. In the
following we will see that Eqgs. (15) and (17) describe many different linear devices,
with Gaussian solutions (16) and (18) modeling both coherent and squeezed cod-
ing (in Table 3 the parameters of the probability distributions for these coding are
reported).

Coherent state | Thermal state dP (o, &)
Wigner repr. | Wiguer repr. coherent channel
Al %{l ~ g) I‘la(] — &)+ n
fat o B {
Squeezed state Thermal super, | dP(A)
Marginal-X repr. | Marginal-X repr. | quadrature channel 1
s 1 1 2 L i T Y o=
L dg ) Sl =)+ 5 aln+1)/28+1
| To A - { ; 0

Table 3: Variance and average of the Gaussian distributions in Eqgs. (16) and (18),
corresponding to optimal coding achieving capacities (4).

4.4 Gain, noise figure, and mutual information

Both gain and noise figure of any device inserted in a quantum communication
channel generally depend on the whole chain of devices in the line, namely they
depend on the overall equivalent deftection and coding referred at the output and
input of the device, respectively, The gain is defined as the ratio between output and
input signals, the "signal” being the amplitude of the modulation S = Tr{ApO} of
the detected operator O with respect to the reference state py (Ap = p— pg) [at the
beginning of the line the state py is usually the vacuum state, but evolution along
the line generally leads to nonvacuum pgl. The device is named "lincar” when the
gain does not depend on the input signal (t.e. on the input state p). Notice that,
in general, a device can be linear for a particular detection scheme, heing nonlinear
for other schemes. For homodyne and heterodyne detection the gain is given by

: TriApAL (X)) : Tr[ApAp(Z,) "
dlap, Aop) = TPl iy, g0y - BR2BN g
L 7 7

where Xj’; = [ dyy(z)z", and similarly Z7 = [d’py,(z,2)2". Notice that for
heterodyne detection the gain g is complex and carries information on field phase.

Besides the gain, the most significant characteristic of a device is its noise figure
R. This represents the degradation of the signal-to-noise ratio (SNR) from the
input to the output, and thus it is defined as R = SN R, /SN K. For homodyne
detection the noise is just the customary root mean square (r.m.s.} of the detected
observable X . For on-off modulation and binary alphabet the noise is mediated on
the (equally likely) states p and gy. More generally, for an alphabet corresponding
to an g priori matrix 7 as in Eq. (1) one evaluates the average noise N over the
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alphabet probability, namely

NI i)y / A e ATV ;

Nic. o D) = / dP@IAX]),, = (AXD), ~ATGE (20)
where (AO?), = Te(p0?) — |Tr(pQ)]? and AfHA) = | dP(8) f2(0) — [ dP(0) F(8)]2.
For linear devices the gain does not depend on @, and thus the noise figure is simply
given by
N[C;0 Ao D 1 (21)

N[C, o D}(J")] G X

For heterodyne detection one has to define the noise of a complex variable, namely
the noise of joint detection of two real variables. Hence, generally there are two
noises 7 [{{Z10a.~ UZl? + UAZE)] where 122 = (i fe AP cosrpesnte
I T iTe CIECIYELiies Of T COVALIanee Inatix. For o ISOTropic” devices ;‘gz.;} = 1)
and the noise is simply

R(C; 0 Ao D] =

Fir=t

N[Ca o DY) = = [(AlZ]3)5 — B Zayal?] | (22)

-

4
where (AIO[%), = Te(p|O[2) - | Te(p0) 2. BT = [ dP(O)|F(0)]2—| J dP(8)}(6)*
and the "modulus operator” has already been defined. For linear devices the figure
of noise is then defined similarly to Eq. (21). For devices described by equations
(15) and (17) the gain is ¢ = exp(—Q1), independently on the signal, and for both
coherent and homodyne detection. The device is a linear amplifier for negative
drift ) < 0, and a linear attenuator for ¢} > 0. From Eqs. (20-22) and Table 2 one
obtaing the noise figures

n(l 4 20) 2Dy

L0 SO E T 24
RIG, Ao =% 1+2a(1 —9) @ (9 ) (28)
RiCaoAaDW| = 14+p—=20p2 7y, (24)

0

For optimized coding and ideal detection the noise figure is bounded as B > 1. [13]
On the other hand, for 5 < 1 the noise figure may become lower than unit, signaling
that the device (preamplifier) is improving detection performance, Noise figures
R < 1 are equivalent to negative diffusion coeflicients, whereas B > 1 corresponds to
positive diffusion. An ideal amplifier for ideal detection has B = 1, corresponding to
pure (negative) drift — V.- which gives the POM rescaling Ay (du(¢)) = dulg='¢)
(¢ € R is used as in Sect. 2). The POM rescaling leaves the mutual information
invariant: therefore, for ideal detection an amplifier can only degrade the mutual
information, and improvements are possible only for 57 < 1. In the following we will
see that in order to improve the mutual information for 4 < 1 the amplifier needs
to be matched with the detector POM, namely one one should use a quadrature
(or phase sensitive) amplifier for homodyne, and a coherent, (or phase insensitive)
amplifier for heterodyne detection. Here we only give the mutual information after
the inserfion of a device modeled by Eqs. (15) and (17). For squeezed /quadrature
and coherent channels one has

: 1 nn-4+1)/2n4+1
J’l{.,'[ ode piﬂ)l oSS 2 Iflg' 1+ G IR ”(” 1 J/ bl — . (25‘!
Gomis " =0+ (0 - ) '
71

ICio AP = log|l+



4.5 Modeling master equations for linear amplifiers

The following master equation models a linear phase insensitive device
e =2 | AD[al] + BDJal| o , (27)

with superoperator D defined in Eq. (12). The device is phase insensitive as a
consequence of invariance Dlae ™ = D]a]. B > A leads to attenuation, whereas
A = B produces amplification. For example, with 4 and B proportional to atomic
populations on the upper and lower lasing levels respectively, Eq. {27) describes an
aclive medium amplifier in the linear vegime (far from saturation). On the other
hand, for A = Lm and B = L + 1} the same equation deseribes a field mode
damped with photon lifetime I'™' toward the thermal distribution with m average
photons. Eq. (27) has the following general CP-map solution [14]

po= Tepllpevll],
o exp|— arctan et = T(abl —a'h)] (B> A),
7| expl—arctanhy/1 — ¢ Talbl — ab)] (A > B)

(28)

with T'/2 = iA— B| and » the thermal state of the idler mode b with average photons
m — min{d, B}/|A — B| [4 and B are non negative, otherwise one would have
negative idler photons|. Thus, Eq. (27) also models either parametric amplification
with thermal idler. or luss due to frequency conversion. [15] From Table 2 one obtains
the Wigner representation of Eq. (27) in form of the FPE (15) with ) = B— A and
2D, = A+ B+s({A— B). For ideal heterodyne detection (s = —1) the device is ideal
for B = 0 (ideal phase insensitive amplifier). On the contrary, linear attenuation is
always nonideal. The diffusion coefficient can be negative for s = 1 — 27! < —1,
and the amplifier can improve both SN R and mutnal information when A—B > nA.
The mmmtual information for the coherent channel is

5 n
[Coo AaDW] =log |1+ — , (29)
(ﬂf,-i. + 'Tﬂ'_l) L E R E G

h

with ‘g = expl[(4 — B)t|: for ideal amplification (B = 0) the channel capacity is
vecovered in the limit of infinite gain g.

The phase insensitive amplifier modeled by Eq. (27) is "matched” to heterodyne
detection (the field is detected with no preferred phase). The amplifier can be made
ideal for the matched detection, and the information loss for 7 < 1 is completely
recovered in the limit g — oo. Such information gain for nonefficient detection is
deseribed by negative diffusion cocfficient D and, correspondingly, by noise figures
R < 1. On the other hand, when there is a mismatch between amplifying CP-map
and detecting POM, it is no longer possible to recover the whole lost information,
even for infinite gain. This happens, for example, when amplifier (27) is inserted in a
quadrature channel using homodyue detection. In this case the amplifier is described
by the QUE (17), and the diffusion coefficient -_%D,, now is evaluated for s = 1 —n !,
as a result of the POM marginal projection (8). One has Dy_,-1 = A+ Ly~ (B—A):
for g =1 Dy = XA+ B) > 0, and the amplifier is no longer ideal. For 3 < 1 the
diffusion coefficient hecomes negative when 4 — 8 > 24, namely the amplifier is
able to improve the SN R only for quantum efficiencies half than the corresponding
ones for heterodyne detection, Despite for 7 < ¢ the amplifier can reduce the SN R,
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it can no longer completely recover the lost information. In fact, from Eq. (25) one
has
1

IC. o0 Aa DD} = _In {1 -

477+ 1)
=3

(2n4+1)22 (gt - 1)+ 20+ )n~1g2 - 20

(30)

which is always lower than the channel capacity in Eq. (4), and leads to 7 =
+In(1 + 27) for B =0 and g — x.

In order to improve the performance of the amplifier for homodyne detection
one can “squeeze” the master equation (27) as follows

8.0, =2 { AD[al) + BDlal} gy + € [a o, o] + Cla [a, o] (31)

with |C]? < AB. The master equation (31) could be obtained either by "squeezing”
the atomic lasing bath, or using transformations (31) with & in a squeezed-thermal
state. For a parametric amplifier with the idler in a squeezed-thermal state with
N photons in total and m, squeezing photons, one has A = 12{*\ + 1), B= %N
and iG° = -E[N('N + 1) — m(2m + 1)), where now 71 denotes the pure thermal
photons.  The limiting case {C]* = AB corresponds to the idler in a squeezed
vacuum, From Table 2 one can see that the QUE of the device has the form (17)
with the same drift ) = B — A of the unsqueezed amplifier, but with diffusion
Di_p-1 = A+ Iy (B — A) +Re(C). For Re(C) < 0 the overall effect of squeezing
is a reduction of the diffusion: for 5 = 1 and 7 = 0 one has Dy = N~ + O(N7?),
namely at infinite squeering the amplifier becomes ideal for homodyne detection.
Also, in this limit for 5 < 1 the diffusion coefficient becomes negative Dy_,-1 =
%(_7;“ — 1) and from Eq. (25) one abtains

= o 1 dn(n+1)
T “yLi e e
Ti6, e Ao D] = 5 In |1+ R D= g1
= log(1+28)+ 0%, (32)

recovering the channel capacity.

As a consequence of noninjectivity of marginal integration (8) there are many
different ways to achieve ideal quadrature amplification. For example. the popular
phase sensitive amplifier is obtained by means of a degenerate parametric amplifier
(with strong coherent pump) having effective Hamiltonian of the form

H=iz(a’ - al?) . (33)

Again, from Table 2 one can see that Hamiltonian (33) corresponds to an OUE of
the form (17) with (@ = A and ,]EJ,_JL__?I—I = f;_}-["n_l =1), leading to ideal amplification
for A < 0, and ideal attenuation for A > 0.

Refore concluding this subsection, we want to remark that it is not possible o
recover lost information when the loss occurs before amplification. For example,
let us eonsider the maps £ and 4 both corresponding to Eq. (27), but the former
describing a loss (4 = 0, B = ['/2), and the latter an ideal phase insensitive
amplifier (4 = ¢tV logg. B = 0). Then, the mutual informations for the coherent
channel when the amplifier is inserted before and after loss are: [{C,0.40 LoD =
log Ll - I_H.W] leyoLeAs 'DEFJ‘} = log |l + EE;TI‘V] It is elear that
only in the first case the information is recovered, however with an increased power
impinged into the line.
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4,6 Ideal amplification via feedback

In Ref. [16] it is shown that it is possible to produce squeezing using feedback
mediated by intracavity quantum non demolition (QND) measurements. The cavity
supports a second mode b, which is coupled to the signal mode a via the interaction
H; = xX,.Y;, and which is simultaneously homodyne detected (measuremant of X,)
with efficiency e. The evolution due to feedback has the form dipy|p = ie"—;f(t —
07) [V, pe), where [{t — 07) is the detected photocurrent immediately before the
feedback action. When fastly decaving to the vacunm (x*/~ < 1) the mode b
can be adiabatically eliminated, and the following master equation for the reduced
density matrix of the signal mode is obtained

NS 1 ; A=
Oypy = Lpy + EED [Vip: + ID[X]ps +2A[Y, [X ot + 2 X1] - (34)

In Eq. (34) L is the original Liouvillian for ¢, A = e[, I' = x*/~, and v is the
damping rate of mode b. From Table 2 one can see that the master equation (34)
admits the OU representation (17). The term with D{Y] adds a contribution %_
to diffusion D, and could be made arbitrarily small for & x x* — co. The term
with D[X]—describing the QND measurement of X-—has no effect on the POM
dyi,(z). Finally, the last term in Eq. (34} adds A to the driff, and %(n_]' - 1) to
the diffusion D;_,-1. One thus concludes that the present intracavity feedback for
A < 0 (within the validity limits of the adiabatic approximation) can either convert
a loss L into amplification, or improve the original amplifier, adding an ideal term
to the OU representation of the Liouvillian L. :

The above measurement-and-feedback control has both steps and feedback
maiched with detection (measurement of X and commutator with Y which drives
X). Again, if there is no matching with detection, the device is no longer improved.
This happens, for example, if the roles of X and Y are exchanged in the above
example. In Ref. [17] other master equations are considered, also from complex-
amplitude and heterodyne feedback: using Table 2 one could immediately obtain
the corresponding FPE or OUE, checking il feedback is effective in improving the
device. The effectiveness of feedback loop is the result of competition between
driving terms and positive-diffusion terms due to unavoidable introduction of noise
by the measurement step in the quanium-lmited feedback loop: as noticed in
Ref. [17] the positive diffusion is doubled when the measurement. step is achieved
by heterodyne detection (the latter having effective quantum efficiency 1/2, due to
joint detection of both quadratures. [3])
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