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A scheme for amplifying phase shifts is presented, based on ideal photon number deamplification. For
high-sensitivity measurements phase amplification sizeably reduces the bit-error rate and enhances the mutual
information retrieved from the measurement. Phase-coherent states preserve their coherence under amplifica-
tion, and achieve the best amplifier performance.
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I. INTRODUCTION

In quantum communications the performances of an am-
plifier depend on the scheme of the channel in which the
device is inserted. Noticeably, the added noise is not just
intrinsic of the device, but depends on the particular observ-
able that is detected at the receiver. Thus, different kinds of
preamplifier work ideally for different kinds of detection
@1,2#: the phase-insensitive amplifier~PIA! is ideal for het-
erodyning, the phase-sensitive amplifier~PSA! for homodyn-
ing, whereas for direct detection different types of devices—
the photon number amplifier~PNA! and duplicator~PND!—
have been proposed@3,4#.

The case of phase amplification has never been consid-
ered in the past. Indeed, for phase-reversal keying@5# a phase
amplifier is of no use, because any kind of lossh that de-
crease the field amplitudea→h1/2a does not change the
average phase arg(h1/2a)5 arg(a), and the 0,p phase dif-
ference cannot be further amplified. The situation, however,
is very different when the information is unavoidably coded
on small phase shifts, as, for example, in interferometric
high-sensitivity measurements. Here, in principle, phase am-
plification represents a convenient strategy to improve the
overall sensitivity, increasing the information retrieved in the
measurement.

In this paper we show how a phase amplifier can be ad-
vantageously used for improving phase detection, achieving
large reductions of the bit-error rate~BER! and sizeable en-
hancements of the retrieved information compared to the
nonamplified scheme of small phase-shifts detection. Quite
unexpectedly it turns out that the same devices—the PNA
and the PND—which work ideally for direct photon detec-
tion, can also be profitably used for phase amplification.

After analyzing the quantum description of a phase am-
plifier in Sec. II, we show in Sec. III how an ideal number
deamplifier can achieve also ideal phase amplification. Sec-
tion IV is devoted to amplification of phase-coherent states,
since these are the only ones that preserve coherence under
phase amplification. Section V studies in some detail the
amplification of small phase shifts, providing numerical re-
sults for both the ideal situation and a realistic case based on
heterodyne detection of coherent states. After some remarks,

in Sec. VI, on the feasibility of ideal number deamplifiers
and phase-coherent state generators, Sec. VII closes the pa-
per.

II. PHASE AMPLIFIERS

The words ‘‘phase amplification’’ can be given a precise
meaning in the context of the quantum estimation theory@6#.
In our case the problem is the estimation of the phase shift
w of a pure stateuc& that undergoes the unitary transforma-
tion

uc&→exp~ ia†aw!uc&, ~1!

with a†a denoting the number operator of the modea of the
electromagnetic field. The stateuc& itself is assumed to have
a well defined phase, sayw8, namely, its coefficients in the
number representation are of the form

uc&5 (
n50

`

cnun&, cn[ucnuexp~ inw8!. ~2!

Without loss of generality, in the following, we will consider
w850, i.e., allcn are real non-negative, such that the ideal
phase probability distributionp(f)5 1

2p u(n50
` cne

infu2 has
both maximum and mean value atf50 ~averages are evalu-
ated within the 2p periodicity, and are reduced to the
@2p,p# window!. A phase amplifier multiplies the shiftw
by a fixed gaing, independently on the stateuc&. In general,
this can be achieved at the expense of introducing some ad-
ditional noise and of partially destroying the coherence of the
input state. In order to avoid biasing, the zero-phase refer-
ence of the unshifted stateuc& should be retained. This cor-
responds to a final state that keeps non-negative matrix ele-
mentsrnm>0;n,m, because this guarantees that the ideal

phase probabilityp(f)5 1
2p (nm50

` rnme
i (n2m)f still has its

maximum at the mean valuef50, independently on the
output state. Therefore, the most general transformationAg
that describes phase amplification must be of the form

Ag~e
ia†awuc&^cue2 ia†aw!5eia

†agwr̂c
~g!e2 ia†agw ~3!

with the unbiasedness conditioncn>0 ,;n⇒^nur̂c
(g)um&

>0;n,m @cn defined in Eq.~2!#.
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The quantum description of an apparatus for detecting a
phase shift is given by a Born’s rule in the following general
form:

p~fuw! df5 Tr@eia
†awuc&^cue2 ia†aw dm̂~f!#, ~4!

wherep(fuw) is the probability density of detecting a phase
shift f ‘‘conditioned’’ by the actual valuew, whereas
dm̂(f) denotes the POM~probability operator-valued mea-
sure@6#! that pertains to the apparatus. When there is noa
priori preferred phase, the conditional probability density
should have the formp(fuw)[p(f2w), namely, it should
depend only on the difference between the detected and the
actual value of the phase shift. In this case the POM has the
covariant form

dm̂~f!5eia
†afẑe2 ia†af

df

2p
, ~5!

with ẑ being a fixed positive operator. Forunbiasedmea-
surements~i.e.,w equals the averagedf) all matrix elements
of the operatorẑ are non-negative in the number representa-
tion @7,8#. For heterodyne or double homodyne@9# phase
detection, the phase shift is retrieved from the phase of the
output complex photocurrent. In this case the operatorẑ is
given by @10#

ẑ5 (
n,m50

`

un&^mu
G@ 1

2 ~n1m!11#

An!m!
. ~6!

On the other hand, quantum estimation theory allows opti-
mization of the POM in Eq.~4! at a purely abstract level,
providing the theoretical description of an ideal phase mea-
surement. For covariant measurements the ideal POM has
operatorẑ given by @11,12#

ẑ5 (
n,m50

`

un&^mu. ~7!

There is, however, no known apparatus that would approach
such ideal POM.

In terms of the detector’s POM a phase amplifier must
achieve the dual transformation of map~3!, namely,

Ag
~@dm̂~f!#5Ag

~~eia
†afẑe2 ia†af!

df

2p

5eia
†ag21fẑge

2 ia†ag21f
df

2p
, ~8!

where ^nu ẑum&>0;n,m⇒^nu ẑgum&>0;n,m, and
duality is defined through the identity of traces
Tr@A~(Â)B̂#5 Tr@ÂA(B̂)# with Â bounded andB̂ trace-
class. In fact, the POM transformation~8! is the Heisenberg-
picture form of the Schro¨dinger-picture map~3!, and gives
the POM of the total detector, including the preamplification.
Equation~8! is the only transformation that assures that the
conditional probability~4! after amplification is just a func-
tion of gw2f for everyw.

III. IDEAL NUMBER DEAMPLIFICATION
AND PHASE AMPLIFICATION

We are now in position to understand how an ideal PNA
can also achieve ideal phase amplification. In Ref.@13# the
Hamiltonian of the ideal PNA is derived, showing that such
a device is ‘‘canonical’’ for the number-phase couple—a
Fourier-transform conjugated pair@14#. By ‘‘canonical’’ we
denote a device analogous to the PSA, where a quadrature is
amplified while the conjugated one is simultaneously deam-
plified . Here the PNA, when used in the inverse way as an
ideal number deamplifier, works also as a phase amplifier.
Since the photon number is an integer, ideal number ampli-
fication and deamplification are attained only for integer val-
ues of the gaing @15#. Ideal number deamplification and
simultaneous phase amplification are described by the uni-
tary operator@13#

Ûg5 (
n50

g21

(
n,m50

`

un&^gn1nu ^ ugm1n&^mu ~9!

that acts on the enlarged Hilbert spaceH^Hi including the
signal Hilbert spaceH and the spaceHi of an additional
idler mode. An auxiliary idler mode is needed in order to
preserve unitarity@16#: as we will see in the following, the
idler mode is responsible for ‘‘mixing’’ the state, as in Eq.
~3!. The amplifying mapsAg andAg

~ pertain to the signal
Hilbert spaceH only, and are obtained by partially tracing
over the idler mode. One has

Ag~ uc&^cu!5 Tri$Ûguc&^cu ^ r̂ i Ûg
†%, ~10!

Ag
~@dm̂~f!#5 Tri$Ûg

† dm̂~f! ^ 1̂Ûg1̂^ r̂ i%, ~11!

with r̂ i denoting the density matrix of the idler mode. From
Eqs.~9! and~11! one can see that the ideal number deampli-
fier achieves the phase amplification given in Eq.~8! for any
r̂ i , with

ẑg5g21(
l50

g21

ẑg
~l! , ~12!

ẑg
~l!5 (

n,m50

`

e2p ig21~n2m!lun&^@n/g#u ẑu@m/g#&^mu,

~13!

where @x# denotes the integer part ofx. The sum overl
accounts for the 2p periodicity. In fact, one has

Ag
~@dm̂~f!#5

df

2pg(
l50

g21

eia
†ag21~f12pl!ẑg

~0!

3e2 ia†ag21~f12pl!, ~14!

with ẑg
(0) given by Eq.~13!. Notice that for the ideal POM~7!

one hasẑg
(0)[ẑ, and Eq.~14! is just a 2p-periodic rescaling

of the POM: in this sense the present phase amplification can
be considered ideal. It is also easy to check that the amplifier
achieves the Schro¨dinger-picture transformation~3! indepen-
dently on the idler stater̂ i . One has
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r̂c
~g!5 (

n50

g21

ucn
~g!&^cn

~g!u, ucn
~g!&5 (

n50

`

cgn1nun&, ~15!

where, for simplicity of notation, we retain unnormalized
vectorsucn

(g)&.

IV. AMPLIFICATION OF PHASE-COHERENT STATES

From Eq.~15! it follows that r̂c
(g) is pure only whencn

}r n for some constantr : hence, the only states which are not
mixed by phase amplification—so providing optimum
performance—are the so-calledphase-coherentstates@14#.
These are defined as follows:

uj&5~12uju2!1/2(
n50

`

jnun&, j5eiwuju,uju,1 , ~16!

where the complex numberj also carries the phase-shift in-
formationw. Then, from Eqs.~10!, ~15!, and~16! one has

Ag
~~ uj&^ju!5ujg&^jgu. ~17!

The phase-coherent stateuj& has an average number of pho-
tons^n̂&5uju2/(12uju2). Notice that, apart from normaliza-
tion, in the limit uju→12 the state~16! approaches the
Susskind-Glogower state

ueiw&5 (
n50

`

exp~ inw!un&, ~18!

in terms of which the ideal POM can be rewritten as
dm̂(f)5ueif&^eifu df/2p: in this sense one can say that the
phase-coherent states match the ideal POM for large number
of photons. For ideal phase detection, the output phase prob-
ability after amplification is simply given by

pout~fuw!5
1

2p
u^jgueif&u2

5
1

2p

12uju2g

11uju2g22ujugcos~f2gw!
. ~19!

In the limit uju→12 one haspout(f)→d2p(f2gw), d2p

denoting the periodicizedd. All quantities of interest can be
evaluated analytically foruju512e with ge!1 and gw
P@2p,p#. The average phase is amplified as

^f&out5gw1O~ge!, ~20!

whereas the root-mean-square~rms! fluctuations

^Df2&out52ge1O~g2e2! ~21!

are amplified by only a factorg. Thus if we define the noise
figure

R5
~S/N! in
~S/N!out

, ~22!

whereS andN denote, respectively, the signal^f& and the
noise^Df2&, we have

R5
1

g
. ~23!

Actually, the same result would be obtained for almost all
definitions of phase noiseN that have been adopted in the
literature in order to account for 2p periodicity ~for a survey
see Ref.@17#!: one always hasN;g, apart from the choice
N82^ lnp(f)&;11lng/ln(2p/^n̂&), which behaves even bet-
ter. We take this result only as a preliminary indication of the
goodness of the amplifier, and in Sec. V we will carefully
study the efficiency of the amplifier on the basis of both BER
and mutual information. On the other hand, the rough argu-
ment based on low noise figures can help us to understand
easily how an ideal number deamplifier can work very effi-
ciently for phase-coherent states. This is simply due to the
fact that phase-coherent states exhibit shot noise^Df2&
}^n̂&21 and, at the same time, they are preserved under am-
plification. Hence, when deamplifyinĝn̂& one gets a phase
noise which is amplified by only a factorg. This is apparent
in Fig. 1, where we compare the phase amplifier performance
for input phase-coherent states with phase amplification of
coherent and squeezed states.

V. PHASE MEASUREMENTS BASED
ON BINARY HYPOTHESIS TESTING

Typically, the situation in which one takes advantage of
amplification occurs when the signal is very low, below the
detection threshold, and the amplifier is used to enhance the
signal above the threshold. However, as amplification also
increases noise, the net benefit must be evaluated carefully,
by comparing the values of BER and mutual information
@19# obtained with and without amplification. A paradig-
matic situation is sketched in Fig. 2, where we consider a
binary channel that pertains to the phase detection of a small
signal, i.e., a small phase shift. The measurement consists of
testing the hypothesis that a phase-shifting event has oc-
curred, assigning the ‘‘true’’ value to every outcome above
the thresholdws . The phase probability distributions corre-
sponding to zero shift and tow shift are depicted in different
gray colors: they correspond to the reference zero-
phase state u ‘ ‘0’ ’ &[uc& and to the shifted state
u ‘ ‘1’ ’ &[exp(ia†aw)uc&, respectively. The input signal is

FIG. 1. Noise figure vs gaing ~integer powers of 2! for input
phase-coherent state~stars!, coherent state~circles!, and squeezed
state ~triangles! with ^n̂& in540 and w50.05 for all states~the
squeezed state has 2.6 squeezing photons: see@18#!. ~a!: ideal de-
tection.~b!: heterodyne detection.
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very weak (w!1): the thresholdws is taken abovew due to
limitations of the detector sensitivity and in order to achieve
a low value of the ‘‘false alarm probability’’Q1u0 @6,19#

Q1u05E
ws

p

dfp~fu0!, ~24!

namely, the probability of detecting ‘‘1’’ given state
u ‘ ‘0’ ’ &. It is clear that amplification will increaseQ1u0 as a
consequence of the spread of the right tail of the ‘‘0’’ distri-
bution; however, it will simultaneously enhance the ‘‘detec-
tion probability’’ Q1u1 @6,19#

Q1u15E
ws

p

dfp~fuw!, ~25!

namely, the probability that ‘‘1’’ is correctly detected given
state u ‘ ‘1’ ’ &. An improvement of the binary test measure-
ment is determined by a decrease of the bit-error rate

B511Q1u02Q1u1 , ~26!

or, equivalently, by an enhancement of the mutual informa-
tion @19#

I5 (
j ,k50

1

pjQku j ln
Qku j

( i50
1 piQku i

, ~27!

after specifying thea priori probabilities$pj% j50,1 of input
statesu ‘ ‘ j ’ ’ &, and considering all possible conditional prob-

abilitiesQku j of detecting ‘‘k’’ given u ‘ ‘ j ’ ’ & ~the probabili-
tiesQ0u0512Q1u0 andQ0u1512Q1u1 are just complemen-
tary of the previous ones!.

A. Phase-coherent states

We now evaluate the conditional probabilitiesQ1u0 and
Q1u1 with (g.1) and without (g51) amplification. For
ge!1 we have

Q1u05
ge

2p
cotS ws

2 D , ~28!

Q1u15
1

p H p

2
2arctanF 2ge

tanS ws2gw

2 D G J . ~29!

These probabilities give the BER and the mutual information
plotted in Fig. 3 as a function of the gain for different values
of input number of photonŝn̂& in . The case of a very weak
input signalw!ws has been considered. One can see that the
BER exhibits a steep decrease and that, at the same time, the

FIG. 2. Illustration of a binary hypothesis testing based on a
phase measurement~see text!. The top figure shows the phase prob-
abilities corresponding to no event~‘‘0’’ ! and to the occurrence of a
phase-shifting event~‘‘1’’ !. The bottom figure gives the same prob-
abilities after phase amplification. Here, for the sake of pictorial
representation we consider values that are not realistic for a high-
sensitivity phase measurements (^n̂& in58, w50.3, ws50.6, g54:
ideal detection of phase-coherent states!.

FIG. 3. Bit-error rate~a! and mutual information~b! vs gaing
for phase-coherent states with input number of photons
^n̂& in550,500,5000. The phase shift isw50.05, whereas the
threshold phase isws50.5. For the mutual information a probability
p150.01 has been used~rare events!.
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mutual information shows a rapid increase near the gain
gs5ws /w. These features are further enhanced when the
mean input photon number is increased. For the mutual in-
formation we refer to the situation of rare events, i.e.,
p1512p0!1, which is of interest, for example, in inter-
ferometric detection of gravitational waves: the behavior of
I , however, does not qualitatively depend onp1, apart from
the range of variation. On the other hand, if the input signal
is above the detection threshold, i.e.,w.ws , one could see
that the mutual information would monotonically decrease
versusg, whereas there would be essentially no reduction of
the BER. This is due to the fact that in this case amplification
decreases the detection probabilityQ1u1 given in Eq.~29!.

B. Coherent states

Phase-coherent states are the only coherence preserving
states under phase amplification. For generic input states
phase amplification changes the kind of state and partially
destroys coherence: for example, phase amplification does
not preserve coherent or squeezed states. However, this does
not mean that for such states the amplifier cannot improve
the phase-shift measurement~on this subject, a preliminary
indication is found in Fig. 1!. Especially for nonideal phase
detection, one can gain much benefit from phase amplifica-
tion, also because the amplifier partially recovers the effec-
tive loss due to nonideal measurement. As an example, in
Fig. 4 we have considered the realistic case of heterodyne
phase detection of coherent states: here, the BER and the
mutual information are plotted in the same fashion of Fig. 3
and for the same values of parametersw, ws , and^n̂& in . One
can see that the amplifier works effectively, almost as well as
for phase-coherent states. The only negative features are that
the variations ofB and I are less steep, and the amplifier
efficiency is much reduced for low numbers of input pho-
tons. These phenomena are distinctive of a partial loss of
coherence of the amplified state.

We emphasize that phase amplification is advantageous
only for measurements of small phase shiftsw, and not too
large gainsg, such thatgw!1. In fact, the transformation
~14! folds the probability distribution at the boundaries of the
2p window in order to maintain the distribution as 2p pe-
riodic after the stretching along the direction of abscissa. In
this way, in the limit of large gains any probability distribu-
tion would converge to the uniform probability on the 2p
window.

In conclusion of this section some comments are in order
regarding the apparent violation of the data processing theo-
rem @19# regarding the improvement of mutual information.
Indeed the theorem states the impossibility of improving the
mutual information by performing any kind of data process-
ing. More precisely, for a channel described by a map
X→Y between input-output random variablesX andY, the
mutual informationI (XuY) betweenX andY cannot be im-
proved neither by any kind of ‘‘encoding’’U→X, nor by
any ‘‘decoding’’ Y→V, whereU andV are additional ran-
dom variables. In other words:I (UuV)<I (XuY), i.e., the
end-to-end mutual information of the long Markov chain
U→X→Y→V is never greater than that of the short chain
I (XuY). The data processing theorem does not pertain to the
present case of insertion of a quantum amplifier in a channel

for the following two reasons. On the one hand, the amplifier
is not used neither as an encoder, nor as a decoder—i.e., at
one of the two ends of the chain—but isinsertedin the chain
as apreamplifier before a source of additive noise. If the
amplifier admits a classical description in terms of an input-
output probability map, then the insertion of the amplifier
would correspond to changing the Markov chainX→Y to
X→V→Y—namely, to changing the mapX→Y instead of
adding another data processing at one end of the chain:
hence, the conditions for the data processing theorem do not
apply. On the other hand, the amplifier is not a ‘‘classical’’
data processor, i.e., it is not equivalent to a measurement
followed by data processing: coherence is only partially de-
stroyed throughout the amplification process, and hence the
amplifier is described by a map between probability ampli-
tudes, rather than by a map between input-output probabili-
ties. Probabilities are determined only at the very end of the
chain, and depend on the observable that is measured at the
output. In the quantum description, in addition to the input-
output random variablesX and Y we need to specify the
detection POMdm̂(Y) at the end of the channel and the
quantum stater̂X encoding the input variableX, such that the
probability mapX→Y is given by the output conditional

FIG. 4. Bit-error rate~a! and mutual information~b! vs gaing
for coherent states and heterodyne detection~same values of param-
eters as in Fig. 3!.
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probability densityp(YuX)dY5 Tr@ r̂Xdm̂(Y)#. Hence, the
mutual information of the quantum channel can be denoted
asI @X,r̂X ;Y,dm̂(Y)#. The insertion of a device in the quan-
tum channel is described by a trace-preserving completely
positive ~CP! map r̂X→A( r̂X) or by its dual
dm̂(Y)→A~@dm̂(Y)#. In general, if the system is subopti-
mal ~i.e., the information is not optimized over the detection
POM!, there is no fixed inequality between
I @X,r̂X ;Y,dm̂(Y)# and I @X,A( r̂X);Y,dm̂(Y)#: the quantum
device described by the CP mapA reshapes the channel~i.e.,
leads to a different conditional probability betweenX and
Y) with the possibility of improving the mutual information
and approaching conditions for optimality. This situation
corresponds to our case, where the system is suboptimal. If
one wants to recover a situation closer to the one of the
classical data processing theorem, one should optimize the
mutual information over the detection POM, and the quan-
tum analog of the data processing theorem can be written as
follows:

max
dm̂~Y!

I @X,A~ r̂X!;Y,dm̂~Y!#

<max
dm̂~Y!

I @X,r̂X ;Y,dm̂~Y!#. ~30!

The measurement-optimized system then cannot be further
improved by the insertion of another device.

VI. EXPERIMENTAL REALIZATION OF THE SCHEME

Before concluding, some comments regarding the genera-
tion of phase-coherent states and the practical feasibility of
photon number deamplifiers are in order.

Phase-coherent states can be ideally achieved using a PIA
and a PND in series, as shown in Ref.@20#. In fact, the
unitary evolution operator of the PIA is

ÛPIA5exp@za†b†2 z̄ab#, ~31!

wherea andb describe signal and idler modes. When both
modes are in the vacuum state at the input, the state at the
output is

ÛPIA~ u0& ^ u0&)5~12uju2!1/2(
n50

`

jnun& ^ un&, ~32!

wherej5z/uzutanhuzu. Then the twin beams are ideally con-
verted into the one-mode phase-coherent state~16! using the
PND in the inverse way. Concretely, the PND evolution can
be well approximated by a sum-frequency up converter, de-
scribed by the interaction Hamiltonian

Ĥ5k~abc†1a†b†c!. ~33!

For c initially in the vacuum state the performance of the
sum-frequency converter very nearly approaches an ideal in-
verse PND @21#. The best approximation corresponds to
maximum conversion for the mean photon number from

modesa andb to modec: the conversion time can be esti-
mated to betc;(1/2k)^n̂& in

21/2ln^n̂&in @22#, where^n̂& in is the
input mean photon number of either modea or b. A sample
of the phase probability distribution obtained from the fre-
quency converter is given in Fig. 5, where it is compared
with the perfect phase-coherent probability obtained with an
ideal PND.

Regarding the feasibility of the photon number deampli-
fier ~9!, in Ref.@21# it has been shown that it is well approxi-
mated byg-order harmonic up conversion, and the situation
is similar to the PND. More generally, Ref.@21# shows that
both PNA and PND used in the inverse way~as in our case!
are well approximated by up-conversion processes, whereas
the direct operation is not well approached by the corre-
sponding down-conversion processes, due to the incomplete
depletion of the quantum pump.

VII. CONCLUSIONS

In conclusion, we have proposed a scheme for amplifying
small phase shifts which reduces the BER and increases the
information retrieved from the measurement. The best per-
formance is achieved by phase-coherent states, but good re-
sults are also obtained in the practical situation of coherent
states with heterodyne phase detection. We have shown how
the PNA and PND—both originally proposed for matching
direct detection—can be profitably used also for phase detec-
tion. When used as an ideal number deamplifier, the PNA
becomes a phase amplifier that achieves ideal amplification
independently on the state of the idler mode. The feasibility
of both phase-coherent state generation and ideal number
deamplification has been analyzed, based on phase-
insensitive amplification, sum-frequency up conversion, and
g-harmonic generation.
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FIG. 5. Phase probability distribution of a phase-coherent state
compared with the probability of a state achieved using a PIA and a
sum frequency up converter in series~the sharper probability refers
to the ideal state!. The resulting average photon number is
^n̂&59.26.
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