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Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally
held to be impossible. We give a strengthened and explicit proof of this result. We extend its scope to a much
larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and
quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the
receiver to be bound to a fixed “honest” strategy, so that “anonymous state protocols,” which were recently
suggested as a possible way to beat the known no-go results, are also covered. We show that any concealing
protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any
strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes unde-
tected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general
two-party protocols, which is applicable to more general situations, and an estimate about the continuity of the
Stinespring dilation of a general quantum channel. The result also provides a natural characterization of
protocols that fall outside the standard setting of unlimited available technology and thus may allow secure bit
commitment. We present such a protocol whose security, perhaps surprisingly, relies on decoherence in the

receiver’s laboratory.
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I. INTRODUCTION

Bit commitment is a cryptographic primitive involving
two mistrustful parties, conventionally called Alice and Bob.
Alice is supposed to submit an encoded bit of information to
Bob in such a way that Bob has (almost) no chance to iden-
tify the bit before Alice later decodes it for him, whereas
Alice has (almost) no way of changing the value of the bit
once she has submitted it: in technical terms, a good bit
commitment protocol should be simultaneously concealing
and binding.

Bit commitment has immediate practical applications and
is also known to be a very powerful cryptographic primitive.
It was conceived by Blum [1] as a building block for secure
coin tossing. Bit commitment also allows one to implement
secure oblivious transfer [2—4], which in turn is sufficient to
establish secure two-party computation [5,6].

A standard example to illustrate bit commitment is for
Alice to write the bit down on a piece of paper, which is then
locked in a safe and sent to Bob, whereas Alice keeps the
key. At a later time, she will unveil it by handing over the
key to Bob. However, Bob has a well-equipped toolbox at
home and may have been able to open the safe in the mean-
time. So while this scheme may offer reasonably good prac-
tical security, it is in principle insecure. Yet all bit commit-
ment schemes that have wide currency today rely on such
technological constraints: not on strongboxes and keys, but
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on unproven assumptions that certain computations are hard
to perform. Several such protocols have been suggested, ei-
ther computationally binding [1,7-9] or computationally
concealing [10,11]. Cryptographers have long known that
without such technological constraints, bit commitment (like
any other interesting two-party cryptographic primitive) can-
not be securely implemented in a classical world [5].

It has therefore been a long-time challenge for quantum
cryptographers to find unconditionally secure quantum bit
commitment protocols, in which—very much in parallel to
quantum key distribution [12,13]—security is guaranteed by
the laws of quantum physics alone.

A. Quantum bit commitment and the no-go theorem

The first quantum bit commitment protocol is due to Ben-
nett and Brassard and appears in their famous 1984 quantum
cryptography paper [12], in a version adapted to coin tossing.
In their scheme, Alice commits to a bit value by preparing a
sequence of photons in either of two mutually unbiased
bases, in a way that the resulting quantum states are indis-
tinguishable to Bob. The authors show that their protocol is
secure against so-called passive cheating, in which Alice ini-
tially commits to the bit value k and then tries to unveil 1
—k later. However, they also prove that Alice can cheat with
a more sophisticated strategy, in which she initially prepares
pairs of maximally entangled states instead, keeps one par-
ticle of each pair in her laboratory and sends the second
particle to Bob. It is a direct consequence of the Einstein-
Podolsky-Rosen (EPR) effect that Alice can then unveil ei-
ther bit at the opening stage by measuring her particles in the
appropriate basis and Bob has no way to detect the
difference.
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Subsequent proposals for bit commitment schemes tried
to evade this type of attack by forcing the players to carry
out measurements and communicate classically as they go
through the protocol. At a 1993 conference Brassard et al.
presented a bit commitment protocol [14] that was claimed
and generally accepted to be unconditionally secure.

In 1996 it was then realized by Lo and Chau [15,16], and
independently by Mayers [17-19], that all previously pro-
posed bit commitment protocols are vulnerable to a general-
ized version of the EPR attack that renders the BB84 pro-
posal insecure, a result they slightly extended to cover
quantum bit commitment protocols in general. In essence,
their proof goes as follows: At the end of the commitment
phase, Bob will hold one out of two quantum states @, as
proof of Alice’s commitment to the bit value k € {0, 1}. Alice
holds its purification ¢, which she will later pass on to Bob
to unveil. For the protocol to be concealing, the two states 0,
should be (almost) indistinguishable, @,=~¢@,. But Uhl-
mann’s theorem [20,21] then implies the existence of a uni-
tary transformation U that (nearly) rotates the purification of
Qo into the purification of @;. Since U is localized on the
purifying system only, which is entirely under Alice’s con-
trol, Lo, Chau, and Mayers argue that Alice can switch at
will back and forth between the two states and is not in any
way bound to her commitment. As a consequence, any con-
cealing bit commitment protocol is argued to be necessarily
nonbinding.

These results still hold true when both players are re-
stricted by superselection rules [22]. So while the proposed
quantum bit commitment protocols offer good practical se-
curity on the grounds that Alice’s EPR attack is hard to per-
form with current technology, none of them is uncondition-
ally secure. Spekkens and Rudolph [23] extended the no-go
theorem by providing explicit bounds on the degree of con-
cealment and bindingness that can be achieved simulta-
neously in any bit commitment protocol, some of which they
showed can be saturated.

B. Two camps

In view of these negative results, subsequent research has
primarily focused on bit commitment under plausible tech-
nological constraints, such as a limited classical [24,25] or
quantum [26] memory or the difficulty of performing collec-
tive measurements [27]. In an alternative approach, research-
ers have slightly modified the standard setting to evade the
no-go theorem: Kent [28,29] has shown that relativistic sig-
naling constraints may facilitate secure bit commitment
when Alice and Bob each run two labs a (large) distance
apart and security is maintained through a continual ex-
change of messages. A different variant was introduced by
Hardy and Kent [30] and independently by Aharonov et al.
[31]: in cheat-sensitive bit commitment protocols, both play-
ers may have the chance to cheat, but face the risk of their
fraud being detected by the adversary. Building on Kent’s
original proposal [32], the trade-off between bindingness and
concealment in quantum string commitment protocols has
recently been investigated [33-35].

At the same time, the Lo-Chau-Mayers no-go theorem
[15,18] is continually being challenged. Yuen and others
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have repeatedly expressed doubts in Mayer’s opaque paper
[18], arguing that the no-go proof is not general enough to
exclude all conceivable quantum bit commitment protocols.
Several protocols have been proposed and claimed to cir-
cumvent the no-go theorem (see [36—40] and references
therein, as well as the account in [41,42] of the controversy).
These protocols seek to strengthen Bob’s position with the
help of “secret parameters” or “anonymous states,” so that
Alice lacks some information to cheat successfully: while
Uhlmann’s theorem would still imply the existence of a uni-
tary cheating transformation as described above, this trans-
formation might be unknown to Alice.

Two camps seem to have formed, a large one comprising
most of the community, in which the impossibility of quan-
tum bit commitment is accepted on the basis of the Lo-Chau-
Mayers proof, and a smaller group of sceptics, which is not
convinced, even though no provably secure protocol, and
hence a counterexample to the no-go result, has surfaced so
far.

It appears that much of this controversy stems from
slightly differing approaches to the problem. A good way to
pinpoint the basic disagreement is Kerckhoffs’ principle,
which goes back to the 19th century military cryptographer
Auguste Kerckhoffs and is now universally embraced by
cryptographers [43,44]. The principle states that the security
of a cryptographic protocol should not rely on keeping parts
of the algorithm secret. In the words of Schneier, “every
secret creates a potential failure point. Secrecy, in other
words, is a prime cause of brittleness—and therefore some-
thing likely to make a system prone to catastrophic collapse”
[45]. In this respect every secret parameter chosen by the
human in a cryptographic protocol—e.g., a password—is re-
garded as a potential weakness. For this reason cryptogra-
phers usually think of their algorithms as being executed by
machines, whose blueprints can be published without jeop-
ardizing the security of the system.

Anonymous states and other secret parameters used in
Yuen’s protocols are apparently regarded as a violation of
Kerckhoffs’ principle, which suggests a restriction to fixed
and automatizable strategies for both players. Deviations
from these strategies are considered an attempted fraud. The
Kerckhoffian security analysis then does not hold any provi-
sions for the case in which both parties deviate from their
“honest” strategies. Therefore Lo, Chau, and Mayers only
consider the final committed state given that Bob sticks to
his publicly known strategy, since Alice’s cheat only has to
work against this strategy. So while Kerckhoffs’ principle is
certainly high on the list of desiderata for cryptographic pro-
tocols, it appears that Lo, Chau, and Mayers only show that
there is no bit commitment protocol satisfying Kerckhoffs’
principle, whereas the next best thing—e.g., an anonymous
state protocol-might still exist.

Another possible origin for disagreement is the style of
Mayers’ paper [ 18], along the lines of Mark Kac’s dictum “A
demonstration convinces a reasonable man; a proof con-
vinces a stubborn man.” [46] In this sense—i.e., according to
the standards of “stubborn” mathematics or mathematical
physics—Mayers gives merely a demonstration. Since the
argument against Kerckhoffian protocols only involves the
state directly after commitment, Mayers declares it irrelevant
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to formalize the class of two-party protocols, even though an
insufficiently specified domain usually leaves a no-go “theo-
rem” rather fuzzy. Other aspects of the problem (e.g., the use
of classical and quantum information together) get a simi-
larly rough treatment. It hence appeared to us high time to
convince ourselves, and hopefully some other stubborn men,
of the exact scope and status of the no-bit-commitment state-
ments.

C. Stronger no-go theorem: Overview and outline

In this contribution we propose to resolve the bit commit-
ment controversy with a strengthened no-go theorem. We
will give a precise description of general two-party proto-
cols, which we hope no longer shows the hard work of keep-
ing it fully explicit but still notationally manageable. This
description should also be helpful for analyzing protocols for
other tasks, involving any number of parties. Our description
of bit commitment does not assume Kerckhoffs’ principle, so
that Bob is not honor bound to a particular course of action.
Nevertheless, we show that any concealing protocol allows
Alice a universal cheating strategy, working against all strat-
egies of Bob simultaneously. Moreover, our result is stable
against small errors, in the sense that nearly concealing pro-
tocols allow a nearly perfect cheat, with explicit universal
error bounds. The result is based on a continuity theorem for
Stinespring’s representation [47], which generalizes Uhl-
mann’s theorem from quantum states to channels.

Our proof includes a full treatment of classical and quan-
tum information flow and also covers aborts and resets. It
applies to bit commitment protocols with any (finite or infi-
nite) number of rounds during each the commitment, hold-
ing, and opening phase. We only require that the expected
number of rounds be finite. Moreover, the proof is not re-
stricted to quantum systems on finite-dimensional Hilbert
spaces. The strengthened no-go theorem shows the insecurity
of all recently proposed bit commitment protocols [36—40].
A preliminary version of the proof, restricted to single-round
commitments, has appeared in [48]. Our results generalize
that of Ozawa [49] and recent work by Cheung [50], who
showed that Alice can still cheat in protocols with secret
parameters for the simpler case of perfect concealment and
without a full reduction. Cheung’s estimates [51] for ap-
proximately concealing protocols depend on the dimensions
of the underlying Hilbert space and hence cannot rule out bit
commitment protocols with high-dimensional or infinite-
dimensional systems.

We also classify those protocols that fall outside the stan-
dard setting and thus may allow secure bit commitment. We
propose such a bit commitment protocol whose security—
perhaps paradoxically—relies on decoherence in Bob’s labo-
ratory. Interestingly, this protocol explores a purely quantum-
mechanical effect: the distinction between the local erasure
of information and the destruction of quantum correlations
[56]. Well-known classical bit commitment protocols whose
security relies on noisy communication channels are briefly
reviewed, too.

The paper is organized as follows: In Sec. II we give a
detailed description of the setup for quantum bit commitment
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protocols and list important types of protocols that fall within
our definition. This will serve to specify the domain for the
proof of the strengthened no-go theorem, which is then pre-
sented in Sec. IIl. In Sec. IV we briefly describe how to
extend the no-go theorem to quantum bit commitment pro-
tocols in infinite-dimensional Hilbert spaces or with infi-
nitely many rounds. Section V investigates provably secure
bit commitment protocols whose security is built on decoher-
ence in either Alice’s or Bob’s laboratory or in the transmis-
sion line. We conclude with a Summary and Discussion in
Sec. VI. An appendix contains the necessary background on
quantum states and channels, direct sums, and quantum-
classical hybrid systems.

II. SETUP

In this section we describe the task of quantum bit com-
mitment and define what a successful bit commitment proto-
col would have to achieve. We have attempted not to exclude
any possibilities and have avoided all simplifications “with-
out loss of generality” at this stage. In this way we hope to
separate, more clearly than our predecessors, the definition of
bit commitment to which the statement, “bit commitment is
impossible,” refers and, on the other hand, the simplifications
which we will make in the course of the proof of this state-
ment.

The analysis will be based solely on the principles of
quantum mechanics, including classical physics. We do not
consider relativistic signaling constraints, which are known
to facilitate secure bit commitment [28,29]. For ease of pre-
sentation, we initially impose as a finiteness condition that all
classical messages can only take finitely many values, that
all quantum systems can be described in a finite dimensional
Hilbert space, and that the total number of messages ex-
changed is uniformly bounded. These constraints will then
be relaxed in Sec. IV.

A. Description in plain English

The basic task. Bit commitment is a cryptographic primi-
tive involving two mistrustful parties, conventionally called
Alice and Bob. Alice is supposed to submit an encoded bit of
information to Bob in such a way that Bob has (almost) no
chance to identify the bit before Alice decodes it for him and
Alice has (almost) no way of changing the value of the bit
after she has submitted it. In other words, Bob is interested in
binding Alice to some commitment, whereas Alice would
like to conceal her commitment from Bob.

Protocols and strategies. A protocol first of all regulates
the exchange of messages between Alice and Bob, such that
at every stage it is clear what type of message is expected
from the participants, although, of course, their content is not
fixed. The expected message types can be either classical or
quantum or a combination thereof, with the number of dis-
tinguishable classical signals and the dimension of the Hil-
bert spaces fixed. The type of messages can depend on clas-
sical information generated previously. The collection of all
these instructions will be called the communication interface
of the protocol.
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A particular plan for operating a local laboratory to supply
the required messages is called a strategy. A strategy could
determine that some message sent is obtained from a mea-
surement on a system available in the local lab, but it could
also specify the arbitrary invention of a classical value to be
sent and the fresh preparation of an accompanying quantum
system. We typically denote Alice’s strategy by a and Bob’s
by b.

The second key element of the protocol specifies definite
procedures for Alice to follow if she wants to commit the bit
values 0 or 1, respectively. These special honest strategies
will be denoted by a, and a;.

Phases of the protocol. In any commitment scheme, we
can distinguish three phases. The first is the commitment
phase, in which Alice and Bob start from some (publicly
known and trusted) shared quantum or classical state and go
through a possibly complicated exchange of classical and
quantum messages. By definition, at the end of this phase,
the bit value is considered to be committed to Bob but, sup-
posedly, concealed from him.

Alice and Bob then might split up for a while, without
further communication. In this holding phase typically only
local operations are possible; i.e., Bob might attempt to read
the committed bit and Alice might attempt to prepare a cheat.

Finally they get in touch again to open the commitment.
In the opening phase, Alice sends to Bob some classical or
quantum information to reveal her commitment. Taking both
Alice’s message and his own (classical and quantum)
records, Bob will then perform a suitable verification mea-
surement. His measurement will result in either the bit value
k €{0,1}, indicating a successful commitment, or in a failure
symbol “not OK,” indicating an attempted cheat or abort.

A typical opening consists in Alice sending to Bob the
value of the bit she claims to have committed, together will
all the classical or quantum information needed for Bob to
check this claim against his records. The protocol might also
be ended in a public opening, which requires Alice and Bob
to meet, bringing with them all quantum and classical sys-
tems in their possession, explaining what strategies they
were using, and allowing Bob to choose arbitrary measure-
ments on all these systems to verify, with Alice staying on to
watch. That is, no possibility of cheating, withholding infor-
mation, or making false claims about the outcome of verifi-
cation exists in a public opening.

Conditions on successful protocols. We assume that Al-
ice’s strategies a, and a; can be distinguished with high
probability by Bob’s verification measurement: if Alice hon-
estly played a;, then Bob’s measurement will result in the bit
value k with probability =(1- 7) for some (small) 7=0. We
call such a protocol # verifiable, or n sound. Since this con-
dition depends only on the honest strategies, it is very easy to
satisfy.

We call a protocol & concealing if Alice’s honest strate-
gies cannot be distinguished by Bob (up to an error &) before
she opens the commitment. In general, of course, the prob-
abilities he measures while applying his protocol b depend
on whether Alice chooses a, or a,;. Here we require that no
matter what strategy » Bob uses and no matter what mea-
surement he makes, these probabilities never differ by more
than e throughout the commitment and holding phase. Note
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FIG. 1. Alice’s basic strategic choices. Decisions she must take
are indicated by diamonds, some actions necessary for a typical
cheating strategy by squares. The cheating strategies ag and af are
identical throughout the commitment phase and might be equal to a
purification of the honest strategy a,. Then U indicates a unitary
cheating transformation and D the introduction of suitable decoher-
ence to reverse purification. In the opening phase the cheating strat-
egies are identical to their honest counterparts.

that the concealing condition makes no statement whatsoever
about other strategies of Alice. If Alice cheats, there is usu-
ally nothing to be concealed anyway.

A O-cheating strategy for Alice is a pair of strategies ag
and af such that Bob cannot distinguish a, from ag, and a,
from af, better than with a probability difference o, at any
time, including the opening phase. Of course, these condi-
tions would be trivially satisfied for ay=al and a;=a’. What
makes (ag ,af) cheating strategies is that Alice does not ac-
tually make the decision about the value of the bit until after
the commitment phase. That is, the strategies ag and af must
be the same throughout the commitment phase and can only
differ by local operations carried out in the holding or open-
ing phase. Note, however, that Alice might have to decide
from the outset that she wants to cheat, since the strategies
a? might be quite different from both a, and a,. Figure 1
illustrates Alice’s basic choices as she goes through the pro-
tocol. If no S-cheating strategy exists for Alice, we call the
protocol & binding.

The condition we impose here is much stronger than the
condition that Bob’s standard verification measurements be
fooled by the cheat (perhaps with a bound on the success
probability): We require that no measurement whatsoever
could detect a difference. With a public opening rule one
could even say that after the cheat not even Alice herself
could help Bob to tell the difference. Clearly, these condi-
tions make it very hard for Alice to cheat. Therefore, our
proof that Alice can still cheat under such conditions auto-
matically includes all protocols with weaker conditions on
successful cheats.

Real-time checks for cheating. It is perhaps helpful to
point out the difference between two kinds of checks on
Alice’s honesty, which Bob might perform. We have granted
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him unlimited technological power in the definition of & con-
cealing. But for running the protocol no such fantastic abili-
ties are required and he will not actually do all those com-
plicated tests. In fact, the concealing and binding properties
of the protocol cannot be ascertained by any practical tests,
but are there to be checked theoretically by Alice and Bob on
the basis of the publicly available description of the protocol.
It is on the basis of such considerations that Alice and Bob
will consent to use the protocol in the first place.

During a single run of the protocol, Bob can employ some
tests on Alice’s behavior as part of the protocol. If Bob sus-
pects a problem, he may be entitled to calling an abort of the
protocol (clearly a classical message) and the procedure
would start at the beginning. The total number of such resets
must be limited on the grounds of bounding Alice’s probabil-
ity of cheating. The possibility of such checks at run time is
the main reason why we must consider protocols with a large
number of rounds, possibly differing from run to run.

Result. We will prove in Sec. III G that any protocol
which is € concealing allows a o-cheating strategy for Alice,
where d<2ve. These bounds coincide with those obtained
by Spekkens and Rudolph [23] in the Kerckhoffian setting.

As illustrated in Fig. 1, Alice’s cheating strategy a* con-
sists in playing a purification of the honest strategy a,
throughout the commitment and holding phase. If she then
opts for the bit value k=1 instead, she will apply a unitary
operation U on the purifying system and thenceforth follow
the honest strategy a;.

B. Formal description of protocols

In this section we will cast the above description more
explicitly into the formalism of quantum theory. Thereby we
further reduce possible ambiguities in the statement of the
problem, but also prepare the notation for the proof.

The basic formalism of quantum theory is briefly re-
viewed in the Appendix. We will generally identify systems
by their observable algebras. This has the advantage that
combinations of classical and quantum information are natu-
rally covered: a quantum system with Hilbert space H is then
represented by the algebra B(7H) of operators on H, and a
system characterized by a classical parameter x, and has Hil-
bert space H, in that case is described by the direct sum
® B(H,). A state on such an algebra is of the form @ p,p,
and is specified first by a probability distribution p, for the
x’s and second by a collection of density operators p, on H,,
which are used to compute expectations if the value of the
classical parameter is known to be x. Since this formalism
for handling classical information in protocols is not gener-
ally familiar, we describe it in some more detail in the
Appendix.

Many algebras (indexed by the nodes of the communica-
tion tree) will appear in the description of the protocol, indi-
cating that with each operation the type of quantum system
in the respective laboratory might change completely. By
choosing the laboratory algebras large enough this depen-
dence might be avoided. However, even when the laboratory
systems remain the same, it is helpful to keep the distin-
guishing indices for keeping track of the progress of the pro-
tocol.
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FIG. 2. (Color online) Example of a communication tree. Each
node corresponds to one history of classical communications, with
the different lines from each node representing a possible classical
signal. The dashed lines represent the holding phase, in which no
communication occurs, followed by the opening move (open circle)
by Alice and a measurement by Bob.

1. Communication tree

At every stage of the protocol a certain amount of shared
classical information will have accumulated. Classical infor-
mation never gets lost, so the stages of the protocol, together
with the currently available classical information, naturally
form the nodes of a tree, which we call the communication
tree. An example is depicted in Fig. 2. Every node x carries
the following information

(i) Whose turn is it, Alice’s or Bob’s? This follows from
the position of the node in the tree, when we assume, without
loss of generality, that Bob always starts and from then turns
alternate.

(ii) What are the classical signals which might be sent
from this person to the other? The admissible signals form a
finite set M, by assumption. This set labels the branches
continuing from this node to successor nodes which we de-
note by x'=xm, for m e M,.

(iii) For each possible classical signal, what kind of quan-
tum system is accompanying it? If the classical message is
m, we take its observable algebra to be /\/lf" and assume this
to be the full algebra of d X d matrices for some d=d(x,m)
<o, The value d(x,m)=1 (= no accompanying quantum
system) is a possible choice.

(iv) Each node x is completely characterized by the entire
history of the classical messages exchanged between Alice
and Bob; i.e., we can write x=mm," - my.

At every node, we denote the observable algebras of Al-
ice’s and Bob’s laboratories by A, and B,, respectively.
These are only partly determined by the communication in-
terface and depend on the strategy, which we sometimes em-
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phasize by writing A (a) and B,(b). The description of the
communication step below shows in detail how these alge-
bras develop as one moves along the communication tree.
Let X, denote the set of nodes at which a commitment is
supposed to be reached. Since only local operations and the
opening phase follow, we can consider these as the leaves of
the communication tree. The joint observable algebra at that
stage is

D Aa) ® B,(b) (1)

xeX.

(see the Appendix for the interpretation of direct sums). The
algebras of Alice and Bob could themselves be direct sums,
representing classical information only available to Alice and
Bob, respectively, but we do not look at this for the moment.

2. Elementary communication step

Now consider some node x and assume that it is Alice’s
turn (everything holds mutatis mutandis for Bob). We know
that some message m € M, is expected from Alice, accom-
panied by a quantum system with observable algebra M .
The most general way of doing this is a quantum operation
sending states on A, to states on &,.A,,® M;. Written in
the Heisenberg picture Alice hence chooses a channel (com-
pletely positive normalized map; cf. Appendix)

T (a): @M Agnla) © M;, — A(a), 2)
By,(b) = M;, ® B(b). 3)

Here we have added a parameter a to T, to make it clear that
choosing these channels for all x is precisely what defines
Alice’s strategy. Note that the choice of the channel includes
that of their domain and range algebras. The channel T (a),
together with the input state, determines the probabilities for
the classical outcomes m. Of course, the channel could be
one that simply forces one of the results. Hence m could
equally well be the result of Alice’s free choice of strategy or
of a measurement on a system she recently obtained from
Bob. If m is found, Alice also splits the output system into a
part A,,,(a), which Alice keeps, and the part M, she sends
to Bob. This splitting is included in the specification of
T (a). That M;, changes ownership is expressed in the above
equation by including it in Bob’s algebra at the next round
(i.e., B,,,) as a tensor factor. At Bob’s nodes everything is the
same, but since we always order tensor factors as Alice ®
Message ® Bob, the analogs of the above equations at Bob’s
nodes are

T(b): © M, @B,(b)— Bb), (4)
meM,
Aunla) = Ala) @ M, )

3. From commencement to commitment

We assume that Alice and Bob initially share the quantum
or classical state py:.Ag® By— C. The joint state
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pela.b,po): D Aa) ® B(b) — C (6)

xeX.

at commitment time is then p.(a,b,py)=py°T(a,b), where

T.(a,b): ® Ala) ® B,(b) — Ay ® B, (7)

xeX,

is the direct sum channel that arises from the concatenation
of all the elementary step channels T(a) and T,(b) up to
commitment time. Of course, Eq. (7) holds correspondingly
for the shared states at all other stages of the protocol. In
particular, the final state pf(a,b, po) on which Bob carries out
the verification measurement arises from the initial state pg
by means of a quantum operation

Tf(a,b): @ Ax(a) ® Bx(b) — .A() ® Bo, (8)

xeXy

where X is the collection of all the leaves of the communi-
cation tree. We will assume that the initial state py:.Ay® By
—C is known to both Alice and Bob and henceforth write
p.(a,b) instead of p.(a,b,py), and pda,b) instead of
pa.b.py), to streamline the presentation.

4. Can Bob distinguish Alice’s strategies?

In the concealing condition, as well as in the description
of cheating strategies, it is important to decide whether Bob
can distinguish two strategies of Alice at commitment time.
Clearly, this depends only on the restriction p®(a;,b) of the
state p.(a;,b) to Bob’s laboratory, which has observable al-
gebra @ B,.

The security criterion given in Sec. IT A asks for the larg-
est probability difference obtainable by Bob. It is convenient
to express this in a trace norm difference: the largest differ-
ence of expectations in “yes-no” experiments with density
matrices p;,p, is supg|tr(p,—p,)F|, where F ranges over all
so-called effects F with 0<F=1. That is, the largest prob-
ability difference is 3]|p;—p,/|;, where [|-||; denotes the trace
norm. This naturally leads us to the following definition of
concealing protocols and cheating strategies:

Definition 1. (Concealing). We say that a protocol with a
strategy pair (a,a;) for Alice is & concealing iff for all strat-
egies b of Bob

||pf(a0,b) - pf(al,b)lll < 2e. ©)

When this condition holds with e=0, we say that the proto-
col is perfectly concealing. |

Note that one possible measuring strategy for Bob is to
actually make the measurement at an earlier time, record the
result, and send only dummy messages to Alice afterwards.
So saying that two strategies are € equivalent ar some stage
is the same as saying that they are equivalent up fo that stage
of the protocol. Hence the e-concealing condition implies the
only apparently stronger statement that at no time during the
commitment phase Bob is able to discriminate the honest
commitments better than with probability e.

Definition 2. (Cheating). A pair of strategies (ag,a'f) for
Alice that coincide until after the commitment phase is called
a O-cheating strategy iff
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o} (af b) - pf(ab)l|; <26, (10)

for Alice’s honest strategies (ag,a;), i=0,1 and all of Bob’s
strategies b. |

Definition 2 requires a cheating strategy to work against
all of Bob’s strategies—not only against some fixed strategy,
as suggested by Kerckhoffs’ principle. We will show in Sec.
IIT G that Alice can always find such a universally good
cheating strategy. As explained in the Introduction, this ex-
tends the no-go theorem to protocols relying on secret pa-
rameters or “anonymous states.” If Bob’s strategy b is sup-
posed to be fixed and publicly known in Eq. (10), our no-go
proof will reduce in essence to the one obtained previously
by Lo, Chau, and Mayers [15-18].

C. Protocols covered by our definition

In this section we describe some ideas from the literature
about possible protocols, in increasing complexity. Of
course, none of them are ultimately successful. But this is in
many cases not obvious from the outset, so these ideas serve
well to illustrate the richness of two-party protocols as for-
malized in our scheme.

1. Beginning

As explained in the Introduction, the first observation
concerning quantum bit commitment was made in the classic
paper of Bennett and Brassard on quantum cryptography
[12]. In this basic scenario the commitment phase has only
one round, in which Alice prepares one of two orthogonal
Bell states ¢, i, € H, ® Hp. These have the same restriction
on Bob’s system, so the protocol is perfectly concealing. But
they are also connected by a unitary on Alice’s side (as all
maximally entangled states are), and this unitary constitutes
her sneak flip cheating strategy, which under these circum-
stances also works perfectly.

2. Alice sends a state

The natural generalization of this protocol is to replace
the Bell states by arbitrary pure states generated by Alice
[15,18]. When these have the same restriction on Bob’s side,
they are purifications of the same state and hence connected
by a partial isometry on Alice’s side, which serves as a sneak
flip operation. A crucial step is now to go away from perfect
concealment [¢=0 in Eq. (9)], which seems to have been
considered first in [18]. In this case one has to use a conti-
nuity result for purifications: i.e., that nearby states have
nearby purifications. In other words, one needs an estimate
[21] of Uhlmann’s fidelity (which measures the distance be-
tween purifying vectors) and the trace norm.

3. Classical communication

Classical communication occurs naturally in crypto-
graphic protocols, so it needs to be included in the analysis.
In contrast to some of our predecessors, who choose a purely
quantum description from the outset, we treat classical infor-
mation explicitly throughout. In particular, classical informa-
tion in the Lo-Chau-Mayers approach is treated quantum me-
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chanically and sent over noiseless quantum channels, while
our description explicitly allows information transfer over
classical channels and thus provides a natural setting to in-
clude purely classical protocols in the analysis.

Cheating becomes harder for Alice if the protocol requires
some exchange of classical information, for she no longer
has full control over the purification spaces of the two com-
mitment states. Roughly speaking, unitaries which introduce
superpositions of states, which belong to different classical
values already sent to Bob, are forbidden. In the formalism
introduced above this means that Alice has to find a cheating
unitary for every classical communication history x.

Mayers’ heuristic paper [18] has some provisions for this
case by sending classical values to a special quantum reposi-
tory in the environment and effectively coherentifying all
classical information. In contrast, in this text the classical
communication flow is treated explicitly and, in fact,
emerges naturally as a framework for the description of the
protocol. This approach should also prove helpful in the
analysis of other cryptographic tasks.

4. Bob supplies the paper

The protocols so far were characterized by the property
that Bob really had no strategic choices to make during the
commitment phase. Hence the state at the end of the com-
mitment phase, written in our scheme as p.(a,b), really does
not depend on Bob’s strategy b. So Alice only has to connect
the purifications of two states which are explicitly known to
her. Clearly, her task of finding a clever sneak flip becomes
harder if there is a proper dependence on b. Lo, Chau, and
Mayers restrict their analysis to those protocols in which Bob
follows a specified “honest” strategy b,, which is assumed to
be publicly known in accordance with Kerckhoffs’ principle.
In these cases, Alice knows how to cheat and the no-go result
immediately applies.

As explained in the Introduction, we do not require that
Bob follows such a publicly known standard strategy. Alice
then indeed has to find a sneak flip working for all of Bob’s
admissible strategies b. The easiest such protocol begins with
Bob sending a system to Alice, in some state known only to
him (in [38] this is called an anonymous state). The honest
strategies require Alice to encode the bit by using this system
in some way and then returning a committing system to Bob.
Effectively Alice now chooses not a state but a channel to
encode her commitment. The purification idea and Uhlmann
fidelity estimate no longer work for this, so these protocols
are not covered by Lo, Chau, and Mayers. Instead, the puri-
fication construction has to be generalized to the Stinespring
representation of channels and an appropriate continuity re-
sult has to be shown. This will be done in Sec. III.

5. Decoherence monster in Bob’s laboratory

That the idea of states supplied by Bob may introduce
interesting new aspects is demonstrated by a scenario which
is not a bit commitment protocol in the sense of this section,
because it makes additional assumptions about things hap-
pening in Bob’s laboratory: Suppose that after Bob has sent
some quantum state to Alice, a decoherence monster (such as
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the cleaning service) enters his lablaboratory and all quan-
tum information is destroyed. Only his classical records sur-
vive. That is, he still knows what preparation he made, but
cannot use the entangled records he made during the prepa-
ration. Now suppose that Alice and Bob can rely on this
happening. Then they can design a bit commitment protocol
that works. So, paradoxically, the monster strengthens Bob’s
position, because it weakens the assumptions about his abil-
ity to break the concealment. Hence one can make protocols
which are binding in the strong sense described above, but
concealing only if we assume that coherence in Bob’s lab is
indeed destroyed. We will analyze this possibility in Sec.
V B.

6. Alice can choose more strategies

An apparent generalization would allow Alice to choose
her honest strategy a, at will from some set A, of honest
strategies and a; from A;. The idea is that now some a
e Ay might well be distinguishable from some a; € A; for
Bob. Concealment under such circumstances means that
Bob, on seeing data compatible with some a, during the
commitment or holding phase, can never be sure that they do
not come from a certain a;. In other words, for every a,
e A, there must be an g-equivalent strategy @, € A;. But
then, according to our result, Alice might develop a sneak
flip attack on the basis of these two protocols alone.

7. More communication in the holding phase

In Sec. II A, we excluded any communication in the hold-
ing phase and, apart from a single message from Alice to
Bob, also in the opening phase. There is, however, no prob-
lem to allow such communication, and some protocols, like
Kent’s protocol using relativistic signal speed constraints
[28,29], require a lot of communication in the holding phase.

Of course, protocols with no rounds at all in the holding
phase are directly covered by our definition. The only strate-
gic difference between holding and commitment phase is that
Alice’s cheating strategies a) and af are only required to
coincide during the commitment phase. She might start
cheating with different tricks for O and 1 during the holding
phase.

Clearly, declaring the holding phase a part of the commit-
ment phase only weakens Alice’s cheating possibility. How-
ever, she does not need these extra options anyway: a sneak
flip attack at the end of the holding phase is always possible,
as we show.

8. Aborts and resets

Often in cryptography one considers protocols which al-
low the parties to call an “abort.” We can distinguish two
kinds of abort: when a constructive abort, or reset, occurs,
the protocol is started anew, whereas at a full abort the whole
protocol is terminated as unsuccessful.

Both kinds of aborts are covered in our scheme, but they
would be typical of different phases. Resets are quite natural
in the commitment phase. For example, Bob might make a
test measurement on some message he receives and refuse to
continue if there is a slight deviation from what is expected
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from Alice playing honest. A reasonable requirement at this
point is that the probability for reaching a commitment after
some number of rounds with an honest Alice be positive.
Then allowing even more retrials one could bring the prob-
ability for reaching commitment close to 1 and allow some
arbitrary choice in the remaining cases—i.e., if the allotted
total number of rounds is exhausted without a commitment.
In this way one would get a protocol satisfying our finiteness
condition, while retaining the potential value of resets for a
commitment protocol. Strictly speaking, resets can only oc-
cur during the commitment phase, since we have demanded
a partitioning of each protocol run into three successive
phases (without relapses into earlier phases). However, the
holding phase can be essentially united with the commitment
phase (see Sec. IT C 7). Hence we can effectively also cover
constructive aborts during the holding phase.

In the opening phase we can consider full, or destructive,
aborts. This is a move right to an endpoint of the communi-
cation tree, labeled accordingly. Clearly this possibility
weakens Bob’s discrimination powers and makes it much
easier to cheat for Alice. In particular, each sneak flip attack
becomes successful. Therefore, the abort possibility does not
seem to present any interesting strategic options for quantum
bit commitment. The proof in Sec. III shows that this is
indeed the case.

9. Concatenated protocols

Sometimes one considers settings in which a variety of
different cryptographic protocols are run in parallel or in
succession, usually with dependent inputs. Obtaining bounds
on the security of concatenated protocols in terms of the
security parameters of their component parts is often far
from straightforward and a subject of ongoing research even
in classical cryptography [52]. However, in this work we are
chiefly concerned with impossibility results, which easily
transfer to concatenated protocols: Running a finite number
of (possibly different) bit commitment protocols in parallel
or succession and assuming that those protocols all fall into
the framework described in this section, the concatenated
protocol is again a quantum bit commitment protocol, with
suitably enlarged Hilbert and classical messenger spaces and
possibly a larger number of rounds. Since the latter protocol
is covered by our impossibility result, concatenating finitely
many insecure bit commitment protocols cannot help to es-
tablish secure bit commitment.

The formulation of two party protocols that we describe
in Sec. II B is by no means limited to quantum bit commit-
ment and hence could also be used to model larger crypto-
graphic environments, of which quantum bit commitment
might be a subroutine. In Fig. 2, such a protocol would ap-
pear as a subtree. Concealment and bindingness would have
to be guaranteed for the entire tree and hence, by restriction,
for the subtree. Thus, no two-party cryptographic protocol
covered by the framework described in Sec. II B can contain
a secure bit commitment protocol.

The composability analysis is of course much more in-
volved for secure protocols. The security proof we provide in
Sec. VB for the decoherence monster protocol in general
only applies to the protocol as a stand-alone object. If this
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protocol is then used as a subroutine in a larger and compli-
cated cryptographic context, the security analysis will usu-
ally have to be tailored to the specific protocol. Fortunately,
at least the norm of complete boundedness (cb-norm) esti-
mates we use in the proof of theorem 12 are stabilized dis-
tance measures and hence well behaved under concatenation
(cf. the Appendix).

III. PROOF

In the exposition of the task of bit commitment and the
admissible protocols we have tried not to restrict generality
by simplifying assumptions, in order not to weaken the scope
of the no-go theorem. This leads to a rather wild class of
strategies to be considered: arbitrarily many rounds of com-
munication of varying length, infinite-dimensional local
laboratory Hilbert spaces, and all that. Clearly, in the course
of the proof we want to get rid of this generality. The main
idea for simplifications is that obviously inferior methods of
analysis for Bob, or inferior cheating methods for Alice, need
not be considered. We therefore begin with an explanation of
what it means that one strategy is “obviously inferior,” or
weaker, than another (see Sec. III A).

The first application of this idea is the process of purifi-
cation, by which a general strategy is turned into another
one, which avoids all measurements not demanded by the
communication interface and turns all decohering operations
into coherent information transfer to ancillas. Stinespring’s
dilation theorem guarantees that this can always be done. We
explain in Sec. III B how the purifications result in locally
coherent strategies, which will be crucial for Alice’s cheat
later on and have been a part of all no-go results.

Once a player has chosen a locally coherent strategy, it is
possible to reduce the laboratory spaces considerably. For
example, if a strategy requires the choice of a mixed state,
this state may have an infinite-dimensional support Hilbert
space. Its purification, however, is a single vector, so up to a
unitary transformation, which can be absorbed into subse-
quent operations, it suffices to take a one-dimensional Hil-
bert space. We show that this works for operations as well:
for every locally coherent strategy there is a stronger one (in
the sense of Sec. IIT A), using only finite-dimensional Hilbert
spaces, with a universal dimension bound depending only on
the dimension of quantum messages exchanged so far and
the trusted ressources shared initially. In particular, an
infinite-dimensional laboratory space will not give more
power to Bob. This will be shown in Sec. III C and leads to
the consequence that effectively (up to any desired level of
accuracy) we need only consider a finite number of strategies
for Bob.

The next step is in some sense a dual of purification:
purification means that we can avoid measurements during a
protocol, deferring all such operations to the final measure-
ment. Similarly, we can move the acts of decision making
during the protocol to the very beginning by introducing a
strategy register (see Sec. III D), which is described in the
Hilbert space €%(S), for some finite set S of strategies. The
choice of a strategy is then expressed by preparing some
initial state of the strategy register and then letting controlled
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unitaries transcribe this information into suitable operations
at all later rounds. Let us denote by b, Bob’s strategy of
installing the strategy register mechanism and preparing the
initial state o for that register. The state p.(a,b,) at commit-
ment time then depends linearly on o, and after specifying
the trusted initial state p, and tracing out Alice’s laboratory,
we find a channel I'3(a) depending on Alice’s strategy a,
such that

I'8(a): @ B, — B{(S)), (11)
xeX.
troT2(a)(B) = trpf(a,bo)B, (12)

for all B e ® B,. This channel now summarizes everything
that Bob can possibly learn about Alice’s strategy by choos-
ing his own strategy and making a measurement in his labo-
ratory after the commitment. In a simple, purely Kerckhof-
fian scenario the analogous object is just the state at
commitment time, since one does not allow Bob a choice of
different legitimate strategies. However, in our more general
framework we do need to consider the dependence on o and
correspondingly, cheats which work uniformly well for all o.

As an instructive special case, we next suppose that the
protocol is perfectly concealing, which is expressed by
I'8(ay)=T"8(a,). We show in Sec. III E that Alice then has a
perfect cheat. Its existence is guaranteed by the uniqueness
clause in the Stinespring dilation theorem. From this proto-
type of Alice’s cheat one can see how an approximate cheat
in response to approximate concealment I'3(ay)=~I%(a,)
should work.

In the next section we look more carefully into the kind of
approximation I'?(a,) =I'2(a,) sufficient to draw the desired
conclusion. It turns out that we need to consider a special
attempt of concealment breaking for Bob: namely keeping an
entangled record of the strategy register and making a joint
measurement on the rest of his system and this “backup
copy” after commitment. Clearly, this is a legitimate attempt
in our framework and hence must already be implicit in the
strategies controlled by the strategy register. However, mak-
ing this scheme explicit provides the right kind of norm (cb
norm) on channels so that a small |[['®(ay)-T"3(a,)||., guar-
antees the existence of an approximately ideal cheat. The
technical result guaranteeing this is a new continuity theorem
[46] for the Stinespring dilation construction, which we re-
view in Sec. III G.

A. Comparing the strength of strategies

Consider two strategies a and a’ of Alice. We will say that
a' is stronger than a if whatever Alice can achieve by strat-
egy a she can also achieve by a’. More explicitly, we require
that there exists a suitable revert operation R.:A.(a)
— A,(a’) bringing Alice back to strategy a at whatever node
x she so chooses (observe the direction of arrows due to the
Heisenberg picture). That she actually comes back to a is
guaranteed inductively; i.e., we require that

RT(a)=TJ(a") D (R,,®id an)

meM,

(13)

at Alice’s nodes and
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R, =R, ®idp (14)

at Bob’s nodes, where id ,,x denotes the identity operation on

M, . Tracing this all the way back to the root of the tree we
get, for any of Bob’s protocols b and for any stage of the
protocol, in particular for the commitment stage X,

trp(a.b)(DF, @ G,) =trp (a’.b)(D R(F,) ® G,).

(15)

Taking F,=1, in Eq. (15) (corresponding to the partial trace
over Alice’s laboratory space in the Schrodinger picture), we
see that Bob’s subsystems are completely unaffected; i.e.,
Bob will never be able to tell the difference between a and
a'. The strategic significance of passing to a stronger strategy
is different for Alice and for Bob.

For Bob a stronger b' is just another strategy to be con-
sidered in the concealing condition and in the condition for a
successful cheat. Since Bob does not lose any discriminating
power in playing coherent, Alice (and we) might as well
assume that he is always using the strongest strategy avail-
able. This simplifies the analysis, as we will see in more
detail below.

For an honest Alice there is no option. Whatever the hon-
est strategies a, and a; specify, she has to follow. However,
since Bob will never know the difference, it is easy to check
from the definitions of concealing and binding in Sec. II B
that whenever (ay,a;) is a bit commitment protocol with
security parameters € and &, then so is any pair of stronger
strategies (ag.a;), with the same parameters. Hence we
could assume for the sake of an impossibility proof that Al-
ice’s honest strategies are strengthened in some way. How-
ever, there is hardly an advantage in that assumption, and we
will not do so.

For a cheating Alice, using all the power of her infinitely
well equipped laboratory, and hence using the strongest
available strategies is clearly the best choice. Indeed, this
will be the only difference between the honest and the cheat-
ing strategies during the commitment phase: these consists of
playing until commitment, a particular strengthening of an
honest strategy: namely, the local purification discussed in
the next subsection.

B. Local purification

Intuitively, maintaining coherence during quantum opera-
tions is more demanding than allowing thermal noise and
other sources of decoherence to have their way. Therefore,
doing only those measurements needed for satisfying the
communication interface rules, but avoiding all other deco-
herence, should lead to a stronger protocol in the sense of
Sec. IIT A.

The simplified “locally coherent” strategies are more eas-
ily expressed in terms of operators acting on Hilbert spaces
than by superoperators acting on algebras. Therefore we
need a notation for the message Hilbert spaces as well; i.e.,
we set M, =B(IC}), where dim K =d(x,m) is the dimen-
sion parameter from the description of the communication
tree in Sec. II B 1.
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Definition 3. (locally coherent strategy). We call a strat-
egy a of Alice locally coherent iff for all communication
nodes x we have A (a)=B(H,(a)) and, at all of Alice’s
nodes, the quantum channel T7.(a):®,A,,(a)® M
— A (a) from Eq. (2) is given by operators

Vx,m(a):Hx(a) - me(a) ® IC:” (16)

such that
T{a) (DA, ®Y,) =2V, (a) (A, ®Y,)V,,a)

(17)

for all A, € B(H,,,(a)) and Y,, € B(K}). |

The point here is that each summand in this 7, (a) is
pure—i.e., given by a single Kraus operator V, ,(a). This is
equivalent to the property that the mth term in this sum can-
not be decomposed into a nontrivial sum of other completely
positive maps, which would in turn correspond to the extrac-
tion of further classical information. Using a nonpure map in
a strategy would therefore mean to exercise less than the
maximal control allowed by quantum theory. Note that m is
in general a random outcome, but Alice can make it deter-
ministic by choosing her strategy a corresponding to
Vem(@)=6,,, Vs, with an isometry V.

There is a canonical way to convert any strategy into a
locally coherent one, which is provided by the basic structure
theorem for completely positive maps. We state it in a form
appropriate for the finite-dimensional case which is needed
here. We refer to Paulsen’s text [57] for further details and
the proof.

Proposition 1. (Stinespring dilation). Let A be a finite
dimensional C* algebra, H a Hilbert space, and T:.A
— B(H) a completely positive map. Then there is another
Hilbert space /C, a *-representation 7:.A— B(K), and a
bounded operator V:H — K such that, for all A € A,

T(A) = V' m(A)V. (18)

If (Ko, 7y, V) and (KC;, 7, V) are two such representations,
there is a partial isometry U:Ky— /C; such that

UVO = V] ’ (19)

U'v,=V,, (20)

U7To(A) = W](A)U, (21)

forall A e A. |

We will use this proposition several times, but ignore the
uniqueness statement for the moment. Then we can itera-
tively generate a locally coherent protocol d from a, together
with the required revert operations showing that d is indeed
stronger than a. Suppose the space H,(d) and the revert
channel R,: A (a) — B(H(d))=A(d) has already been de-
fined along with these objects for all earlier nodes. We need
to extend this definition to all successor nodes xm. If the
node x belongs to Bob, there is nothing to do since Eq. (14)
explicitly defines R,,,. At Alice’s nodes, we apply the Stine-
spring theorem to the composition:
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RT(a): © Ay la) ® M, — B(H(d)).

meM,

(22)

The dilation theorem then provides us with a representation
m, of @, cp Ayn(a) ® M;, on some Hilbert space K, and an
isometry V,:H,(d)—K,. Now the projections P, in
®mem Am(a) ® M, which correspond to the direct sum de-
composition over m are mapped by 7, to projections on KC,,
so we get a decomposition into orthogonal subspaces
K.=®,,m7.(P,)K,. Since the P,, commute with all other ele-
ments of the algebra, the projections (P,,) commute with
all 7,(A), and A— m,(P,,)7.(A) becomes a representation on
7 (P,,)K,. This representation can be restricted to the mes-
sage algebra M, and since the representation of a full ma-
trix algebra is unique up to multiplicity (and up to unitary
equivalence indicated by “=" in the equations below), we
can split the subspace 7, (P,,)K, into a tensor product:

TP K = Hy(d) @ K, (23)
m(l®X)m(P,)=10X, (24)
(A @ ) (P,) = my,(A) @ 1. (25)

At the last line we have used that all 7(A®1) commute
with all 7,(1®X)=(1®X), so must be of the form A’ ®1
for some A’'=1r,,(A). We have already indicated in the no-
tation that the space H,,,(d) arising in this construction will
be chosen as Alice’s laboratory Hilbert space for the coherent
strategy d. The revert operation will simply be R,
=Tt Agn(a@) — B(H,,,(d)) and, finally, the isometries of the
pure strategy will be

Vx,m(d) = 7T)£(Pﬂl) Vx(a): Hx(d) - Wx(Pm)’Cx

= H,,(d) ® K%, (26)

Then Eq. (13) holds by virtue of the Stinespring representa-
tion and we have shown that 4 is indeed stronger than a.

To summarize: for every strategy a there is a stronger
locally coherent strategy d. Moreover, the corresponding re-
vert operation can be chosen to be a representation for all x.
Of course, the same construction holds for Bob’s nodes.

In the sequel we will assume from now on that Bob uses
coherent strategies, since this does not constrain his power to
resolve Alice’s actions at any stage. As we will show in the
proof of theorem 4, Alice’s cheat consists in playing suitable
purified strategies, too. By means of Eq. (15), purification on
Alice’s side will give Bob no clue whatsoever about her
cheating attempt.

C. Bounding local Hilbert space dimensions

It is a crucial point in the definition of concealment that
no limitations are imposed on Bob’s capabilities. In particu-
lar, he could choose to use arbitrarily large local lab Hilbert
spaces. In principle, this makes scanning all of Bob’s strate-
gies for checking e concealment an infinite task. However,
the purification construction takes care of this aspect as well,
and we will show that without loss of discrimination power
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Bob can fix the dimension of his laboratory spaces uniformly
over all his strategies.

The Stinespring construction respects finite dimensional-
ity. Usually one takes a “minimal” dilation, which means that
the vectors 7m(A)V¢ with A € A and ¢ € H are dense in K.
Hence dim/C <dimA dimH. However, since this bound still
contains the algebra A, which is part of the strategy whose
purification generates the locally coherent protocol, and
which is not a priori bounded, this argument does not suffice
to derive a uniform dimension bound on local laboratory
spaces.

The desired bound can be constructed by looking directly
at the definition of locally coherent strategies. Here the
growth of Bob’s lab space is given by the two operations

Vem(b):H(b) — K, © H.,(b) 27

at Bob’s nodes and

at Alice’s nodes. Given the dimensions of H,(b) and /K, the
first line per se does not imply a bound on the dimension of
Hn(b). However, the range of V, ,, has known finite dimen-
sion, so most of these dimensions will never be used. More
precisely, we can find a subspace M., (b) C H,,,(b) such that
Ve (BHL(B)) C K, & 1, (B). (29)
Indeed, we can take 7, (b) as the span of all vectors ¢,
appearing in the expansion V., (b)$,=Z4;® ¢, ;, where
{¢} CKC,, and {¢,} CH,(b) are orthonormal bases. Hence
dim H_,,(b) < dim H(b)dim [C},.

xm

(30)

We can now apply this idea inductively—i.e., with a pre-
viously constructed H.(b) CH(b) on the left-hand side of
Eq. (29). Note that at Alice’s nodes there is nothing to choose
and the dimension bound Eq. (30) holds with equality any-
how. At the root we have dim Hy(b)=dim ’Hé(b)z:dg eN
for all strategies, the dimension of Bob’s initial state space.

Hence we have a new strategy, using the same isometries
V.m(b) as b, but with domains and ranges restricted to a
subspace H,(b")="H, (b) CH(b) for all b. We show now
that b’ is stronger than b. The required revert operation is
implemented by the subspace embedding j.:H,.(b')
—H,(b), as R.(B)= j;B j,. and, due to Eq. (29), the operators
V,.m for the new strategies are connected by

me(b)]x = (1 ® jxm) me(b,):Hx(bl) - IC;;’L ® me(b) ’
(31

where j,,, is the embedding of H,, (b) into H,,,(b). Equation
(13) then follows by combining this with Eq. (17) in a ver-
sion adapted to Bob’s pure strategies. An intuitive descrip-
tion of this revert operation in the Schrédinger picture is to
ask Bob to consider his density operator on H,(b') as a
density operator on the larger space H,(b) by setting it equal
to zero on the orthogonal complement.
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It is perhaps paradoxical that in this case the strategy us-
ing less resources is stronger. But in fact, they are just
equally strong. The revert operation in the opposite direction
is Sy:B(H,(b"))— B(H,(b)), with

S«(B) = j.Bj, + p(B)1-jj,), (32)

where p, is an arbitrary state on B(H,(b")). The second term
is added to satisfy the channel normalization S,(1)=1. Since
j;: j.=1, we have R,S,=id. The revert operation in this case is
thus the projection on the subspace H,(b') CH (b).

Taking together the reduction operation and, possibly, an
expansion as described (adding some extra dimensions on
which all states vanish), we can convert any strategy b to
another one, for which the dimension bound Eq. (30) holds
with equality, at both Bob’s and Alice’s nodes. But then we
can identify all the spaces H,(b’) with a fixed space of ap-
propriate dimension, say Hf .

Applying the same construction to Alice’s operations, we
find a strategy-independent Hilbert space Hﬁ. In particular,
we will henceforth assume H,(co)="H,(d;)=H2 at all nodes
x for Alice’s locally coherent strategies d;. This will simplify
the discussion of Alice’s cheating strategy in Secs. III E and
III G below.

We summarize this section in the following proposition,
which we formulate for Bob’s strategies. It holds equally for
Alice’s strategies, too.

Proposition 2. (dimension bound). Let Hf denote a family
of Hilbert spaces with dimensions satisfying

dim H2 = dim H® dim (33)

m

and
dim H{=dj e N (34)

for all nodes x. Then for every locally coherent strategy b of
Bob there is an equally strong locally coherent strategy b’
with H,(b")="H" for all x. [ ]

The entire strategy dependence is now contained in the
choice of the operators V, ,(b").

Corollary 3. In the definitions of e-concealing and
o-cheating strategy, we may restrict the quantifier over all of
Bob’s strategies to locally coherent strategies with a strategy-
independent laboratory Hilbert space Hf .

For every £€>0 there is a finite set S of such strategies
approximating all of Bob’s discriminating procedures to
within & That is, for any strategy b of Bob we can find b’
€ § such that for all of Alice’s strategies a

”pc(a’b)_pc(a’bl)”l = g u

(35)

The proof of corollary 3 is obvious from the dimension
bound, and the observation that the set of bounded operators

between Hilbert spaces of fixed finite dimension is compact
in the norm topology.

D. Bob’s strategy register

The next simplification we would like to introduce will
significantly reduce the complexity of the many-round sce-
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nario. The basic idea is to replace all of Bob’s choices by a
single choice he makes at the beginning by preparing a suit-
able initial state. His later choices will then be taken over by
a sequence of “quantum controlled operations.” This reorga-
nization of Bob’s choices requires the expansion of the lab
space by an additional register, to hold the control informa-
tion. It is perhaps worthwhile to emphasize that this strategy
register serves merely as a technical tool in the no-go proof.

We will choose a finite approximation S to Bob’s strategy
space in the sense of corollary 3, with a very small value of
&, which will be taken to zero at the end. The strategy reg-
ister will be described by the Hilbert space ¢*(S), the
complex-valued functions on S, with the usual scalar prod-
uct. In other words, we have one basis vector |b> for each
strategy b € S. Then we set

HE=HE & €%(S), (36)

Ve HE = HE © K2, (37)

Vem= 2 Vou(b) ® |bXD]. (38)
beS

Observe that Vx,m is now independent of Bob’s strategy (it
depends on S). However, Bob still has a choice to make:
namely, the choice of the initial state for the strategy register.
If he wants to play strategy b, he will set it to |p){b| and then
let the preprogrammed controls take over.

The construction also opens up the rather interesting pos-
sibility for Bob to play strategies in superposition simply by
initially preparing a superposition of the basis states |b). For
this case it is helpful to bear in mind that the “control” by
“controlled unitary operations” is not a one way affair. As
soon as Bob prepares superpositions, the strategy register is
in general affected by the interaction, so by “measuring the
strategy” after a while, Bob could pick up some clues about
Alice’s actions. This is required by basic laws of quantum
mechanics, because the controlled-unitary operation creates
entanglement.

Let us consider the overall effect of the protocol up to
commitment, with the trusted shared initial state p, consid-
ered fixed, Bob choosing an arbitrary initial state o
€ B«(€%(S)) (possibly mixed) for the strategy register, and
Alice playing strategy a. At commitment, the observable al-
gebra is now EBXEXCAX(a)®B(77{f). The state obtained on
this algebra depends linearly on the initial state o, and being
implemented by a series of completely positive transforma-
tions, this dependence is given by a quantum channel I'(a).
In the Heisenberg picture we thus have

I'(a): @ Aa) @ B(H?) — BX(S)). (39)

xeX,

The restriction of the final state to Bob’s side is what decides
his chances of distinguishing different strategies of Alice.
These restrictions are given by the reduced channel I'?(a):

®,ex BHE) — B(X(S)), given by
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I3(a)(D B,) =T(a)( D La () ® B,).

xeX. xeX.

(40)

The concealment condition requires that I'5(ay) =T15(a,).
The aim of the impossibility proof is to conclude from this
the existence of a good cheating strategy for Alice. For this
conclusion it turns out to be crucial how the approximate
equality of these channels is expressed quantitatively. We
defer this discussion to Sec. III F and treat first the case
I'3(ay)=1"5(a,), which requires only the Stinespring dilation
theorem and shows more clearly what properties we need to
establish in the approximate case.

E. Case of perfect concealment

In the sequel Bob is always understood to take advantage
of his strategy register and preprogrammed controls, as de-
scribed in Sec. III D. So we will henceforth drop the tilde on

Bob’s Hilbert spaces ﬁf to streamline the presentation.

For the case of perfect concealment, suppose that I'3(a,)
=T"3(a,) and that Alice is preparing to cheat. She will then
play the local purification ¢; (i=0,1) of one of the honest
strategies until commitment time. Note that both Alice’s and
Bob’s strategies are assumed to be locally coherent in the
sense of Sec. III B, with Hilbert space dimensions indepen-
dent of their respective strategies as explained in Sec. III C.
The concatenated channel F(d,-):EBxB(Hf) ®B(Hf)
— B(£*(S)) is then likewise pure and is hence given by op-
erators V; .. €2(S) — HA @ H? as

T'(@)(D (A, ®B))= 2 Vi (A, ®B)V,,

xeX, xeX.

=Vi(D (A, ®B))V;.

xeX.

(41)

For the last step we have combined all the V;, into a single
operator V;:€%(S) — K= EBfo ®H?, and the direct sum re-
fers to the direct sum decomposition of the underlying Hil-
bert space K. Note that this Hilbert space carries a represen-
tation 7 of Bob’s observable algebra & B(H?) at
commitment time simply by setting m(®,B,)=®,17®B,.
Hence (KC,m,V,) is a dilation of the channel T'3(d;) in the
sense of proposition 1.

But now, by assumption, I'’(dy)=15(ay)=I"(a,)
=T'3(d,). Hence we get two dilations of the same channel,
which must be connected by a unitary operator U € B(K) as
in proposition 1. Essentially, this U will be Alice’s cheat
operation. What we have to show is that she can execute this
operation on the system under her control, given the classical
information x.

The condition Um(Y)=m(Y)U, applied to a projection Y
=P, of one of the summands, implies that U can be broken
into blocks, Um(P,)=m(P,)U e B(’Hﬁ ® Hf). The intertwin-
ing relation for 7(B,) allows us to conclude that this operator
is of the form U,® 1%, with a unitary operator U, € B(H%).
Clearly, U, is an operator between possible lab spaces of
Alice, depending only on publicly available information x
€ X,.. This will be Alice’s cheat channel. Setting
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CaB(H () — B(H(dy).  CA)=UAU,, (42)
we immediately conclude from UVy=V, that

T'(i)(D ¢, ®id®) =T(a,). (43)
X

Let us summarize Alice’s perfect cheat. She will play the
purification d, of the honest strategy a, until commitment
time. If at that time she decides to go for the bit value 0, she
will just apply the revert operation from the purification con-
struction. After that nobody can tell the difference between
her actions and the honest a(, not even with full access to
both labs. On the other hand, if she wants to choose bit value
1, she will apply the cheat channel C,. We see from Eq. (43)
that afterwards nobody will be able to tell the difference
between her actions and d;. Finally, she will apply the revert
operation from d; to a;, hiding all her tracks. Note that the
revert operation by construction works at any step: indeed
Alice can cheat at any time, since the protocol must be con-
cealing for all steps in order to be concealing at the commit-
ment stage.

F. Bob’s entangled strategy record

In the previous section we have seen how Stinespring’s
theorem allows Alice to find a perfect cheat in a perfectly
concealing bit commitment protocol. The continuity theorem
presented in Sec. III G below shows that the same cheating
strategy still works for Alice with high probability under
more realistic conditions—when only approximate conceal-
ment is guaranteed, I'3(ay) =I'®(a,). The result crucially de-
pends on the way in which the distance between these two
channels is evaluated: Bob can test the condition I'3(a,)
~T"®(a,) by preparing a state o for the strategy register £>(S)
and making a measurement on the system M’ he receives
back from Alice. This includes both the possibility to super-
pose his original strategies |b) and the possibility to mix such
strategies in the sense of game theory. However, this still
does not exhaust his options: he can keep an entangled
record of his strategy. This would be pointless for just clas-
sical mixtures of his basic strategies |b). In that case all his
density operators would commute with the “strategy observ-
able” and he could extract the initial strategy by a von Neu-
mann measurement from the state at any later step. However,
if he also uses superpositions of strategies, the controlled
unitaries may properly “change” the strategy. It therefore
makes sense to keep a record—i.e., to not only use a mixed
initial state, which would correspond to a mixed strategy in
the sense of von Neumann’s game theory, but to use an en-
tangled pure state on €2(S)®¢*(S’), with some reference
system S'. It turns out that one can always choose S’ =S (cf.
proposition 8.11 in Paulsen’s text [57]). While the first copy
in this tensor product is used as before to drive the condi-
tional strategy operators V,, the second is the record and is
completely left out of the dynamics. In other words, Bob not
only uses a von Neumann mixed strategy, but the purification
of this mixture. Concealment will then have to be guaranteed
against his joint measurements on Hj® €(S’).

We will see in Sec. V B that this procedure in general
does increase Bob’s resolution for the difference of channels.
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Of course, if the initial selection of strategies S is large
enough, an approximation of this quantum randomized strat-
egy will already be contained in S and the gain may be
negligible. Mathematically, the introduction of randomized
strategies corresponds to using a different norm: to guarantee
concealment in the sense of definition 1, Alice will have to
make sure that [|[T2(ag)-T5(a,)]®id,||<e if v»-dimensional
bystander systems are taken into account, for all ve N. As
explained in the Appendix, this just means that these two
channels need to be indistinguishable in the cb norm,
IT2(ay)-TB(a,)|| =€ for some small &> 0.

G. Full impossibility proof

The full impossibility proof goes beyond the case of per-
fect concealment discussed in Sec. III E. It shows that Alice
can still cheat if the bit commitment protocol is only ap-
proximately concealing and provides explicit dimension-
independent bounds on Alice’s probability to pass Bob’s tests
undetected:

Theorem 4 (no-go theorem). Any e-concealing bit com-
mitment Brotocol in the sense of Sec. II B allows Alice to
find a 2Ve-cheating strategy. |

These bounds coincide with those obtained by Spekkens
and Rudolph [23] in the Kerckoffian framework. Our proof
shows that they still hold if Bob no longer sticks to a pub-
licly known strategy. This is a significant improvement over
Cheung’s dimension-dependent estimates [51], which do not
suffice to rule out bit commitment protocols with large sys-
tems.

The full no-go proof is based on a continuity result for
Stinespring’s dilation theorem, which we cite here from [46].
It states that two quantum channels s and T' are close in
cb-norm iff there exist corresponding Stinespring isometries
Vi and V| which are close in operator norm. This generalizes
the uniqueness clause in Stinespring’s theorem to cases in
which two quantum channels differ by a finite amount and
hence is precisely the type of result we need to rule out
approximately concealing bit commitment protocols.

Proposition 5 (continuity theorem). Let H and H? be
finite-dimensional Hilbert spaces, and suppose that

5. 1%:B(HP) — B(H) (44)

are quantum channels with Stinespring isometries V(,,V;:'H
—HA®@HB and a common dilation space H“ such that
dim H4=2 dim H dim H®. We then have

ing(U ® 1p) Vo= Vil < |T§ =TTl

<2inf|(U® 15)Vy- V|, (45)
U
where the minimization is over all unitary U € B(H*). B
We refer to [46] for a proof of proposition 5 and further
applications of the continuity theorem. In this form the result
applies to quantum channels whose common domain is a full
matrix algebra, while in our case the domain algebra of the
commitment channels Ff =T53(q,) is the direct sum
@ B(HP). Again we have dropped the tilde from Bob’s Hil-
bert spaces in an attempt to streamline the presentation. In
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order to apply the continuity theorem to our setting, we ex-
tend the channels F,EF(di):GBXB(H‘)?)®B(H5)—>B(H) to
channels fo,f 1:B(HA® H?B) — B(K), where we have intro-
duced the shortcuts H:=€%(S), HA=&,H2 and HE:=a HE.
Note that the tensor product H*® H? has the direct sum
decomposition EBxny®Hf , and that ® B(H:®H5) is the
subalgebra in B(H” ® H®) which consists of those operators
that are supported on the diagonal subspace @x'Hf ® Hf . For
direct sum channels T'(®,A,®B,)=3.V; (A, ®B,)V,, as in
Eq. (41), the extensions f‘,: \A/j(~)\7i have Stinespring isome-
tries V., Vi H—HA®@HB= GBXYH? ® Hf given by

‘A/ilzb:: & 5xyvi,x¢‘ (46)
xy

In the sequel we assume that the dilation spaces are chosen
sufficiently large such that the dimension bound in proposi-

tion 5 is met. The restrictions of fi to Bob’s output system

H5 will be denoted by ff . We then have ff =I'%oP, where
the cp map

P:B(H?) — @ B(H®), P(B)=®.PBP, (47)
is composed of the projections P, in H” onto H%. Since

cb» (48)
we may now apply the left half of the continuity estimate Eq.

I = Ty = |5 = TF) o Plle, < 5 - Tf]

(45) to the extended quantum channels f‘f to conclude that
iflljf”(U 2 1)Vo— VilP <[ = Tl < T~ Tillv-

(49)

The minimization at this point is with respect to all unitary
U € B(H*), which can be written in the block decomposition

Up=D X Ui, (50)

with operators U,,: Hf —>H?. It turns out that the minimiza-
tion in Eq. (49) can always be restricted to unitary operators
whose off-diagonal blocks vanish. To see this, note that the
left-hand side of Eq. (49) can be rewritten as

inf| (U @ 15) Vo — V,|? = inf sup tro(Vy(U" ® 1) - V})
U U e

X[(U @ 1) Vo~ V]
=inf sup(2 — 2Re trQVT(U ® lp) ‘7()),
U e
(51)

where the supremum is taken over all states @ e B«(H).

From the definition of the isometries V; in Eq. (46) above it
is straightforward to verify that

ViU 1)Vy= 2 V) (U ® 1)V, (52)

in Eq. (51). Therefore, the minimization procedure on the
left-hand side of Eq. (49) is not affected by the off-diagonal
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blocks {U,,,x#y}, which implies that the infimum is at-
tained at a unitary operator that is a direct sum of unitaries,
U=,U, € ®,B(H?). On the other hand, the cb-norm differ-
ence |[§-T%|, is easily seen to be upper bounded by
2|(U® 15)V,—V,|| for any unitary operator U= U,

In summary, we have shown that the continuity theorem
extends to direct sum channels with a unitary U that respects
the direct-sum decomposition.

Proposition 6. (continuity theorem for direct sum chan-
nels). Let H be a finite-dimensional Hilbert space, and let
{H5},cx and {H"},cx be collections of finite-dimensional
Hilbert spaces. Suppose that V,,V,:H — @& HI@H? are
Stinespring isometries for the quantum channels I',I;:
@ B(HY® HE) — B(H) such that

T(P(A,®B))=2V; (A, @ B)V,, = V(D (A, ® BV,
(53)

and dim H?=2dim H®dimH for all xeX. Let I'%:
GBXB(Hf) —B(H) be the local restrictions given by
I'’(®,B,):=V,(®,1?®B,)V,. We then have

infl(U® 15)Vo = Vi[I* < T - T7]

<2infl[(U® 1)V, - Vy||l, (54)
U

where the minimization is over all unitary operators
U=a.U, € ®B(H). [ ]

The proof of the no-go theorem now immediately follows
from proposition 6.

Proof of theorem 4. Alice will play the purification d, of
the honest strategy ay until commitment time. If at that time
she decides to go for the bit value 0, she will just apply the
revert operation R from the purification construction, as de-
scribed in Sec. III B. It is then no longer possible to tell the
difference between her actions and the honest a,, not even
with full access to both labs. On the other hand, if she wants
to choose bit value 1, she will apply the cheat channel
C,:B(H,(a,))— B(H,(day)) given by C,(A):= UiA U,, where
U=®,U, € ®,B(H?) is the unitary operator that attains the
infimum in Eq. (54) above. In the purification construction
detailed in Sec. III B we have for simplicity assumed mini-
mal dilation spaces. Yet in order to apply the sneak flip op-
eration, Alice may possibly need to double her local lab
space ®,B(H?) to satisfy the dimension bound in proposi-
tion 6. However, this can always be postponed right until
before the cheat, only requires an additional (sufficiently
large) ancilla system, and hence does not constrain Alice’s
options.

Given an e-concealing bit commitment protocol with lo-
cal channels I'?(g;) in the sense of defition 1, we conclude
from our discussion in Sec. IIL F that |[8(ao) -T8(a))||, <e.
Hence, the continuity estimate implies that
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IT () (D C, ® id?) = T(d@)|e < 2|(U ® 18)V(diy) = V(d))

< 2\[P(ag) - T%(ay)le < 2Ve. (55)

where V(dy) and V(a,) are Stinespring isometries for I'(d;)
and I'(d,), respectively. Since the cb-norm difference cannot
increase under quantum channels, the same bound holds after
Alice’s revert operation R,

IT (o) (® C, ® idD)R - T'(a))||ep < 2Ve. (56)
Alice can then confidently announce the bit value 1 in the
opening. The probability of her cheat being detected is upper
bounded by 2Ve. This concludes the proof of the strength-
ened no-go theorem. |

IV. QBC IN INFINITE DIMENSIONS

In this section we will relax the general finiteness condi-
tion imposed in Secs. II and IIT and show how to extend the
no-go proof to quantum bit commitment protocols in which
the dimension of the underlying Hilbert spaces (Sec. IV A),
the number of rounds (Sec. IV B), or the set of classical
signals (Sec. IV C) are infinite.

A. Continuous-variable systems

We have so far restricted the discussion of the no-go theo-
rem to systems that can be described in finite-dimensional
(albeit arbitrarily large) Hilbert spaces. In this section we
show that the results can be easily extended to continuous
variable systems—as long as the systems obey a global en-
ergy constraint of a reasonably generic form. The total avail-
able energy for the protocol needs to be finite but can other-
wise be as high as desired, and yet secure quantum bit
commitment remains impossible. Purists might dismiss this
additional energy constraint on the basis that it restricts the
domain for the impossibility proof. Yet most physicists know
that infinite energy is seldom available. In fact, the continuity
theorem for Stinespring’s dilation may be generalized to
completely positive maps between arbitrary C* algebras [53],
and hence the no-go theorem applies to continuous-variable
systems with unbounded energy, too. But these results are
somewhat beyond the scope of the present paper, so we as-
sume a uniform energy constraint to simplify the presenta-
tion.

To set the stage, assume that 7 is a separable (but no
longer necessarily finite-dimensional) Hilbert space. As be-
fore, let B:(H) denote the Banach space of trace-class opera-
tors on H and S(H) C B.(H) the closed convex set of states.
We further assume that H:D—H is an unbounded self-
adjoint (energy) operator defined on a dense set DCH.
[From the Hellinger-Toeplitz theorem (cf. Sec. III D in [54])
we know that a symmetric unbounded operator cannot be
defined on all of H, so we always assume a dense subset D.]
For the proof we assume that H has discrete spectrum, that
all of its eigenvalues h, have finite multiplicity, and that
lim,,_,..h,=%. Under these conditions, the set of states
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Se(H) =={0 € S(H)|reH < E} (57)

can be shown to be compact for every E=0 [55]. As we
assume this energy constraint to be global, we impose that it
is respected by the quantum operation T, which describes
the full bit commitment protocol: T«(0) € Sg(H) for all o
e Sy(H).

Since the continuity theorem applies in this setting [46],
the proof presented in Sec. IIl goes through unchanged.
There is also a simpler proof, which avoids the compactness
arguments and is based on a useful approximation result: any
infinite-dimensional system with energy constraints as in Eq.
(57) can be approximated to arbitrary degree of accuracy by
a sufficiently large finite-dimensional system. This allows us
to reduce any bit commitment protocol to its finite-
dimensional counterpart:

Proposition 7. Given an g-concealing and -binding quan-
tum bit commitment protocol with a global energy constraint
as in Eq. (57). Then for any y>0 there is a corresponding
protocol on finite-dimensional Hilbert spaces with dimension
d=d(y) which is (e+y) concealing and (J+y) binding. H

Since the latter protocol is unfeasible for sufficiently
small parameters €, o, and v, so is the former.

The finite-dimensional approximation needed for the
proof of proposition 7 relies on the following two lemmas.

Lemma 8. Let y>0 and Sg(H) as in Eq. (57). Then there
exists a finite-dimensional projector P,, such that

troP,=1-yV 0 € Sg(H). B (58)

As a consequence, every system with energy constraints is
essentially supported on a finite-dimensional Hilbert space.

Lemma 9. Let y>0 and P, as in lemma 8. Then for every
quantum channel T%: B«(H)— B«(H) which respects the en-
ergy constraint Eq. (57) we have

for all ¢ € Sp(H). [ |

The proof of proposition 7 is then straightforward: Given
the continuous-variable bit commitment protocol with energy
bound E and security parameters € and &, we construct its
finite-dimensional companion by projecting on the subspace
P,H, with the finite-dimensional projector P, chosen as in
lemma 8. We know from the discussion in Sec. III that both
the concealment and bindingness conditions can be ex-
pressed in terms of appropriately chosen quantum channels
T.. By assumption, these will respect the energy constraint.
The approximation in lemma 9 then guarantees that for suf-
ficiently small y the companion protocol has nearly identical
security parameters. Substituting 4\5;+1—2_LyH v, this con-
cludes the proof.

It remains to prove the approximation lemmas. The proof
of lemma 8 appears in [55]. We include it here for complete-
ness.

Proof of lemma 8. Let the eigenvalues of H be arranged in
increasing order: hy<h,<h;=<---, with eigenprojector P,

T.(0) - P,T.(PoP,)P,

Y
P, T.(P,0P,)

<
1 -
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corresponding to the eigenvalue h,. For NelN, we set
fA’N==E£lV:1P,,. We then have for all e H

o0

(Why 1= PO = Py 2 PO <Y 2 h,P,|)

n=N+1 n=N+1
< (YH|p), (60)

implying that hy,,(1—Py)<H for all NeN. We may then
conclude that

A 1
tro(1-Py) < troH <
hN+l N+1

(61)

for all @ € Sg(H). Since the sequence {hy}y diverges, the

result follows by choosing P7==f’NO for some sufficiently
large N, |

Proof of lemma 9. An application of the triangle inequal-
ity shows that

||Q _PyQP'y“l = ||Q _PyQ”l + ”Pyg _PyQPy”l
<[@-pryeli+lle@-pr)l.  (62)

For ¢ € Sg(H) we know from lemma 8 that tr(1-P )0 <1,
and thus the two terms on the right of Eq. (62) may be
bounded as follows:

[(1-P)el, =1 ~P,)e
< tr' 2\JEU U \sEtr” 2\J’E(l -P,) \’E
$ \r’/_»y’ (63)

where we have used the Cauchy-Schwarz inequality for the
Hilbert-Schmidt inner product and U denotes the polar isom-
etry of (1-P,)@. Analogously, we have [[o(1-P.)[; =<V,
which together with Egs. (62) and (63) implies that

le=P,oPJl <2Vy. (64)

For all ¢ € Sg(H), the renormalized state mPyQPy satis-
fies the estimate

Y
pP.oP,-P P, <—P.poP.,, 65
trP.Q Ey = FyRry -y ¥eFy (65)

which in combination with Eq. (64) implies that

PoP,

o- < 2\@+ L. (66)
1 -y

trP, 0
Since the trace norm cannot increase under quantum opera-
tions [21], the upper bound also holds for the norm differ-
ence ||T*(Q)—mT*(PYQPy)||I. As the quantum channel T
is supposed to respect the energy constraint, Eq. (57), an
analogous chain of estimates for the output states of the
channel and yet another application of the triangle inequality
then yield the desired result. |

B. Infinite number of rounds

In this section we will show how the no-go proof can be
extended to cover quantum bit commitment protocols with a
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possibly infinite number of rounds—as long as the expected
number of total rounds remains finite. Just as with the energy
constraints discussed in Sec. IV A, for any practical purpose
this additional assumption does not restrict the domain of the
impossibility proof.

We begin by explaining how the framework introduced in
Sec. II can be modified to easily accommodate bit commit-
ment protocols with an infinite number of rounds in each
commitment, holding, and opening phase. As in the previous
section, the impossibility proof will then follow from an ap-
proximation argument.

As described in detail in Sec. II B, each layer X, of the
communication tree consists of a finite number of nodes.
Each node x € X, is connected with nodes xm € X, of the
following layer, corresponding to the classical message m
€ M. However, there is no longer a definite layer for which
a commitment or opening has been reached. Instead, there
are now infinitely many layers X,,r e N. If Alice and Bob
choose a definite pair of strategies, they check by means of
suitable measurements how many rounds ¢ have been per-
formed and whether they are willing to continue. The num-
ber of rounds then naturally plays the role of a classical
random variable. Introducing the bundle of algebras

f:tﬁfl:= @ AX®BX’

xeX;

(67)

the total system is now described by the algebra C(F) of all
bounded sections,

F:t—F(t) e F,, (68)

where the norm in C(F) is the standard supremum norm
given by [[F][=sup, c||F().

Alice’s observable algebra, which we denote by C(A), is
the subalgebra in C(F) which consists of all bounded sec-
tions A that assign to every number of rounds ¢ an operator
A(r) belonging to Alice’s subsystem:

A=Al e A= D A, ® 1p,.

xeX;

(69)

The observable algebra C(B3) of Bob’s system is defined
completely analogously. In our setup for protocols, each
strategy a that Alice chooses is related to a channel

T(a):C(F) — B£*(S)), (70)

containing all her possible responses to strategies that Bob
cezln play by a suitable preparation of his strategy register
().

The channels I'(a) include naturally the necessary tests to
decide for each round whether to remain in the commitment
phase or to proceed with the holding or opening phase. The
measurement of the number of rounds corresponds to the
embedding of the Abelian C* algebra of bounded functions
on N—denoted by C(IN)—which is obviously a subalgebra
of C(F). Let &, be the function in C(N) which takes the value
8()=1 and &,(s)=0 if s#¢, and let o be some state on
B(€2(S)) determining Bob’s strategy. Then, by definition, the
quantity
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P(a,o

1) = uloT'(a)(5)] (71)

is the probability that the commitment phase has been
reached at round ¢, provided Alice plays a and Bob plays o.

As advertised above, we now impose the reasonable as-
sumption that whenever Alice plays honestly the expected
number of rounds until commitment is uniformly bounded in
the choice of Bob’s initial state o: denoting by a, and a,
Alice’s honest strategies to commit either O or 1, respec-
tively, there is a finite constant 7 € R such that

sup E P(a;,0]

o teN

Nt<T (72)

holds for i=0,1. The basic idea for the proof of the no-go
result is now to relate this bound to the energy bound of the
previous subsection and hence approximate a protocol with
possibly infinitely many rounds by a protocol with a priori
finitely many moves. As “Hamiltonian,” the number-of-
rounds operator

H=E§,

teN

(73)

is perfectly suited. In line with Eq. (57), it is then enough to
ensure that the states I'(a,;)«(o) lie inside Sg(L,(H)) for an
appropriately chosen constant E, where L,(H) is the Hilbert
space of square-integrable sections

it (1) € H,= @ HE @ HE.

xeX,

(74)

Indeed, we conclude from Eq. (72) that for each initial state
o the inequality

[T (a)«(0)H] = X uloT(a)(3)] < T
teN

is fulfilled for i=0, 1. Hence, I'(a;)«(0) € S{L,(H)) and we
immediately obtain the following corollary as consequence
of proposition 7.

Corollary 10. Suppose an e-concealing and &-binding
protocol with infinitely many rounds such that the expected
number of rounds until commitment is uniformly bounded
for Alice playing honest as in Eq. (72). Then for any
v>0 there is a corresponding protocol on a priori finite
number of rounds N(y) which is (e+7) concealing and
(S+y) binding. |

Thus, even protocols with an infinite number of rounds do
not admit unconditional secure bit commitment.

(75)

C. Continuous-communication tree

So far we have assumed that our protocol is based on a
communication tree with a discrete set of nodes and a finite
number of options or messages. In this subsection we are
going to relax this condition by allowing that the nodes as
well as the options are taken from an continuous set. The set
of time steps, however, is kept discrete. For simplicity, we
restrict the discussion to protocols with a fixed number of
rounds ¢ until commitment. What does the structure of a
continuous communication tree look like? Each layer X, that
is associated with the number of the time step ¢ is now taken
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FIG. 3. (Color online) Part of a path in a continuous-communication tree. The layer X, belongs to Alice’s move. She sends the message
(hr+1(x), pyhr1(x)) to Bob. The next layer is Bob’s turn and consists in sending the message (x, ¢,,;(x)) to Alice.

to be a continuous compact manifold. The continuous ver-
sion of connecting each “node” of the layer X, to some nodes
of the following slice X, is given by a continuous surjective
map ¢,:X,,; —X,. The preimage ¢, (x) € X,,, of a point x
€ X, corresponds to the nodes in X,,; that are connected to x.
A pair (x, ¢,(x)), x € X,,,, is regarded as a classical message
that was sent from the node ¢,(x) € X, and was received at
the node x € X, ;. Figure 3 shows a part of such a continuous
communication tree. As with discrete communication trees,
we associate to each message (x,¢,(x)) of the continuous
tree a message system that is given by a full matrix algebra
M(x, (x))=B(K(, ¢,(x))- Furthermore, to each point x € X,
we associate a finite-dimensional full matrix algebra for Al-
ice A(x)=B(H") and likewise for Bob B(x)=B(H?). These
algebras are defined recursively: if #+1 is Alice’s turn, then
her algebra A(x) can be chosen arbitrarily. Bob’s algebra is
defined in terms of his previous choices of algebras and the
message systems, as follows:

B(x) == M(x, ¢,(x)) © B(,(x)) (76)

for each x € X, ;. Since X, is continuous, we need to replace
direct sums by bounded sections within a bundle of observ-
able algebras. Introducing the bundle of algebras

EiXi 2 x> E(x) = Alx) ® B(x), (77)

the total system at time step ¢ is described in terms of the C”
algebra C(&,) of bounded continuous sections in &,. Alice’s
subsystem C(A,) is determined by the constraint that for
each A € C(A,) the value A(x) is contained in the algebra
A(x). In other words, A is a section in the subbundle

A, x— A(x). Bob’s system C(B,) is defined in the same
manner.

For every strategy a played by Alice we hence obtain a
corresponding channel I'(a):C(E,) — B(£*(S)) modeling all
the local operations and the entire exchange of messages up
until commitment time f=c. As described in Sec. III D,
Bob’s strategies are programmed by the choice of the initial
state o on B(€3(S)). Just as before, these channels can be
decomposed into a sequence of operations, each correspond-

ing to a move made by Alice or Bob:
I'(a) =T °Tw e ° L) (78)

We may assume that Alice and Bob play locally coherent
strategies. Then all the channels

T(a,t):C(§t+l) — C(&) (79)

in the decomposition, Eq. (78), are pure. Depending on
whose turn it is, the channels 7, , need to respect Alice’s
and Bob’s subsystems: if r+1 is Alice’s move, then T,
maps Alice’s subsystem C(A,,;) into Alice’s subsystem of
the previous step C(A,), whereas Bob’s system C(X,,;,B)
remains unaffected. Consequently,

Tan(A)(x) € A(x) (80)
and
T(a.(B° ¢)(x) = B(x) (81)

for all x € X, and for all B € C(13,). Note that for each section
B e C(B,) corresponding to Bob’s system, the section
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Bo ¢y — B(d(y) € B(¢(y)) CB(y), (82)

also belongs to Bob’s system C(B,,,) at the preceding step.

In complete analogy to the concealing condition for the
discrete tree, for a protocol with a continuous communica-
tion tree to be € concealing we require that

[T8(ag) = TB(ap) || < €, (83)

where I'(a) is the restriction of I'(a) to Bob’s subsystem
C(B,). The range and domain algebras of the channels I'3(«,)
are no longer finite-dimensional matrix algebras; nor do they
admit a straightforward approximation in terms of finite-
dimensional systems. Nevertheless, the co_ncealing condition,
Eq. (83), implies that Alice may find a 2ve-cheating strategy,
as before. The result follows from a generalization of the
continuity theorem for Stinespring’s representation theorem
to general C" algebras [53].

V. PROTOCOLS RELYING ON DECOHERENCE

In this section we will demonstrate how trusted decoher-
ence in Alice’s laboratory (Sec. V A), Bob’s lab (Sec. V B),
or the transmission line (Sec. V C) may be employed to de-
sign secure and fair bit commitment protocols.

A. Trusted coherence shredder

A trusted third party makes perfect bit commitment a
trivial task: Alice may submit the bit to an incorruptible no-
tary public, who will store the bit in his vault throughout the
holding phase and later pass it on to Bob on Alice’s notice. In
this scenario, the notary public will have to be paid for the
long-term safe storage of the bit. Clearly, Alice and Bob
would get away with much lower fees, if the notary’s pres-
ence were only required once and only as a witness, without
even having to store a file about the event. Such a possibility
is offered by quantum mechanics.

The basic idea is that the notary is present in Alice’s labo-
ratory until the end of the commitment phase and sees to it
that Alice plays honest. If the honest protocols were locally
coherent, even that would be no help, since we have seen
that Alice could carry out her cheating transform later, in the
holding phase. However, if the honest protocols (ag,a;) in-
volve some measurement or other decoherence, the notary
overseeing these actions can make a difference. He could
prevent a later cheat by taking some part of the system with
him and destroying it. In our example below it is even suf-
ficient for him to just watch Alice make a measurement and,
if he so chooses, to forget about the result straight away. The
protocol is perfectly concealing, and is as binding as desired,
if a dimension parameter d is chosen large enough.

The setting requires a d-dimensional Hilbert space and
two mutually unbiased orthonormal bases {|e;};, {lfo}e
which means that (e;| e;)=(f;|fi)= ) and [(¢;|f)|*=1/d for
all j,k=1,...,d. While the maximum number of mutually
unbiased bases in a Hilbert space of given dimension d is the
subject of ongoing research, here we only need two such
bases, which are always easily constructed: starting from any
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given orthonormal basis {|¢;)};, we may choose {|f;)}; as the
Fourier-transformed basis,

d
1 N
Ifi) = —\JEE emiHg ). (84)
/ j:1

The protocol begins by Alice sending Bob a half of the
maximally entangled state,

1 1 -
\a vd

where | f;» denotes the complex conjugate of ij> with respect
to the basis |e_,->. Then, if she wants to commit the bit value
“0,” she makes a von Neumann measurement in the basis |e j>
and records the result. Similarly, to commit a “1,” she makes
a measurement in the basis | f;). Thus, if she plays honest, as
vouched for by the notary public, she will have no quantum
system left in her laboratory, only the classical information
about the bit value and her measurement result. This is the
information she sends to Bob at the opening. To verify, he
will make a measurement in the basis |e j), if Alice claims to
have submitted “0,” and in the basis | fj) otherwise, finding
the same result as Alice with probability 1.

The protocol is perfectly concealing, since in either case
Bob gets a system in the chaotic state pB=$1. It is also
binding, because whatever false bit value and measurement
result Alice claims, Bob will confirm this only with probabil-
ity 1/d, i.e., practically never, if d is large.

This is essentially the bit commitment protocol originally
proposed by Bennett and Brassard in 1984 [12]. Alice’s EPR
attack does not work in our scenario, since the notary public
will not permit her to delay the measurements until after the
commitment phase. There is also a variant of this protocol, in
which the measurement is not actually carried out. In that
case Alice prepares one of the mixed states

1
pozgz |€]®€j><€]®61|, (86)
J

1 _ _
p=_2lfe ) fl, (87)
J

for committing “0” or “1,” respectively. Now the notary
watching her will see to it that she actually prepares these
mixed states, and not their purifications. For verification Bob
uses the support projections Py ;=d-py ;.

Once again, the protocol is perfectly concealing. Let us
analyze Alice’s cheating options, after she prepared p,, with
the trusted notary watching and then leaving. If she wants to
change her commitment to “1,” she can only employ some
local channel 7®id and hope to pass Bob’s test with the
projection P;. The probability for this is
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d

1 — _
trpy(T ® id)(P,) = p > (e ei[(T @ 1d)(|fio S0 Fifillejre)

k,j=1

d
== 3 /TP (el
kj=1
1 d
= E}(EI (e T(ffil)le;

1 1
:EE <ej|T(1)|ej>=6—l. (88)
j=1

The same computation applies to tr p;(T®1id)(P,), so Alice’s
success probability is 1/d independently of her cheating
channel and may hence be chosen to be arbitrarily small.

B. Decoherence monster in Bob’s lab

In the proof of theorem 4 we have shown that Alice has a
cheating strategy for any concealing protocol. Hence it is not
surprising that by weakening Alice’s position; namely, when
decoherence eliminates her favorite cheating option, bit com-
mitment protocols like those described in the previous sec-
tion become possible. But it may seem rather paradoxical
that decoherence acting on Bob’s side, presumably further
hampering the weaker partner, can also lead to successful
protocols.

Suppose that every morning, the cleaning service comes
to Bob’s lab, unplugs all vacuum pumps, and restores what
they take for tidiness. Only classical records survive this pro-
cedure. When Alice is convinced that she can rely on this,
she might reassess her demands on concealment and the two
might agree on a bit commitment protocol, which under such
circumstances is indeed both concealing and binding. This
example shows very clearly that the entangled record intro-
duced in the proof is essential.

The protocol we suggest relies on the distinction between
the local erasure of information and the destruction of quan-
tum correlations, as seen in a pair of channels demonstrating
the separation between ordinary operator norm and cb norm
in an extreme way [56].

Lemma 11. Let €,6>0. Then for sufficiently large d there
is a pair of channels R,S:B(C%)— B(C?) such that ||R-S]|
<eg and |R-S|,=2-6. [ ]

Since standard operator norm and cb norm coincide for
channels with classical (Abelian) output space (cf. theorem
3.9 in Paulsen’s text [57]), lemma 11 demonstrates a purely
quantum-mechanical effect.

Proof of lemma 11. According to Ref. [56], a quantum
channel R: B(C%) — B(CY) is & randomizing iff

IR-(@) = S-(@)i <& V @ e B-(C9), (89)

where S denotes the completely depolarizing channel,

PHYSICAL REVIEW A 76, 032328 (2007)

1 trp
- * — _1
S(e) dtre < Si(0) 4 (90)

for all e € B(CY) and @ € B+(C9), respectively. Equation (89)
implies the norm estimate ||R-S||<e, as required in lemma
11.

Hayden et al. show that for d> 1;0, such an e-randomizing
quantum channel can be obtained with high probability from
a random selection of at most ,u:z[%fd log d| unitary opera-
tors {U}#, C B(C9),

14 .,
R(e) := — >, UleU,. (91)
Mi=1

In striking contrast, exact randomization of quantum states
[such that =0 in Eq. (89)] is known to require an ancilla
system of dimension d*> u [58]. However, this significant
reduction in the size of the ancilla space comes at a price:
while the randomizing map R erases local information, it
preserves almost all the correlations with a bystander system
if d is sufficiently large. In fact, it is straightforward to show
the upper bound

. 2u
[(R«— S:) @ id|QXQ|]|, =2 - 7 (92)

where |Q):= éﬁil i,i) again denotes the maximally en-
tangled state on C?® (4. Equation (92) implies the bound
|R-S|| s, =2~ &, where &:= %l’f can be made as small as desired
by choosing d sufficiently large. |

We can now set up a bit commitment protocol in which
Bob initially supplies a pure state |¢) on a d-dimensional
Hilbert space Hp according to the unitarily invariant Haar
measure. There is only one round for Alice, requiring her to
send back a system with the same Hilbert space. Her honest
strategies are specified by a pair of channels Tk:B(Hﬁ
®Hg)—B(Hp) (k=0,1). We take them to be locally
coherent—i.e., implemented by a single isometry V.:Hp
—>Hf{®HB each. Their restrictions to Bob’s side will be
channels as provided by lemma 11: Tg(X):VS(l X))V,
=R(X) and, similarly, T’f =S.

To reveal her commitment, Alice will later supply Bob
with the ancilla system Hf‘, alongside with the bit value k.
Bob will then verify Alice’s claim with a projective measure-
ment on Vi), as illustrated in Fig. 4. Clearly, this protocol
is perfectly sound, since Bob’s measurement will confirm the
bit value k with unit probability if both parties have followed
their honest strategies. The protocol is 5 concealing, pro-
vided the decoherence monster strikes as planned, imple-
menting some entanglement-breaking channel [59] on Bob’s
reference system. By definition, these are the channels
D:B(Hp)— B(Hg) such that D®id(@) is separable for any
input state ©. Hence, these channels are sometimes also
called separable. In Fig. 4, the decoherence inflicted by D is
indicated by the rubbish bin. We will show below that the
maximal probability difference Bob can detect by preparing
suitable states and making suitable measurements is then in-
deed just |[R-S]|/2.
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FIG. 4. A quantum bit commitment protocol with local decoher-
ence in Bob’s lab. The rubbish bin symbolizes an entanglement-
breaking channel acting on Bob’s reference system. The figure
shows the flow of quantum (solid) and classical (dashed) informa-
tion if both Alice and Bob play honestly. Alice controls all systems
on the left-hand side of the figure, Bob those on the right-hand side.
Time flows upwards. The protocol starts with Bob submitting some
pure quantum state |) € C% to Alice and ends with Bob’s measure-
ment M.

To see that the protocol is binding note first, that Alice’s
usual cheating strategy cannot work: If there were an opera-
tor U such that (U®1)V,=~V, in norm, the two channels R
and S could immediately be estimated to be cb-norm close,
in contradiction to the second property guaranteed by lemma
11.

However, it is clearly not enough to argue that there is no
universal cheating strategy for Alice, which succeeds regard-
less of Bob’s input state. We need to rule out strategies which
would allow Alice to fool Bob’s test in many cases, or with
high probability. In addition, we also have to show security
for arbitrary cheating strategies and, in particular, we have to
make certain that the reduction of Bob’s lab capabilities by
the decoherence monster does not also give Alice a bit more
freedom to cheat. That is, in order to prove security we have
to explain why the coherent record makes a difference for
Bob’s ability to distinguish the honest strategies, but not for
his ability to distinguish honest from cheating strategies in
the opening phase. This is the essence of the following theo-
rem.

Theorem 12. Let € >0, 6>0. Then for sufficiently large
dimension d the bit commitment protocol described above is
perfectly sound, & concealing, and & binding. |

In the proof of theorem 12 we will need to employ some
of the standard properties of distance measures for quantum
states and operations, which we collect here for reference.
We start with the well-known equivalence of the trace-norm
distance and the fidelity:

Lemma 13. Let F(@,0):=tr\yVoao e denote the fidelity of
two quantum states @, e B«(H). We then have
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1 —
1—F(Q,U)S5IIQ—0||1$v1—F2(e,o). [

(93)

A proof of lemma 13 can be found in Chap. 9.2 of [21].

The fidelity F(@,0)=tr\\@o@ is symmetric in its inputs
and unitarily invariant. It never decreases under quantum op-
erations. If 0=|¢)(¢| is pure, we have F(¢,0)=\(¢|o|).
We will also need the following lemma, which appears as
lemma 2 in [23]:

Lemma 14. For any two quantum states Q, o € B«(H) we
have

sup {FX(0,w) + FX(o,0)} =1+ F(p,0). [ |
weB«(H)

(94)

We now proceed from quantum states to quantum operations:
The channel fidelity of a quantum channel T: B(C¢) — B(CY)
is defined as

F(T) = FA(Q,T ® id(|Q)XQ)) =(QIT & id(|QXQ)|),
(95)

where |Q>=é2?:1|j>® liY is maximally entangled on C¢
® (4, as before. The channel fidelity F.(7) is a measure for
the quantum channel T to preserve entanglement with a by-
stander system and is closely related to the average fidelity

of the channel T,

F(T) := f UT(pXDIb) dip, (96)
where the integral is over the normalized Haar measure:

Lemma 15. For any quantum channel 7:B(C¢)— B(C9),
we have

F(T)=F.T)=F(T) - i ) [

97)

The proof of lemma 15 is immediate from the relation
[60,61]

dF(T) + 1

F(D)= d+1

(98)
In the protocol described above we grant the decoherence
monster the freedom to apply an arbitrary entanglement-
breaking quantum channel on Bob’s bystander system. Any
such channel D: B(H ) — B(Hjg) can be decomposed [59] as
D=D°D,, where

DI:CXH B(HB) (99)

and

Dy:B(Hp) — Cy, (100)

and Cy denotes the Abelian algebra of the complex-valued
functions on the finite set X (with |X| elements). In other
words, any entanglement-breaking channel can be thought of
as being built from a measurement channel D, with resulting
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classical output system Cy, followed by a repreparation D,.
[Note that Egs. (99) and (100) describe the channels D; in
the Heisenberg picture, so the direction of arrows is inverted;
cf. the Appendix.]

In order to confirm & concealment of the monster proto-
col, we will need to show that any such entanglement-
breaking channel D renders Bob’s bystander system useless
for the analysis of Alice’s actions.

Lemma 16. For any linear map L:B(H)— B(K) and any
entanglement-breaking channel D: B(H,) — B(K,),

IL @ Df| = |iL] - u (101)
Since entanglement-breaking channels have a decomposition
D,°D, with an intermediate classical system Cy, it will turn
out sufficient to verify this property for the noiseless classi-
cal channel idy.

Lemma 17. For any linear map L: B(H)— B(K) and any
classical observable algebra Cy,

I ® idy =[] u (102)
Proof of lemma 17. For any a € B(H) we have
IL(a)l| = |L ® idx(a ® 1) < [|IL ® idx]|[|all, ~ (103)

which shows that ||| <|L ®idy]|.
For the converse implication, note that any classical-
quantum state @ on B(K)®Cy is of the form

Ix]

0=2p,0,® [x)x

x=1

, (104)

where {px}szl] is a classical probability distribution, {Qx}fﬂ] is
a set of quantum states on B(K), and {|x>}|)ﬂl denotes an
orthonormal basis for CX (cf. proposition 2.2.4 in [62]). We

may now estimate

x| IX]|
I @ idvel < X p.liL-(e) © ol = 2 p.lL-(e )l
x=1 x=1
|X]
<2 polLl =zl (105)
x=1
and hence ||L ®idy||<||L]|, as claimed. [ |

Proof of lemma 16. Choosing a € B(H), we immediately
have

IL(a)] = [|L(a) ® 1 |
=[(L ® D)(a ® 1y, )|
<|L® Dllfla® 14|

=[IL ® D [la

, (106)

implying [|L]| <[ ® D||

For the converse implication, let D=D;°D, be a decom-
position as in Egs. (99) and (100) above. We may then esti-
mate
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IL @ Dl|=[IL @ (D, > D)
=|idx ® D)(L @ idy)(idy @ D)
< [lidc @ Dyl | ® idy] [lidy; @ D
< [DillllL @ idyl| [Dalles

=|ILll (107)

where in the last step we have used lemma 17 and the fact
that |7{|,=1 for any channel T (cf. the Appendix). [ |

We now have all the tools at hand to complete the security
proof.

Proof of theorem 12. Soundness of the protocol is clear.
Setting L:=R—-S in lemma 16, & concealment follows imme-
diately from lemma 11.

Thus, it only remains to show that the protocol is & bind-
ing. As a warm-up exercise, let us first exclude the possibil-
ity of Alice committing to the bit value k in the commitment
phase and then announcing the bit 1 -k in the opening phase.
This is sometimes called passive cheating.

If Bob has initially supplied the pure state |) € C%, the
probability of successfully passing Bob’s projective mea-
surement in such a scenario is P() := (V| V,4)|?, resulting
in the overall cheating probability

CON
VoV ViVol ) dipr = F(VV)).

P==fP(¢) d¢=f<¢
(108)

For 6 and d as in lemma 11, we then have the estimate
(92)
2- 8= |15 @ id(|QXQ) - T}. @ id(| QX))
< (Vo ® DIOXQI(Vy® 1) = (V, @ 1)]QOXQ|(V]
(93)
® |, <2V1-F(V,® 1|Q),V, @ 1|Q))

OO J _ . 1
=2V1 = F(VyV)) <27/ 1 = F(V,V)) + ;l
(108) 1
=24/1-P+—,
d

where in the second step we have used that the trace norm
cannot increase under the partial trace operation [21]. From
Eq. (109) we conclude that

(109)

(110)

Since the right-hand side of Eq. (110) can be made as small
as desired by stepping up the dimension, this gives the de-
sired upper bound on Alice’s probability of successfully
passing Bob’s test.

So far we have only proven bindingness against passive
cheating attacks. As illustrated in Fig. 5, Alice’s most general
attack consists of applying some quantum channel
T* :B(Hy) ® B(Hp) — B(Hp) during the commitment phase,
independently of the bit value k €{0,1}. She will send a
d-dimensional quantum system Hjp to Bob without having
committed to either bit. Only before the opening will she
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FIG. 5. Alice’s cheating strategy consists of applying some
quantum channel 7* in the commitment phase and then another
quantum channel T,f to commit to the bit value k € {0, 1} only be-
fore the opening. Her goal is to pass Bob’s projective measurement
M.

then decide on a bit value k, apply a corresponding quantum
channel T,f :B(Hf\)HB(H#) on her remaining system, and
hope to pass Bob’s projective measurement.

Assuming that Alice is a not prejudiced towards either bit,
the probability of passing Bob’s test is then P:= %P0+%P1,
where for k € {0, 1} we set

Py f V(T @ i) THI oD Vi . (111)

This probability can be bounded as follows:

Py = J UV (TE @ idp) TE( (P Vi) dip

06 _ on I
= F(V(T!. ® idp) T V,) < F(V(T!. ® idy) THV,) + y

(95)
= F2(V, ® 1/|Q). (T, ® idy ® idy ) (T © idy)(|QXQ))

< FX(T%, ® idg (JQXQ

).try,, TE ® idp (| QX))

+= (112)

where in the final step we have used the monotonicity of the
fidelity under the partial trace operation. Combining this es-
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timate with lemma 14 and Eq. (92) then immediately yields
the bound

11 1
P< 24t PR idy(Q)QD).S @ idy (OXQD)
<1115 (113)
p— + — + —_—
2 a7

The right-hand side can be brought as close to 1 as desired
. . . . . 1 &

by stepping up the dimension. Resubstituting ;+5Vé— 4,

the protocol is 6 binding. This concludes the proof of theo-

rem 12. u

C. Decoherence in the transmission line

While noise in the transmission line is generally consid-
ered a nuisance and coding theorists have designed elaborate
error correcting codes to cope with it, Wyner [63] was the
first to realize that noise may sometimes be beneficial for
cryptographic applications—in his case for key distribution.
Crépeau and Kilian [64] later showed that classical noisy
channels may also be employed to establish secure bit com-
mitment. Their results have subsequently been improved in
[65,66]. Recently Winter et al. [67] have considered the
asymptotic version of string commitment and have obtained
a single-letter expression for the commitment capacity of a
classical noisy channel. Their results show that any non-
trivial noisy channel can be used to establish secure bit com-
mitment. The theorem can be extended to so-called classical-
quantum channels. But it remains an open question whether
fully quantum channels can also be useful for bit commit-
ment.

Misaligned spatial reference frames can also effectively
act as a noisy channel and facilitate secure bit commitment.
An example for a secure protocol was recently given by Har-
row et al. [68].

VI. SUMMARY AND DISCUSSION

In summary, we have presented a general framework for
two-party cryptographic protocols and have shown that se-
cure quantum bit commitment is impossible within that
framework—by giving explicit bounds on the degree of con-
cealment and bindingness that can be simultaneously
achieved in any given protocol. Our proof covers protocols
on finite- or infinite-dimensional Hilbert spaces with any
number of rounds in each of the commitment, holding, and
opening phases. In contrast to earlier proofs, we do not as-
sume the receiver to be bound to a publicly known strategy.
Thus, our strengthened no-go result also covers the anony-
mous state protocols that have been repeatedly suggested as
a way to circumvent the standard no go arguments. If the
receiver’s strategy is fixed and common knowledge, our
bounds coincide with those obtained by Spekkens and Ru-
dolph [23], and hence the standard no-go proof is recovered
in that case.

Our formulation of the no-go proof contains an explicit
treatment of the classical information flow, possibly of inde-
pendent interest for other cryptographic applications. As a
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consequence, the framework directly applies to the purely
classical setting, in which no quantum information is ex-
changed and all local Hilbert spaces are one dimensional.
Note, however, that in order to cheat with a sneak flip opera-
tion as described in the proof of theorm 4, in general Alice
will nevertheless need to apply a quantum operation. This is
so because the commutant of Bob’s classical system is usu-
ally a hybrid containing both classical and quantum parts.
Hence, a classical protocol embedded in a quantum world
allows Alice to cheat, but the fully classical no-go proof is
not directly recovered.

We emphasize that in our setup, Alice and Bob may draw
on an unlimited supply of certified classical or quantum cor-
relations, in the form of an arbitrary shared initial state p,
and yet secure quantum bit commitment remains impossible.
This is in striking contrast to quantum coin tossing: starting
with a maximally entangled qubit state and measuring in a
fixed basis, Alice and Bob can obviously implement a per-
fectly fair and secure coin tossing protocol.

In the second part of the paper, we have analyzed quan-
tum bit commitment protocols relying on decoherence. We
have presented a protocol in which provably secure bit com-
mitment is guaranteed through an entanglement-breaking
channel in the receiver’s lab. The protocol relies on the sepa-
ration between local erasure of information and the destruc-
tion of correlations, which is a purely quantum mechanical
effect.

In accordance with most of the literature, throughout this
work we have restricted the discussion to quantum bit com-
mitment protocols in which concealment is guaranteed for all
branches of the communication tree. This is sometimes
called strong bit commitment, in order to distinguish it from
a weaker form in which Bob may possibly learn the value of
the bit—as long as Alice receives a message stating that the
bit value has been disclosed. Weak bit commitment protocols
have been analyzed by Hardy and Kent [30] and indepen-
dently by Aharonov et al. [31]. Such protocols are sufficient
whenever bit commitment is only part of a larger crypto-
graphic environment and the value of the bit itself does not
reveal any useful information. In particular, secure weak bit
commitment protocols could be applied to implement quan-
tum coin tossing. However, weak bit commitment is likewise
impossible, with identical bounds on the concealment and
bindingness. The no-go proof follows our analysis for strong
bit commitment in this paper, but the concealment condition
now only has to be guaranteed for a subtree and hence for a
subchannel. Alice then finds a sneak flip operation from a
version of Stinespring’s continuity theorem for subnormal-
ized quantum channels [53].
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APPENDIX: LANGUAGE AND NOTATIONS

This appendix contains the necessary background on ob-
servables, states, and quantum channels, as well as on direct
sums and their role for the description of algebraically en-
coded classical information. We restrict the discussion to the
basics and refer to the textbook of Bratteli and Robinson [69]
and Keyl’s survey article [62] for a more complete presenta-
tion.

Observables, states, and quantum channels

The statistical properties of quantum systems are charac-
terized by spaces of operators on a Hilbert space H: The
observables of the system are given by bounded linear op-
erators on 7, written B(#). This is the prototype of a C”
algebra and is usually called the observable algebra of the
system. The physical states are then those positive linear
functionals w:B(H)—C which satisfy the normalization
condition w(1)=1. We restrict our discussion to finite-
dimensional Hilbert spaces, for which all linear operators are
bounded and every linear functional @ can be expressed in
terms of a trace-class operator @, € B«(H) such that w(A)
=tro ,A for all A € B(H). The normalization of the functional
o than translates into the condition tro,=1. The physical
states can thus be identified with the set of normalized den-
sity operators @ € B«(H).

A quantum channel T which transforms input systems de-
scribed by a Hilbert space H, into output systems described
by a (possibly different) Hilbert space Hj is represented (in
the Heisenberg picture) by a completely positive and unital
map T:B(Hg)— B(H,). By unitality we mean that 7(1p)
=1,4, with the identity operator 1y € B(Hy). Complete posi-
tivity means that id, ® T is positive for all ve N, where id,
denotes the identity operation on the (v X v) matrices.

The physical interpretation of the quantum channel 7 is
the following: when the system is initially in the state @
e B«(H,), the expectation value of the measurement of the
observable B € B(Hp) at the output side of the channel is
given in terms of 7 by troT(B). Unitality provides the nor-
malization, while complete positivity guarantees that all ex-
pectation values remain positive even if the channel is only
part of a larger network.
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Alternatively, we can focus on the dynamics of the states
and introduce the dual map T::B«(H,4) — B«(Hjp) by means
of the duality relation

trT*(Q)thrQT(B) V Q € B*(HA), B e B(HB)
(A1)

T: is a completely positive and trace-preserving map and
represents the channel in the Schrodinger picture, while T
provides the Heisenberg picture representation. For finite-
dimensional systems, the Schrodinger and Heisenberg pic-
tures provide a completely equivalent description of physical
processes. The interconversion is always immediate from Eq.
(A1).

Direct sums and quantum-classical hybrid systems

Our general description of bit commitment protocols in-
cludes a full treatment of the classical and quantum informa-
tion flow. As explained in Sec. II B, the nodes of the com-
munication tree correspond to the classical information
accumulated in the course of the protocol. Direct sums are a
convenient way to encode this information in the observable
algebras: For a finite collection of observable algebras
{A},cx> the direct sum algebra

X X

@ Ax = {EB Ax|Ax € Ax} (AZ)
x=1 x=1

represents the physical situation in which the system under
consideration is described by an observable algebra A, if the
classical information x € X has been accumulated. Sums and
products as well as adjoints in this algebra are defined com-
ponentwise, i.e.,

DA, +DB,=D A, +B,), (A3)
EXBAX- ?Bx = ? (A~ B,), (A4)
a-@Ax:?(opr), (A5)
(A6)

(DAY =DA,,

for all operators A,, B, A, and coefficients e C. It is
straightforward to verify that with these definitions @ ,.4, is
indeed an algebra with identity 1=® 1,, where for each x
€ X 1, denotes the identity in A,. The norm on @, A, is
given by

[©A,] = maxlA,]. (A7)

If A,=B(H,) for a collection of Hilbert spaces {H,}*,,
then &, B(H,) C B(®,H,). The physical states on such a sys-
tem are of the form @ p,0,, where 0, € B:(H,) are states on
the component algebras and {px}f=l is a classical probability

distribution.

PHYSICAL REVIEW A 76, 032328 (2007)

As explained in Sec. II B, in our formulation of the bit
commitment protocol the component algebras A, will usu-
ally be tensor products of observable algebras in Alice’s and
Bob’s lab, respectively: A=A (a) ® B,(b). The local alge-
bras A, (a) and B(b) could be full matrix algebras or could
themselves be direct sums, representing local classical infor-
mation available to Alice or Bob exclusively. The strategic
operations that are performed by Alice and Bob are described
by channels acting on these direct sum algebras. In the
Heisenberg picture, these channels are completely positive
unital maps 7:A— B(H) with A=@&,A,. Their interpreta-
tion is easily seen from Stinespring’s representation (propo-
sition 1): There exists a Hilbert space /C and an isometry
V:H—IK as well as a representation 7 of A such that
T(A)=V'm(A)V holds. For each x € X, the identity operator
of the direct summand A, is a projection P, in A that com-
mutes with all operators in .A. These projections generate an
abelian subalgebra C(A) called the center of A. Since  is
a*-representation and therefore respects the product of op-
erators, m(P,) projects onto the subspace w(P,)K:=K,,
which is invariant under the action of all represented opera-
tors 7(A). Hence we obtain for every x a representation of A
on K, according to

m(A) := w(P)m(A)m(P,) = m(A)m(P,). (AB)
Since each direct summand A,=B(H,) is a full matrix alge-
bra, the Hilbert spaces K, can be chosen to be of the form
K.=H,® M, with appropriate multiplicity spaces M. The
representation 7, is then given by 7 (®,A,)=A,®1 M- In
terms of the representations r,, the action of the channel T
on an operator A can be written as

T(A) = >, V' (A)V.

xeX

(A9)

How is this kind of representation interpreted in opera-
tional terms? We first have a look at measurement operations
in the Heisenberg picture. Usually a measurement operation
is described by a positive operator valued measure (POVM),
i.e., a collection

{Mx e BKO=M, <1, XM, = 1}. (A10)

The set X is interpreted as the set of possible measurement
outcomes. In the Heisenberg picture, this corresponds to a
completely positive normalized map M from the Abelian al-
gebra @,C=CY into B(K). Namely, the operator fe CX is
mapped to M(f)=2 .M, f,. Hence, measurement operations
are a special class of channels on direct sum algebras, where
each summand is chosen to be one dimensional, .4,=C.
Thus, if we restrict the channel T to the center C(A), which
is isomorphic to ¥, then we obtain a measurement operation
whose corresponding POVM is given by the operators
{V'@(P,)V|x e X}. To verify this, we evaluate T on a central
element C € C(A),
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(C) = T(E CXPX) =S vmp)ve,, (A1)

where central elements C are expressed as linear combina-
tions of the projections P,—i.e., C=2,C.P, with C, e C.
This justifies the following interpretation: The quantum sys-
tem under investigation is described by the observable alge-
bra A, if the measurement results in the outcome x € X. In
other words, the direct sum operation can be seen as a “logi-
cal XOR” composition of quantum systems—in contrast to
the tensor product, which corresponds to the “logical AND.”

Coming back to the bit commitment protocol, the nodes
of the communication tree then in fact have a natural inter-
pretation as outcomes of a measurement process returning a
history of communicated decisions, which are given by the
unique path in the tree starting at its root and ending at x
eX.

Distance measures

In order to evaluate the concealment and bindingness con-
ditions in a quantum bit commitment protocol we need to
measure the distance between two quantum channels or two
quantum states: Assume two channels 7; and 7, with com-
mon input and output algebras A and B, respectively. Since
these 7; are (in Heisenberg picture) operators between
normed spaces 3 and .4, the natural choice to quantify their
distance is the operator norm,

I7,(B) - T5(B)||

Al2
i8] (A12)

|7, = T += sup

B#0

The norm distance, Eq. (A12), has a neat operational char-
acterization: it is twice the largest difference between the
overall probabilities in two statistical quantum experiments
differing only in replacing one use of 7 with one use of 7.
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However, we also want to allow for more general experi-
ments, in which the two channels are only applied to a sub
system of a larger system. This requires stabilized distance
measures [70] and naturally leads to the so-called c¢b norm
[57]

|7y = Tollew = Sug||idu ® (T, - T, (A13)
where id, again denotes the ideal (or noiseless) channel
on the (vX v) matrices. Useful properties of the cb norm
include multiplicativity, i.e., ||T;® Tyllew=Tillep|T2/lco» and
unitality: |T{|4,=1 for any channel 7.

Obviously, ||7]|.,=||T]| for every linear map 7. If either the
input or output space is a classical system, we even have the
equality ||7|.,=|7]| (cf. Chap. 3 in [57]). Fully quantum sys-
tems generically show a separation between these two
norms.

States are channels with one-dimensional input space C.
Since this is a classical system, there is no need to distin-
guish between stabilized and nonstabilized distance mea-
sures. The so-called trace norm ||o||;=trV@"@ is frequently
employed to evaluate the distance between two density op-
erators. The trace-norm difference ||@—o]|, is equivalent to
the fidelity F(@,0):=tr\\ooo (cf. lemma 13).

For any linear operator T the operator norm ||7]| equals the
norm of the Schrodinger adjoint T on the space of trace-
class operators—i.e.,

I7l}=sup |

llelli=1

(cf. Chap. VI of [54] and Sec. 2.4 of [69] for details), which

is the usual way to convert norm estimates from the Heisen-

berg picture into the Schrodinger picture and vice versa. For

states 7.=g, the operator norm then indeed just coincides
with the trace norm: ||T]|=|T+/|,=|el|;.

T-(0)|; (A14)
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