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Unperformed experiments have no results.
Asher Peres

5.1 Introduction

More than a century after its birth, quantum mechanics (QM) remains mysterious.
We still don’t have general principles from which to derive its remarkable mathe-
matical framework, as happened for the amazing Lorentz transformations, which
were rederived by Einstein from the invariance of physical laws in inertial frames
and from the constancy of the speed of light.

Despite the utmost relevance of the problem of deriving QM from operational
principles, research efforts in this direction have been sporadic. The deepest of the
early attacks on the problem were the works of Birkhoff, von Neumann, Jordan,
and Wigner, attempting to derive QM from a set of axioms with as much physical
significance as possible [1, 2]. The general idea in Ref. [1] is to regard QM as a
new kind of prepositional calculus, a proposal that spawned the research line of
quantum logic, which is based on von Neumann’s observation that the two-valued
observables – represented in his formulation of QM by orthogonal projection oper-
ators – constitute a kind of “logic” of experimental propositions. After a hiatus
of two decades of neglect, interest in quantum logic was revived by Varadarajan
[3], and most notably by Mackey [4], who axiomatized QM within an operational
framework, with the single exception of an admittedly ad hoc postulate, which rep-
resents the propositional calculus mathematically in the form of an orthomodular
lattice. The most significant extension of Mackey’s work is the general representa-
tion theorem of Piron [5].
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In the early work [2], Jordan, von Neumann, and Wigner considered the possi-
bility of a commutative algebra of observables, with a product that needs only to
define squares and sums of observables – the so-called Jordan product of observ-
ables a and b: a ◦ b := (a + b)2 − a2 − b2. However, such a product is generally
non-associative and non-distributive with respect to the sum, and the quantum for-
malism follows only with additional axioms with no clear physical significance –
e.g., a distributivity axiom for the Jordan product. Segal [6] later constructed an
(almost) fully operational framework (with no experimental definition of the sum
of observables) that allows generally non-distributive algebras of observables, but
with a resulting mathematical framework largely more general than QM. As a result
of this line of investigation, the purely algebraic formulation of QM gained in pop-
ularity versus the original Hilbert-space axiomatization.

In the algebraic axiomatization of QM, a physical system is defined by its C∗-
algebra of observables (with identity), and the states of the system are identi-
fied with normalized positive linear functionals over the algebra, corresponding
to the probability rules of measurements of observables. Indeed, the C∗-algebra
of observables is more general than QM, since it includes classical mechanics as
a special case, and generally describes any quantum–classical hybrid, thus being
equivalent to QM with super-selection rules. Since in practice two observables are
not distinguishable if they always exhibit the same probability distributions, at the
operational level one can always take the set of states as observable-separating –
in the sense that there are no different observables having the same probability dis-
tribution for all states. Conversely the set of observables is state-separating, i.e.,
there are no different states corresponding to the same probability distribution for
all observables. Notice that, in principle, there exist different observables with the
same expectation for all states, but higher moments will be different.1

The algebra of observables is generally considered to be more “operational”
than the usual Hilbert-space axiomatization; however, little more is gained than a
representation-independent mathematical framework. Indeed, the algebraic frame-
work is unable to provide operational rules for how to measure sums and products
of non-commuting observables.2 The sum of two observables cannot be given an
operational meaning, since a procedure involving the measurements of the two
addenda would unavoidably assume that their respective measurements are jointly
executable on the same system – i.e., the observables are compatible. The same

1 This is not the case when one considers only sharp observables, for which there always exists a state such that
the expectation of any function of the observable equals the function of the expectation. However, operationally
we cannot rely on such a concept to define the general notion of an observable, since we cannot reasonably
assume its feasibility (actual measurements are non-sharp).

2 The spectrum of the sum is generally different from the sum of the spectra of the addenda, e.g., the spectra of
xpy and ypx are both R, whereas the angular-momentum component xpy − ypx has a discrete spectrum. The
same is true for the product.
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reasoning holds for the product of two observables. A sum-observable defined as
the one having expectation equal to the sum of expectations for all states [7] is
clearly not unique, due to the existence of observables having the same expectation
for all states, but with different higher moments. The only well-defined procedures
are those involving single observables, such as the measurement of a function of
a single observable, which operationally consists in just taking the function of the
outcome.

The Jordan symmetric product has been regarded as a great advance in view of
an operational axiomatization, since, in addition to being Hermitian (observables
are Hermitian), it is defined only in terms of squares and sums of observables – i.e.,
without products. The definition of a◦b, however, still relies on the notion of a sum
of observables, which has no operational meaning. Remarkably, Alfsen and Shultz
[8, 9] succeeded in deriving the Jordan product from solely geometrical properties
of the convex set of states – e.g., orientability and faces shaped as Euclidean balls –
however, again with no operational meaning. The problem with the Jordan product
is that, in addition to not necessarily being associative, it is not even distributive,
as the reader can easily check. It turns out that, modulo a few topological assump-
tions, the Jordan algebras can be embedded in the algebra Lin(H) of operators over
the Hilbert space H, whereby a ◦ b = ab + ba. Such assumptions, however, are
still not operational. For a further critical overview of these earlier attempts at an
operational axiomatization of QM, the reader is also directed to the recent books
of Strocchi [7] and Thirring [10].

After a long suspension of research on the axiomatic approach – notably inter-
rupted by the work of Ludwig and his school [11] – in the last few years the new
field of quantum information has renewed interest in the problem of operational
axiomatization of QM, having been boosted by the new experience on multipartite
systems and entanglement. In his seminal paper [12] Hardy derived QM from five
“reasonable axioms,” which, more than being truly operational, are motivated on
the basis of simplicity and continuity criteria, with the assumption of a finite num-
ber of perfectly discriminable states. His axiom 4, however, is still purely mathe-
matical, and is directly related to the tensor-product rule for composite systems. In
another popular paper [13], Clifton, Bub, and Halvorson have shown how three
fundamental information-theoretic constraints – (a) the no-signaling constraint,
(b) the no-broadcasting constraint, and (c) the impossibility of unconditionally
secure bit commitment – suffice to entail that the observables and state space of
a physical theory are quantum mechanical. Unfortunately, the authors started from
a C∗-algebraic framework for observables, which, as already discussed, has lit-
tle operational basis, and already coincides with the quantum–classical hybrid.
Therefore, more than deriving QM, their informational principles just force the
C∗-algebra of observables to be non-Abelian.
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In Ref. [14]3 I showed how it is possible to derive the formulation of QM in
terms of observables represented as Hermitian operators over Hilbert spaces with
the right dimensions for the tensor product, starting from a few operational axioms.
However, it is not clear yet whether such a framework is sufficient to identify QM
(or the quantum–classical hybrid) as the only probabilistic theory resulting from
axioms. Later, in Refs. [17–19], I showed how a C∗-algebraic framework for trans-
formations (not for observables!) naturally follows from an operational probabilis-
tic framework.

A very recent and promising direction for attacking the problem of QM axiom-
atization consists in positioning QM within the landscape of general probabilistic
theories, including theories with non-local correlations stronger than the quantum
ones, e.g., for the Popescu–Rohrlich boxes (PR boxes) [20]. Such theories have
correlations that are “stronger” than the quantum ones – in the sense that they
violate the quantum Cirel’son bound [21] – although they are still non-signaling,
thus revealing the fortuitousness of the peaceful coexistence of QM and spe-
cial relativity, in contrast with the claimed implication of QM linearity from the
no-signaling condition [22]. Within the framework of the PR boxes general ver-
sions of the no-cloning and no-broadcasting theorems have been proved [23]. In
Ref. [24] it has been shown that certain features generally thought of as specif-
ically quantum are indeed present in all except classical theories. These include
the non-unique decomposition of a mixed state into pure states, disturbance on
measurement (related to the possibility of secure key distribution), and the no-
cloning constraint. More recently, necessary and sufficient conditions have been
established for teleportation [25], i.e., for reconstructing the state of a system on
a remote identical system, using only local operations and joint states. In all these
works quantum information has inspired the consideration of task-oriented axioms
in a general operational framework that can incorporate QM, classical theory, and
other non-signaling probabilistic theories (for an illustration of this general point
of view see also Ref. [26]).

In this chapter I will consider the possibility of deriving QM as the mathemat-
ical representation of a fair operational framework, i.e., a set of rules that allows
the experimenter to make predictions regarding future events on the basis of suit-
able tests, in a spirit close to Ludwig’s axiomatization [11]. States are simply the
compendia of probabilities for all possible outcomes of any test. I will consider a
very general class of probabilistic theories, and examine the consequences of two
postulates that need to be satisfied by any fair operational framework:

NSF: no signaling from the future, implying that it is possible to make predictions based
on present tests;

3 Most of the results of Ref. [14] were originally conjectured in Refs. [15] and [16].



Probabilistic theories 89

PFAITH: existence of preparationally faithful states, implying the possibility of prepar-
ing any state and calibrating any test.

NSF is implicit in the very definition of conditional probabilities for cascade
tests, entailing that events are identified with transformations, whence evolution is
identified with conditioning. As we will see, such identifications lead to the notion
of effect of Ludwig, i.e., the equivalence class of events occurring with the same
probability for all states. I will show how we can introduce operationally a linear-
space structure for effects. I will then show how all theories satisfying NSF admit
a C∗-algebra representation of events as linear transformations of effects.

On the basis of a very general notion of dynamical independence, entailing the
definition of a marginal state, it is immediately seen that all these theories are
non-signaling, which is the current way of saying that the theories satisfy the prin-
ciple of Einstein locality, namely that there can be no detectable effect on a system
due to anything done to another non-interacting system. This is clearly another
requirement for a fair operational framework. Postulate PFAITH then implies the
local observability principle, namely the possibility of achieving an information-
ally complete test using only local tests – another requirement for a fair opera-
tional framework. The same postulate also implies many other features that are
typically quantum, such as the tensor-product structure for the linear spaces of
states and effects, the isomorphism of cones of states and effects (a weaker version
of quantum self-duality), the so-called EPR cheating in bit commitment (which in
Ref. [13], we remind the reader, was itself used as a postulate to derive QM), and
many more. Dual to Postulate PFAITH an analogous postulate for effects would
give additional quantum features, such as teleportation. However, all possible con-
sequences of these postulates still need to be investigated, and it is not clear yet
whether one can derive QM from these principles only.

In order to provide a route for seeking new candidates for operational postulates
one can short-circuit the axiomatic framework to select QM using a mathematical
postulate dictated by what is really special about the quantum theory, namely that
not only transformations but also effects form a C∗-algebra (more precisely, this is
true for all hybrid quantum–classical theories, i.e., those corresponding to QM plus
super-selection rules). However, whereas the sum of effects can be operationally
defined, their composition has no operational meaning, since the notion itself of
“effect” abhors any kind of composition. I will then show that with another natural
postulate,

AE: atomicity of evolution,

together with the mathematical postulate

CJ: Choi–Jamiolkowski isomorphism [27, 28],
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it is possible to identify effects with “atomic” events, i.e., elementary events that
cannot be refined as the union of events. Via the composition of atomic events we
can then define the composition of effects, thus selecting the quantum–classical
hybrid among all possible general probabilistic theories (including the PR boxes,
which indeed satisfy both NSF and PFAITH).

The CJ isomorphism looks natural in an operational context, and it is hoped that
it will be converted soon into an operational postulate.

The present operational axiomatization will adhere to the following three general
principles:

(1) (Strongly Copenhagen) Everything is defined operationally, including all mathemat-
ical objects. Operationally indistinguishable entities are identified.

(2) (Mathematical closure) Mathematical completion is taken for convenience.
(3) (Operational closure) Every operational option that is implicit in the formulation is

incorporated in the axiomatic framework.

An example of the application of the strongly-Copenhagen principle is the notion
of system, which here I will identify with a collection of tests – the tests that can
be performed over the system. A typical case of operational identification is that
of events occurring with the same probability and producing the same condition-
ing. Another case is the statement that the set of states is separating for effects and
vice versa. Examples of mathematical closure are the norm closure, the algebraic
closure, and the linear span. It is unquestionable that these are always idealizations
of operational limiting cases, or they are introduced just to simplify the mathe-
matical formulation (e.g., real numbers versus the “operational” rational numbers).
Operational completeness, on the other hand, does not affect the corresponding
mathematical representation, since every incorporated option is already implicit in
the formulation. This is the case, for example, for convex closure, closure under
coarse-graining, etc., which are already implicit in the probabilistic formulation.

5.2 C∗-Algebra representation of probabilistic theories

5.2.1 Tests and states

A probabilistic operational framework is a collection of tests4 A, B, C, . . . each
being a complete collection A = {Ai }, B = {B j }, C = {Ck}, . . . of mutually

4 The present notion of test corresponds to that of experiment of Ref. [14]. Quoted from that reference: “An
experiment on an object system consists in making it interact with an apparatus, which will produce one of a
set of possible events, each one occurring with some probability. The probabilistic setting is dictated by the
need of experimenting with partial a priori knowledge about the system (and the apparatus). In the logic of
performing experiments to predict results of forthcoming experiments in similar preparations, the information
gathered in an experiment will concern whatever kind of information is needed to make predictions, and this,
by definition, is the state of the object system at the beginning of the experiment. Such information is gained
from the knowledge of which transformation occurred, which is the ‘outcome’ signaled by the apparatus.”
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exclusive events Ai , B j , Ck, . . . occurring probabilistically5; events that are mutu-
ally exclusive are often called outcomes. The same event can occur in different
tests, with occurrence probability independent of the test. A singleton test – also
called a channel – D = {D} is deterministic: it represents a non-test, i.e., a free
evolution. The union A ∪B of two events corresponds to the event in which either
A or B occurred, but it is unknown which one. A refinement of an event A is a set
of events {Ai } occurring in some test such that A = ∪iAi . The experiment A itself
can be regarded as the deterministic event corresponding to the complete union of
its outcomes, and when regarded as an event it will be denoted by the different
notation DA. The opposite event of A in A will be denoted as A := !AA .6 The
union of events transforms a test A into a new test A′, which is a coarse-graining
of A, e.g., A = {A1, A2, A3} and A′ = {A1, A2 ∪ A3}. Vice versa, we will call A
a refinement of A′.

The state ω describing the preparation of the system is the probability rule ω(A )

for any event A ∈ A occurring in any possible test A.7 For each test A we have
the completeness

∑
A j ∈A ω(A j ) = 1. States themselves are considered as special

tests: the state-preparations.

5.2.2 Cascading, conditioning, and transformations

The cascade B◦A of two tests A = {Ai } and B = {B j } is the new test with events
B ◦ A = {B j ◦ Ai }, where B ◦ A denotes the composite event A “followed by”
B satisfying the following

Postulate NSF (No signaling from the future). The marginal probability∑
B j ∈B ω(B j ◦ A ) of any event A is independent of test B, and is equal to the

probability with no test B, namely

∑

B j ∈B
ω(B j ◦ A ) =: f (B,A ) ≡ ω(A ), ∀B, A , ω. (5.1)

5 Also A. Rényi [29] calls our test “experiment.” More precisely, he defines an experiment A as the pair A =
(X,A) made of the basic space X – the collection of outcomes – and of the σ -algebra of events A. Here, to
decrease the mathematical load of the framework, we conveniently identify the experiment with the basic space
only, and consider a different σ -algebra (e.g., a coarse-graining) as a new test made of new mutually exclusive
events. Indeed, since we are considering only discrete basic spaces, we can put basic space and σ -algebra in
one-to-one correspondence, by taking A = 2X – the power set of X – and, vice versa, X as the collection of
the minimal intersections of elements of A.

6 By adding the intersection of events, one builds up the full Boolean algebra of events (see, e.g., Ref. [29]).
7 By definition the state is the collection of the variables of a system knowledge of which is sufficient to make

predictions. In the present context, it allows one to predict the results of tests, whence it is the probability rule
for all events in any conceivable test.
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NSF is part of the very definition of test-cascade; however, we treat it as a
separate postulate, since it corresponds to the choice of the arrow of time.8 The
interpretation of the test-cascade B ◦ A is that “test A can influence test B but
not vice versa.”9 Postulate NSF allows one to define the conditioned probability
p(B|A ) = ω(B ◦ A )/ω(A ) of event B occurring conditionally on the previ-
ous occurrence of event A . It also guarantees that the probability of B remains
independent of the test B when conditioned.

Conditioning sets a new probability rule corresponding to the notion of a
conditional state ωA , which gives the probability that an event occurs, know-
ing that event A has occurred with the system prepared in the state ω, namely
ωA

.= ω(· ◦ A )/ω(A ).10 We can now regard the event A as transforming with
probability ω(A ) the state ω to the (unnormalized) state11 A ω given by

A ω := ω(· ◦ A ). (5.2)

Therefore, the notion of cascade and postulate NSF entail the identification

event ≡ transformation,

which in turn implies the equivalence12

evolution ≡ state-conditioning.

Notice that operationally a transformation A is completely specified by all the
joint probabilities in which it is involved, whence it is unequivocally given by the
probability rule A ω = ω(· ◦ A ) for all states ω. This is equivalent to specifying
both the conditional state ωA and the probability ω(A ) for all possible states ω,
due to the identity

A ω = ω(A )ωA . (5.3)

8 Postulate NSF is not just a Kolmogorov consistency condition for marginals of a joint probability. In fact, even
though the marginal over test B in (5.1) is obviously the probability of A , such probability in principle depends
on the test B, since the joint probability generally depends on it. Indeed, the marginal over entry A does
generally depend on the past test A # A . Such asymmetry of the joint probability under marginalization over
future or past tests represents the choice of the arrow of time. Of course one could have assumed the opposite
postulate of no signaling from the past, considering conditioning from the future instead, thus reversing the
arrow of time. Postulate NSF introduces conditioning from tests, and is part of the very definition of temporal
cascade-tests. The need to consider NSF as a postulate was noticed for the first time by Masanao Ozawa
(private communication).

9 One could also define more general cascades not in time, e.g., the circuit diagram.

A

B

This would have given rise to a probabilistic version of the quantum comb theory of Ref. [30].
10 Throughout, the central dot “·” denotes the location of the pertinent variable.
11 This is the same as the notion of quantum operation in QM, which gives the conditioning ωA =

A ω/(A ω(I )), or, in other words, the analogue of the quantum Schrödinger-picture evolution of states.
12 Clearly this includes the deterministic singleton-tests D = {D} – the analogs of quantum channels, including

unitary evolutions.
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In particular the identity transformation I is completely specified by the rule
I ω = ω for all states ω.

5.2.3 Systems

In a pure Copenhagen spirit we will identify a system S with a collection of
tests S = {A, B, C, . . .}, the collection being operationally closed under coarse-
graining, convex combination, conditioning, and cascading, and will include all
states as special tests. Closure under cascading is equivalent to considering mono-
systemic evolution, i.e., in which there are only tests for which the output system
is the same as the input one.13 The operator has always the option of performing
repeated tests, together with (randomly) alternating tests – say A and B – in differ-
ent proportions – say p and 1 − p (0 < p < 1) – thus achieving the test Cp =
pA+ (1 − p)B which is the convex combination of tests A and B, and is given by
Cp = {pA1, pA2, . . ., (1 − p)B1, (1 − p)B2, . . .}, where pA is the same event
as A , but occurring with a probability rescaled by p. Since we will consider always
closure under all the operator’s options (this is our operational closure), we will
take the system also to be closed under such convex combination. In particular, the
set of all states of the system14 is closed under convex combinations and under con-
ditioning, and we will denote by S(S) (S for short) the convex set of all possible
states of system S. We will often use the colloquialism “for all possible states ω”
meaning ∀ω ∈ S(S), and we will do similarly for other operational objects.

In the following we will denote the set of all possible transformations/events
by T(S), T for short. The convex structure of S entails a convex structure for T,
whereas the cascade of tests entails the composition of transformations. The lat-
ter, together with the existence of the identity transformation I , gives to T the
structure of a convex monoid.

5.2.4 Effects

From the notion of a conditional state two complementary types of equivalences
for transformations follow: the conditional and the probabilistic equivalence. The
transformations A1 and A2 are conditioning-equivalent when ωA1 =ωA2∀ω ∈ S,

13 We could have considered more generally tests in which the output system is different from the input one, in
which case the system is no longer closed under a test-cascade, and, instead, there are cascades of tests from
different systems. This would give more flexibility to the axiomatic approach, and could be useful for proving
some theorems related to multipartite systems made of different systems. The fact that there are different sys-
tems would impose constraints on the cascades of tests, corresponding to allowing only some particular words
made of the “alphabet” A, B, . . . of tests, and the system would then correspond to a “language” (see Ref. [31]
for a similar framework). Such generalization will be thoroughly analyzed in a forthcoming publication.

14 At this stage such a set does not necessarily contain all in-principle possible states. The extension will be done
later, after defining effects.
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namely when they produce the same conditional state for all prior states ω. On
the other hand, the transformations A1 and A2 are probabilistically equivalent
when ω(A1) = ω(A2) ∀ω ∈ S, namely when they occur with the same prob-
ability.15 Since operationally a transformation A is completely specified by the
probability rule A ω for all states, it follows that two transformations A1 and A2

are fully equivalent (i.e., operationally indistinguishable) when A1ω = A2ω for
all states ω. We will identify two equivalent transformations, and denote the equiv-
alence simply as A1 = A2. From identity (5.3) it follows that two transforma-
tions are equivalent if and only if they are both conditioning and probabilistically
equivalent.

A probabilistic equivalence class of transformations defines an effect.16 In the
following we will denote effects with lower-case letters a, b, c, . . . and denote by
[A ]eff the effect containing transformation A . We will also write A ∈ a meaning
that “the transformation A belongs to the equivalence class a,” or “A has effect a,”
and write “A ∈ [B]eff” to say that “A is probabilistically equivalent to B.” Since
by definition ω(A ) = ω([A ]eff), hereafter we will legitimately write the variable
of the state as an effect, e.g., ω(a). The deterministic effect will be denoted by e,
corresponding to ω(e) = 1 for all states ω. We will denote the set of effects for a
system S as E(S), or just E for short. The set of effects inherits a convex structure
from that of transformations.

By the same definition of state – as probability rule for transformations –
states are separated by effects (whence also by transformations17), and, conversely,
effects are separated by states. Transformations are separated by states in the sense
that A #= B iff A ω #= Bω for some state. As a consequence, it may happen
that the introduction of a new state via some new preparation (such as introducing
additional systems) will separate two previously indiscriminable transformations,
in which case we will include the new state (and all convex combinations with it)
in S(S), and we will complete the system S accordingly. We will end with S(S)

separating T(S) and E(S), and E(S) separating S(S).
The identity ωA (B) ≡ ωA ([B]eff) implies that ω(B ◦A ) = ω([B]eff ◦A ) for

all states ω, leading to the chaining rule [B]eff ◦ A = [B ◦ A ]eff, corresponding
to the “Heisenberg-picture” evolution in terms of transformations acting on effects.

15 In the papers [14–17] I called the conditional equivalence dynamical equivalence, since the two transforma-
tions will effect the same state change. However, one should more properly regard the “dynamical” change of
the state ω due to the transformation A as the unnormalized state A ω, but the two transformations A and
B will be fully equivalent when A ω = Bω for all states ω. Moreover, in the same papers I called the prob-
abilistic equivalence informational equivalence, since the two transformations will give the same information
about the state. The new nomenclature has a more immediate meaning.

16 This is the same notion of “effect” introduced by Ludwig [11].
17 In fact, A ω #= A ζ for A ∈ T means that there exists an effect c such that A ω(c) #= A ζ(c), whence the

effect c ◦ A will separate the same states.
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Notice that transformations act on effects from the right, inheriting the composition
rule of transformations (B ◦ A means “A followed by B”). Notice also that e ◦
A ∈ [I ◦ A ]eff = a. It follows that for D deterministic one has D ∈ e, whence
D ◦ A ∈ [A ]eff.

Consistently, in the “Schrödinger picture,” we have Bω(·◦A ) = ω(·◦B ◦A ),
corresponding to (B ◦ A )ω = ω(· ◦ B ◦ A ). Also, we will use the unambigu-
ous notation Bω(a) = [Bω](a), whence Bω(a) = ω(a ◦ B), and ω(a) =
A ω(e), ∀A ∈ a.

5.2.5 Linear structures for transformations and effects

Transformations A1 and A2, for which one has the bound ω(A1) + ω(A2) ! 1,

∀ω ∈ S, can in principle occur in the same test, and we will call them test-
compatible. For test-compatible transformations one can define their addition
A1 + A2 via the probability rule

(A1 + A2)ω = A1ω + A2ω, (5.4)

where we remind the reader that A ω := ω(· ◦ A ). Therefore the sum of two
test-compatible transformations is just the union-event A1 + A2 = A1 ∪ A2,
with the two transformations regarded as belonging to the same test.18 For any
test A we can define its total coarse-graining as the deterministic transformation
DA = ∑

Ai ∈A Ai . We can trivially extend the addition rule (5.4) to any set of (gen-
erally non-test-compatible) transformations, and to subtraction of transformations
as well. Notice that the composition “◦” is distributive with respect to addition “+.”

We can define the multiplication λA of a transformation A by a scalar
0 ! λ ! 1 by the rule

ω(· ◦ λA ) = λω(· ◦ A ), (5.5)

namely λA is the transformation conditioning-equivalent to A , but occurring with
rescaled probability ω(λA ) = λω(A ) – as happens in the convex combination of
tests. It follows that for every couple of transformations A and B the transforma-
tions λA and (1 − λ)B are test-compatible for 0 ! λ ! 1, consistently with the
convex closure of the system S. By extending the definition (5.5) to any positive λ,
we then introduce the cone T+ of transformations. We will call an event A atomic

18 The probabilistic class of A1 + A2 is given by

ω(A1 + A2) = ω(A1) + ω(A2), ∀ω ∈ S,

whereas the conditional class is given by

ωA1+A2 = ω(A1)

ω(A1 + A2)
ωA1 + ω(A2)

ω(A1 + A2)
ωA2 , ∀ω ∈ S.
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if it has no non-trivial refinement in any test, namely if it cannot be written as
A = ∑

i Ai with Ai != λiA for some i and 0 < λi < 1. Notice that the identity
transformation is not necessarily atomic.19 The set of extremal rays of the cone
T+ – denoted by Erays(T+) – contains the atomic transformations.

The notions of (i) test-compatibility, (ii) sum, and (iii) multiplication by a scalar
are naturally inherited from transformations to effects via probabilistic equiva-
lence, and then to states via duality. Correspondingly, we introduce the cone of
effects E+, and, by duality, we extend the cone of states S+ to the dual cone of E+,
completing the set of states S to the cone-base of S+ made of all positive linear
functionals over E+ normalized at the deterministic effect, namely all in-principle
legitimate states (in parallel we complete the system S with the corresponding
state-preparations). We call such a completion of the set of states the no-restriction
hypothesis for states, corresponding to the state–effect duality, namely the con-
vex cones of states S+ and of effects E+ are dual each other.20 The state cone S+
introduces a natural partial ordering ! over states and over effect (via duality),
and one has a ∈ E iff 0 " a " e. Thus the convex set E is a truncation of the
cone E+, whereas S is a base for the cone S+21 defined by the normalization
condition ω ∈ S iff ω ∈ S+ and ω(e) = 1. In the following it will be useful also
to express the probability rule ω(a) also in its dual form a(ω) = ω(a), with the
effect acting on the state as a linear functional.

By extending (5.5) to any real (complex) scalar λ we build the linear real (com-
plex) span TR = SpanR(T) (TC = SpanC(T)). The Cartesian decomposition
TC = TR ⊕ iTR holds, i.e., each element A ∈ TC can be uniquely written as A =
AR + iAI , with AR, AI ∈ TR.22 Analogously, also for effects and states we define
EF, SF for F = R, C. The state–effect duality implies the linear space identifica-
tions SF ≡ EF. Thanks to such identifications and to the identity of the dimension
of a convex cone with that of its complex and real spans, in the following, without
ambiguity, we will simply write dim(S) := dim[S+(S)] ≡ dim[E+(S)]. More-
over, if there is no confusion, then with some abuse of terminology we will simply

19 For example, the identity transformation is refinable in classical Abelian probabilistic theory, where states
are of the form # = ∑

l pl |l〉〈l|, with {|l〉} a complete orthonormal basis and {pl } a probability distribution.
Here the identity transformation is given by I = ∑

k |k〉〈k| · |k〉〈k|, {|k〉}, which is refinable into rank-one
projection maps.

20 In infinite dimensions one also takes the closure of cones.
21 We remind the reader that a set B ⊂ C of a cone C in a vector space V is called the base of C if 0 !∈ B and for

every point u ∈ C, u != 0, there is a unique representation u = λv, with v ∈ B and λ > 0. Then, one has that
u ∈ C spans an extreme ray of C iff u = λv, where λ > 0 and v is an extreme point of B (see Ref. [32]).

22 Note that the elements T ∈ TR can in turn be decomposed à la Jordan as T = T+ − T−, with T± ∈ T+.
However, such a decomposition is generally not unique. According to a theorem of Béllissard and Jochum [33]
the Jordan decomposition of the elements of the real span of a cone (with T± orthogonal in TR Euclidean
space) is unique if and only if the cone is self-dual.
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refer by “states,” “effects,” and “transformations” to the respective generalized ver-
sions that are elements of the cones, or of their real and complex linear spans.

Note that the cones of states and effects contain the origin, i.e., the null vector of
the linear space. For the cone of states one has that ω = 0 iff ω(e) = 0 (since for
any effect a one has 0 ! ω(a) ! ω(e) = 0, namely ω(a) = 0). On the other hand,
the hyperplane which truncates the cone of effects giving the physical convex set
E is conveniently characterized using any internal state ϑ – i.e., a state that can
be written as the convex combination of any state with some other state – by using
the following lemma.

Lemma 1. For any a ∈ E+ one has a = 0 iff ϑ(a) = 0 and a = e iff ϑ(a) = 1,
with ϑ any internal state.

Proof. For any state ω one can write ϑ = pω + (1 − p)ω′ with 0 ! p ! 1 and
ω′ ∈ S. Then one has ϑ(a) = 0 iff ω(a) = 0 ∀ω ∈ S, that is iff a = 0. Moreover,
one has ϑ(a) = 1 iff ω(a) = 1 ∀ω ∈ S, i.e., a = e.

5.2.6 Observables and informational completeness

An observable L is a complete set of effects L = {li } summing to the deterministic
effect as

∑
li ∈L li = e, namely li are the effects of the events of a test. An observable

L = {li } is named informationally complete for S when each effect can be written
as a real linear combination of li , namely SpanR(L) = ER(S). When the effects
of L are linearly independent the informationally complete observable is named
minimal. Clearly, since E is separating for states, any informationally complete
observable separates states, that is using an informationally complete observable
we can reconstruct also any state ω ∈ S(S) from the set of probabilities ω(li ). The
existence of a minimal informationally complete observable constructed from the
set of available tests is guaranteed by the following theorem.

Theorem 1. (Existence of minimal informationally complete observable). It is
always possible to construct a minimal informationally complete observable for S
out of a set of tests of S.

For the proof see Ref. [17].

In the following we will take a fixed minimal informationally complete observ-
able L = {li } as a reference test, with respect to which all basis-dependent repre-
sentations will be defined.

Symmetrically to the notion of an informationally complete observable we
have the notion of a separating set of states S = {ωi }, in terms of which
one can write any state as a real linear combination of the states {ωi }, namely
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SR(S) = SpanR(S). Regarded as a test S = {Si } ∈ S the set of states {ωi } corre-
sponds to the state-reduction Siω = ω(Si )ωi , ∀ω ∈ S. When the corresponding
effects [Si ]eff form an informationally complete observable the test S would be an
example of the Quantum Bureau International des Poids et Mesures of Fuchs [34].

5.2.7 Banach structures

On states ω ∈ S introduce the natural norm ||ω|| = supa∈E ω(a), which extends
to the whole linear space SR as ||ω|| = supa∈E |ω(a)|. Then, we can introduce the
dual norm on effects ||a|| := supω∈SR, |ω||!1 |ω(a)|, and then on transformations
||A || := supb∈ER,||b||!1 ||b ◦ A ||. Closures in norm (for mathematical convenience)
make ER and SR a dual Banach pair, and TR a real Banach algebra.23 Therefore,
all operational quantities can be mathematically represented as elements of such
Banach spaces.

5.2.8 The Metric

One can define a natural distance between states ω, ζ ∈ S as follows:

d(ω, ζ ) := sup
l∈E

l(ω) − l(ζ ). (5.6)

Lemma 2. The function (5.6) is a metric on S, and is bounded as 0 ! d(ω, ζ )! 1.

Proof. For every effect l, e − l is also a effect, whence

d(ω, ζ ) = sup
l∈E

(l(ω) − l(ζ )) = sup
l ′∈E

((e − l ′)(ω) − (e − l ′)(ζ ))

= sup
l ′∈E

(l ′(ζ ) − l ′(ω)) = d(ζ, ω), (5.7)

that is, d is symmetric. On the other hand, d(ω, ζ ) = 0 implies that ζ = ω, since
the two states must give the same probabilities for all transformations. Finally,
one has

d(ω, ζ ) = sup
l∈E

(l(ω) − l(θ) + l(θ) − l(ζ ))

≤ sup
l∈E

(l(ω) − l(θ)) + sup
l∈E

(l(θ) − l(ζ )) = d(ω, θ) + d(θ, ζ ), (5.8)

23 An algebra of maps over a Banach space inherits the norm induced by that of the Banach space on which it
acts. It is then easy to prove that the closure of the algebra under such a norm is a Banach algebra.
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that is, it satisfies the triangular inequality, whence d is a metric. By construction,
the distance is bounded as d(ω, ζ ) ! 1, since the maximum value of d(ω, ζ ) is
achieved when l(ω) = 1 and l(ζ ) = 0.

The natural distance (5.7) is extended to a metric over SR as d(ω, ζ ) = ||ω − ζ ||
with || · || the norm over SR. Analogously we define the distance between effects
as d(a, b) := supω∈S |ω(a − b)|.24

A relevant property of the metric in (5.6) is its monotonicity, namely that the
distance between two states can never increase under deterministic evolution, as
established by the following lemma.

Lemma 3. (Monotonicity of the state distance). For every deterministic physical
transformation D ∈ T, one has

d(Dω,Dζ ) ! d(ω, ζ ). (5.9)

Proof. First we notice that since D ∈ T is a physical transformation, for every
effect a ∈ E one has also a ◦ D ∈ E, whence E ◦ D ⊆ E. Therefore, we have

d(Dω,Dζ ) : = sup
a∈E

ω(a ◦ D) − ζ(a ◦ D)

= sup
a∈E◦D

ω(a) − ζ(a) ! sup
a∈E

ω(a) − ζ(a) = d(ω, ζ ). (5.10)

Notice that we take the transformation deterministic only to assure that Dω is itself
a state for any ω.

5.2.9 Isometric transformations

A deterministic transformation U is called isometric if it preserves the distance
between states, namely

d(U ω,U ζ ) ≡ d(ω, ζ ), ∀ω, ζ ∈ S. (5.11)

Lemma 4. In finite dimensions, all the following properties of a transformation
are equivalent: (a) it is isometric for S; (b) it is isometric for E; (c) it is an auto-
morphism of S; and (d) it is an automorphism of E.

Proof. By definition a transformation of the convex set (of states or effects) is a
linear map of the convex set in itself. A linear isometric map of a set in itself is
isometric on the linear span of the set.25 (Recall that the natural distance between

24 It is easy to check that such a distance satisfies the trangular inequality.
25 Interestingly, the Mazur–Ulam theorem states that any surjective isometry (not necessarily linear) between

real-normed spaces is affine. Therefore, even if non-linear, it would map convex subsets to convex subsets.
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states has been extended to a metric over the whole SR.) In finite dimensions an
isometry on a normed linear space is diagonalizable [35]. Its eigenvalues must
have unit modulus, otherwise it would not be isometric. It follows that it is an
orthogonal transformation, and, since it maps the set into itself, it must be a linear
automorphism of the set. Therefore, an isometric transformation of a convex set is
an automorphism of the convex set.26

Now, automorphisms of S are isometric for E, since

d(a ◦ U , b ◦ U ) = sup
ω∈S

|ω((a − b) ◦ U )| = sup
ω∈S

|(U ω)(a − b)|

= sup
ω∈U S

|ω(a − b)| = sup
ω∈S

|ω(a − b)| = d(a, b), (5.12)

and, similarly, automorphisms of E are isometric for S, since

sup
a∈E

[ω(a ◦ U ) − ζ(a ◦ U )] = sup
a∈E◦U

[ω(a) − ζ(a)] = d(ω, ζ ). (5.13)

Therefore, automorphisms of S are isometric for E, whence, for the first part of
the proof, they are automorphisms of E, whence they are isometric for S.

The physical automorphisms play the role of unitary transformations in QM.

Corollary 1. (Wigner theorem). The only transformations of states that are
inverted by another transformation must send pure states to pure states, and are
isometric.

5.2.10 The C∗-algebra of transformations

We can represent the transformations as elements of TC regarded as a complex
C∗-algebra. This is obvious, since TC are by definition linear transformations of
effects, making an associative sub-algebra TC ⊆ Lin(EC) of the matrix algebra
over EC. The adjoint and norm can be easily defined in terms of any chosen scalar
product (·, ·) over EC, with the adjoint defined as (a◦A †, b) = (a, b◦A ), and the
norm as ||A || = supa∈EC ||a◦A ||/||a||, with ||a|| = √

(a, a). (Notice that these norms
are different from the “natural norms” defined in Section 5.2.7.) We can then extend
the complex linear space TC by adding the adjoint transformations and taking the
norm-closure. We will denote such extension with the same symbol TC, which is
now a C∗-algebra. Indeed, upon reconstructing EC and TC from the original real
spaces via the Cartesian decomposition EC = ER ⊕ iER and TC = TR ⊕ iTR, and
introducing the scalar product on EC as the sesquilinear extension of a real sym-
metric scalar product (·, ·)R over ER, the adjoint of a real element A ∈ TR is just

26 For a convex set, an automorphism must send the set to itself keeping the convex structure, whence it must be
a one-to-one map that is linear on the span of the convex set.
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Test:= set of
probabilistic events

State

Addition of
transformations

norms

Linear span

transformations real Banach algebra

C*-algebra of transformations
as linear operators over effects

NSF
Evolution as
conditioning

Observable

Effect

Linear span

scalar products

states & effects
dual real Banach pair

Events as
transformations

Fig. 5.1 A logical flow chart leading to the representation of any probabilistic
theory in terms of a C∗-algebra of linear transformations over the linear space of
complex effects (see also footnote 27 and Section 5.3.3 for an operational basis
for the scalar product.)

the transposed matrix A t with respect to a real basis orthonormal for (·, ·)R, and
A † := AR

t − iAI
t for a general A = AR + iAI ∈ TC. A natural choice of matrix

representation for TR is given by its action over a minimal informational complete
observable L = {li } (the scalar product (·, ·)R := (·, ·)L will correspond to declar-
ing L as orthonormal). Upon expanding [li ◦ A ]eff again over L = {li } one has the
matrix representation li ◦ A = ∑

j A j i l j . Using the fact that L is state-separating,
we can write the probability rule as the pairing ω(a) = (ω, a)R between ER and
SR (and analogously for their complex spans).27 In this way we see that for every
probabilistic theory one can always represent transformations/events as elements
of the C∗-algebra TC of matrices acting on the linear space of complex effects EC.
In Figure 5.1 the logical derivation of the C∗-algebra representation of the theory
is summarized.

27 The present derivation of the C∗-algebra representation of transformations is more direct than that in Ref. [17],
and is just equivalent to the probabilistic framework inherent in the notion of a “test” (see also the summary
of the whole logical deduction in the flow chart in Figure 5.1). The specific C∗-algebra in Ref. [17] possessed
operational notions of adjoint and of scalar product over effects, both constructed using a symmetric faithful
bipartite state, needing in this way two additional postulates: (a) the existence of dynamically independent
systems and (b) the existence of faithful symmetric bipartite states. Such construction is briefly reviewed in
Section 5.3.3.
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Conversely, given (1) a C∗-algebra TC, (2) the cone of transformations T+, and
(3) the vector e ∈ EC representing the deterministic effect, we can rebuild the full
probabilistic theory by constructing the cone of effects as the orbit E+ = e ◦ T+,
and taking the cone of states S+ as the dual cone of E+.28

5.3 Independent systems

5.3.1 Dynamical independence and marginal states

A purely dynamical notion of system independence coincides with the possibility of
performing local tests. To be precise, we will call systems S1 and S2 independent
if it is possible to perform their tests as local tests, i.e., in such a way that for every
joint state of S1 and S2 the transformations on S1 commute with transformations
on S2, namely29

A (1) ◦ B(2) = B(2) ◦ A (1), ∀A (1) ∈ A(1), ∀B(2) ∈ B(2). (5.14)

The local tests comprise the Cartesian product S1 × S2, which is closed under
cascade. We will close this set also under convex combination, coarse-graining,
and conditioning, making it a “system,” denote such a system with the same symbol
S1×S2, and call local all tests in S1×S2. We now compose the two systems S1 and
S2 into the bipartite system S1 & S2 by adding the local tests into the new system
S1 & S2 as S1 & S2 ⊇ S1 × S2 and closing under cascading, coarse-graining, and
convex combination. We call the tests in S1 & S2\S1 × S2 non-local, and we will
extend the local/non-local nomenclature to the pertaining transformations. In the
following for identical systems we will also use the notation S&N = S & S & . . .

&S (N times), and Z&N := Z(S&N ) to denote N -partite sets/spaces, with Z =
S, S+, SR, SC, E, E+, . . ..

Since the local transformations commute, we will just put them in a string, as
(A , B, C , . . .) := A (1) ◦ A (2) ◦ A (3) ◦ . . . (convex combinations and coarse
graining will be sums of strings). Clearly, since the probability ω(A , B, C , . . .)

is independent of the time ordering of transformations, it is just a function only
of the effects ω(A , B, C , . . .) = ω([A ]eff, [B]eff, [C ]eff, . . .), namely the joint
effect corresponding to local transformations is made of (sums of) local effects
[(A , B, C , . . .)]eff ≡ ([A ]eff, [B]eff, [C ]eff, . . .).

The embedding of local tests S1 × S2 into the bipartite system S1 & S2 implies
that TF(S1 & S2) ⊇ TF(S1) ⊗ TF(S2) and EF(S1 & S2) ⊇ EF(S1) ⊗ EF(S2),

28 The “orbit” e ◦ T+ is defined as the set e ◦ T+ := {e ◦ A |A ∈ T+}.
29 The present definition of independent systems is purely dynamical, in the sense that it does not involve sta-

tistical requirements, e.g., the existence of factorized states. This, however, is implied by the mentioned no-
restriction hypothesis for states.
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Fig. 5.2 Illustrations of the notions of a dynamically (left) and a preparationally
(right) faithful state for a bipartite system. A bipartite state ! is dynamically faith-
ful with respect to system S1 when the output state (A ,I )! is in one-to-one cor-
respondence with the local transformation A on system S1, whereas it is prepa-
rationally faithful with respect to S1 if every bipartite state " can be achieved as
" = (T",I )! via a local transformation T" on S1.

both for real and for complex spans F = R, C. On the other hand, since local
tests include local state-preparation (or, otherwise, because of the no-restriction
hypothesis for states) the set of bipartite states S(S1 ! S2) always includes the
factorized states, i.e., those corresponding to factorized probability rules, e.g.,
#(a, b) = ω1(a)ω2(b) for local effects a and b. In parallel with local transforma-
tions and effects, we will denote factorized states as strings # = (ω1, ω2, . . .), e.g.,
(ω1, ω2)(a, b) = ω1(a)ω2(b). Then, closure under convex combination implies
that SF(S1 ! S2) ⊇ SF(S1) ⊗ SF(S2), for F = R, C.

For N systems in the joint state #, we define the marginal state #|n of the nth
system as the probability rule for any local transformation A at the nth system,
with all other systems untouched, namely

#|n(A )
.= #(I , . . .,I , A︸︷︷︸

nth

, I , . . .). (5.15)

Clearly, since the probability for local transformations depends only on their
respective effects, the marginal state is equivalently defined as

#|n(a)
.= #(e, . . . , e, a︸︷︷︸

nth

, e, . . .) for a ∈ E. (5.16)

It readily follows that the marginal state #|n is independent of any determinis-
tic transformation – i.e., any test – that is performed on systems different from
the nth: this is exactly the general statement of the no-signaling condition or
acausality of local tests. Therefore, the present notion of dynamical independence
directly implies the no-signaling condition. The definition in (5.15) can be trivially
extended to unnormalized states.30,31

30 Notice that any generally unnormalized state is zero iff the joint state is zero, since #(e, e, . . ., e) = #n
(e) = 0.

31 The present notion of dynamical independence is indeed so minimal that it can be satisfied not only by the
quantum tensor product, but also by the quantum direct sum [36]. (Notice, however, that an analogue of
Tsirelson’s theorem [37] for transformations in finite dimensions would imply a representation of dynamical
independence over the tensor product of effects.) In order to extract only the tensor product an additional
assumption is needed. As shown in Refs. [17, 36] two possibilities are either postulating the existence of
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In the following we will use the following identities:

!|2(a) = !(e, a) = !(e, e ◦ A ) = (I , A )!(e, e), ∀A ∈ a. (5.17)

5.3.2 Faithful states

A bipartite state " ∈ S(S1 $S2) is dynamically faithful with respect to S1 when
the output state (A , I )" is in one-to-one correspondence with the local trans-
formation A on system S1, that is, the cone-homomorphism32 A ↔ (A , I )"

from T+(S1) to S+(S1 $ S2) is a monomorphism.33 Equivalently the map
A &→ (A , I )" extends to an injective linear map between the linear spaces
TR(S1) and SR(S1 $ S2) preserving the partial ordering relative to the span-
ning cones, and this is true also in the inverse direction on the range of the
map. Notice that no physical transformation A (= 0 “annihilates” ", i.e., gives
(A , I )" = 0.

A bipartite state " ∈ S(S1$S2) is called preparationally faithful with respect
to S1 if every bipartite state ! can be achieved as ! = (T!, I )" by a local
transformation T! ∈ T+(S1). This means that the cone-homomorphism A &→
(A , I )" from T+(S1) to S+(S1 $S2) is an epimorphism. Equivalently, the map
A &→ (A , I )" extends to a surjective linear map between the linear spaces
TR(S1) and SR(S1 $ S2) preserving the partial ordering relative to the spanning
cones.

In simple words, a dynamically faithful state keeps the imprinting of a local
transformation on the output, i.e., from the output we can recover the transforma-
tion. On the other hand, a preparationally faithful state allows us to prepare any
desired joint state (probabilistically) by means of local transformations. Dynami-
cal and preparational faithfulness correspond to the properties of being separating
and cyclic for the C∗-algebra of transformations.

Theorem 2. The following assertions hold.

(1) Any state " ∈ S(S1 $S2) that is preparationally faithful with respect to S1 is dynam-
ically faithful with respect to S2.

(2) For identical systems in finite dimensions any state " that is preparationally faithful
with respect to a system is also dynamically faithful with respect to the same system,

bipartite states that are dynamically and preparationally faithful, or postulating the local observability princi-
ple. Here we will consider the former as a postulate, and derive the latter as a theorem.

32 A cone-homomorphism between cones C1 and C2 is a linear map between SpanR(C1) and SpanR(C2) that
sends elements of C1 to elements of C2, but not necessarily vice versa.

33 This means that (A1, I )" = (A2, I )" iff A1 = A2, or, in other words, ∀A ∈ TR: (A , I )" = 0 ⇐⇒
A = 0.
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and one has the cone-isomorphism34 T+(S) ! S+(S"2). Moreover, a local transfor-
mation on ! produces an output pure (unnormalized) bipartite state iff the transfor-
mation is atomic.

(3) If there exists a state of S1 "S2 that is preparationally faithful with respect to S1, then
dim(S1) ! dim(S2).

(4) If there exists a state of S1 " S2 that is preparationally faithful with respect to both
systems, then one has the cone-isomorphisms E+(S1) ! S+(S2) and E+(S2) !
S+(S1).

(5) If for two identical systems there exists a state that is preparationally faithful with
respect to both systems, then one has the cone-isomorphism S+ ! E+ (weak self-
duality).

(6) If the state ! ∈ S(S1 " S2) is preparationally faithful with respect to S1, then for
any invertible transformation A ∈ T+(S1) also the (unnormalized) state (A ,I )!

is preparationally faithful with respect to the same system. In particular, it will be a
faithful state for any physical automorphism of S(S1).35

(7) For identical systems in finite dimensions, for ! preparationally faithful with respect to
both systems, the state χ := !(e, ·) is cyclic in S+(S) under T+(S), and the observ-
ables L = {li } of S2 are in one-to-one correspondence with the ensemble decomposi-
tions {ρi }|L|

i=1 of χ , with ρi := !(li , ·), and χ is an internal state.

Proof.

(1) Introduce the map ω $→ Tω where for every ω ∈ S(S2) one chooses a local trans-
formation Tω on S1 such that (Tω,I )!|2 = ω. This is possible because !

is preparationally faithful with respect to S1. One has A ω = (Tω,A )!|2 =
(Tω,I )(I ,A )!|2 ∀ω ∈ S(S2). Therefore, from (I ,A )! one can recover the
action of A on any state ω by first applying (Tω,I ) and then take the marginal, i.e.,
one recovers A from (I ,A )!, which is another way of saying that A $→ (I ,A )!

is injective, namely ! is dynamically faithful with respect to S2.
(2) Denote by ! ∈ S"2 a state that is preparationally faithful with respect to S1. Since

the linear map A $→ (A ,I )! from TR to S"2
R is surjective, one has dim(TR)

! dim(S"2
R ). However, one has also dim(TR) " dim(S"2

R ) since TR ⊆ Lin(SR) !
S⊗2

R ⊆ S"2
R , whence dim(TR) = dim(S"2

R ), and, having null kernel, the map is also
injective, whence ! is dynamically faithful with respect to S1. Since now the state !

is both preparationally and dynamically faithful with respect to the same system S1, it

34 We say that two cones C1 and C2 are isomorphic (denoted as C1 ! C2) if there exists a one-to-one linear
mapping between SpanR(C1) and SpanR(C2) that is cone-preserving in both directions. We will call such a
map a cone-isomorphism between the two cones. Such a map will send extremal rays of C1 to extremal rays
of C2 and positive linear combinations to positive linear combinations, and the same is true for the inverse
map.

35 One may be tempted to consider all automorphisms of S(S1), instead of just the physical ones. However,
there is no guarantee that any automorphism will be also an automorphism of bipartite states when applied
locally. This is the case of QM, where the transposition is an automorphism of S(S1), and nevertheless is not
a local automorphism of S(S1 " S2).



106 G. M. D’Ariano

follows that the map A !→ (A ,I )! establishes the cone-isomorphism T+ # S$2
+ .

Since the faithful state establishes the cone-isomorphism T+ # S$2
+ , it maps extremal

rays of T+ to extremal rays of S$2
+ and vice versa; that is, A ∈ Erays(T+) iff

(A ,I )! ∈ Erays(S$2
+ ).

(3) For ! preparationally faithful with respect to S1, consider the cone homomorphism
a !→ ωa := !(a, ·) which associates an (unnormalized) state ωa ∈ S+(S2) with
each effect a ∈ E+(S1). The extension to a linear map a !→ ωa between the lin-
ear spaces SR(S2) and ER(S1) preserves the cone structure, and is surjective, since
! is preparationally faithful with respect to S1 (whence every bipartite state, and,
in particular, every marginal state, can be obtained from a local effect). The bound
dim(S1) ! dim(S2) then follows from surjectivity.

(4) Similarly to the proof of item (1), consider the map λ !→ Tλ, where for every marginal
state λ ∈ S(S1) one chooses a local transformation Tλ on S2 such that (I ,Tλ)!|1 =
λ (! is preparationally faithful with respect to S2). Then, one has

∀λ ∈ S(S1), λ(a) = (I ,Tλ)!(a, e) = !(a,Tλ) = ωa(Tλ). (5.18)

It follows that ωa = ωb implies that λ(a) = λ(b) for all states λ ∈ S(S1); that
is, a = b, whence the homomorphism a !→ ωa which is surjective (since ! is
preparationally faithful) is also injective, i.e., is bijective, and, since it maps ele-
ments of E+(S1) to elements of S+(S2) and, vice versa, to each element of S+(S2),
it corresponds to an element of E+(S1) (! is preparationally faithful), thus it is
a cone-isomorphism. We then have the cone-isomorphism E+(S1)# S+(S2). The
cone-isomorphism E+(S2) # S+(S1) follows on exchanging the two systems.

(5) According to point (4) one has the cone-isomorphism E+(S1) # S+(S2) # S+(S1).
(6) This is obvious, from the definition of a preparationally faithful state.
(7) According to (4) ωa := !(a, ·) establishes the cone-isomorphism E+(S) # S+(S).

On the other hand, since the state is both preparationally and dynamically faithful
for either system, then for any transformation T on the first system there exists a
unique transformation T ′ on the other system giving the same output state (see also
the definition of the “transposed” transformation with respect to a dynamically faithful
state in the following). Therefore, since any effect a can be written as a = e ◦ Ta for
any Ta ∈ a, one has ωa = !(e ◦ Ta, ·) = !(e, · ◦ T ′

a ) = T ′
a χ . The observable–

ensemble correspondence and the fact that χ is an internal state are both immediate
consequences of the fact that ωa := !(a, ·) is a cone-isomorphism.

The transposed of a transformation (Figure 5.3). For a symmetric bipartite state
! of two identical systems that is preparationally faithful for one system – hence,
according to Theorem 2, is both dynamically and preparationally faithful with
respect to both systems – one can define operationally the transposed T ′ of a
transformation T ∈ TR through the identity

!(a, b ◦ T ) = !(a ◦ T ′, b), (5.19)
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Fig. 5.3 An illustration of the notion of the transposed of a transformation for a
symmetric dynamically and preparationally faithful state.

i.e., (T ′, I )! = (I , T )!, namely, operationally the transposed T ′ of a trans-
formation T is the transformation which will give the same output bipartite state
of T if operated on the twin system. It is easy to verify (using the symmetry of !)
that T ′′ = T and that (B ◦ A )′ = A ′ ◦ B′.

We are now in position to formulate the main postulate.

Postulate PFAITH (Existence of a symmetric preparationally faithful pure
state). For any couple of identical systems, there exists a symmetric (under per-
mutation of the two systems) pure state that is preparationally faithful.

Theorem 2 guarantees that such a state is both dynamically and preparationally
faithful, and with respect to both systems, as a consequence of symmetry.36 Pos-
tulate PFAITH thus guarantees that to any system we can adjoin an ancilla and
prepare a pure state that is dynamically and preparationally faithful with respect
to our system. This is operationally crucial in guaranteeing the preparability of
any quantum state for any bipartite system using only local transformations, and
to assure the possibility of experimental calibrability of tests for any system.
Notice that it would be impossible, even in principle, to calibrate transforma-
tions without a dynamically faithful state, since any set of input states {ωn} ∈ S′

that is “separating” for transformations T(S′) is equivalent to a bipartite state
! = ∑

n ωn ⊗ λn ∈ S(S′ % S′′) that is dynamically faithful for S′, with the
states {λn} working just as “flags” representing the “knowledge” of which state of
the set {ωn} has been prepared. Notice that in QM every maximal Schmidt-number
entangled state of two identical systems is both preparationally and dynamically
faithful for both systems. In classical mechanics, on the other hand, a state of the
form ! = ∑

l |l〉〈l| ⊗ |l〉〈l| with {|l〉} a complete orthogonal set of states (see foot-
note 19) will be both dynamically and preparationally faithful; however, being not
pure, it would require a (possibly unlimited) sequence of preparations.

On the mathematical side, instead, according to Theorem 2 Postulate
PFAITH restricts the theory to the weakly self-dual scenario (i.e., with the

36 In fact, upon denoting by T$ the local transformation such that (T , I )! = $, one has (I , TS $ )! = $,
S denoting the transformation swapping the two systems.
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cone-isomorphism S+ ! E+), and in finite dimensions one also has the cone-
isomorphism T+(S) ! S+(S"2). In addition, one also has the following very
useful lemma.

Lemma 5. For finite dimensions Postulate PFAITH implies that the linear space
of transformations is full, i.e., TF = Lin(EF). Moreover, one has SF(S"2) =
SF(S)⊗2 and EF(S"2) = EF(S)⊗2 for F = R, C, that is, bipartite states and
effects are cones spanning the tensor products S⊗2

F and E⊗2
F , respectively.

Proof. In the following we restrict to finite dimensions, with F = R, C denot-
ing either the real or the complex fields, respectively. According to item (2) of
Theorem 2, for two identical systems the existence of a state that is preparationally
faithful with respect to either one of the two systems implies SF(S"2) ! TF(S).
Since transformations act linearly over effects, one has TF ⊆ Lin(EF) ! E⊗2

F ,
whence EF(S"2)!SF(S"2) ! TF(S)⊆ EF(S)⊗2. However, by local-test embed-
ding one also has EF(S"2)⊇ EF(S)⊗2, whence EF(S"2) = EF(S)⊗2, which
implies that TF = Lin(EF). Finally, by virtue of state-effect duality one also has
SF(S"2) = S⊗2

F (S).

The above lemma could have been extended to couples of different systems.
However, this would necessitate the consideration of more general transformations
between different systems (see footnote 13).

We conclude that Postulate PFAITH – i.e., the existence of a symmetric prepara-
tionally faithful pure state for bipartite systems – guarantees that we can repre-
sent bipartite quantities (states, effects, transformations) as elements of the tensor
product of the single-system spaces. This fact also implies the following relevant
principle.

Corollary 2. (Local observability principle). For every composite system there
exist informationally complete observables made of local informationally complete
observables.

Proof. A joint observable made of local observables L = {li } on S1 and M = {m j }
on S2 is of the form L × M = {(li , m j )}. Then, by definition, the statement of the
corollary is ER(S"2) ⊆ SpanR(L × M) = E⊗2

R (S), which is true according to
Lemma 5.

Operationally, the local-observability principle plays a crucial role, since it
reduces enormously experimental complexity, by guaranteeing that only local
(although jointly executed) tests are sufficient to retrieve complete information on
a composite system, including all correlations between the components. This prin-
ciple reconciles holism with reductionism in a non-local theory, in the sense that
we can observe a holistic nature in a reductionistic way, i.e., locally.
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In addition to Lemma 5 and to the local-observability principle, Postulate
PFAITH has a long list of remarkable consequences for the probabilistic theory,
which are given by the following theorem.

Theorem 3. If PFAITH holds, the following assertions are true.

(1) The identity transformation is atomic.
(2) One has ωa◦A ′ = A ωa, or equivalently A ω = "(aω ◦ A ′, ·), where A ′ denotes the

transposed of A with respect to ".
(3) The transposed of a physical automorphism of the set of states is still a physical auto-

morphism of the set of states.
(4) The marginal state χ is invariant under the transposed of a channel (deterministic

transformation) and hence, in particular, under a physical automorphism of the set of
states.

(5) Alice can perform perfect EPR-cheating in a perfect concealing bit-commitment
protocol.

Proof.

(1) According to Theorem 2 item (2), the map A #→ (A ,I )" establishes the cone-
isomorphism T+ % S&2

+ , whence on mapping extremal rays of T+ to extremal rays
of S&2

+ and vice versa it maps the state " itself (which is pure) to the identity, which
then must be atomic.

(2) Immediate definition of the transposition with respect to the dynamically faithful
state ".

(3) Point (2) establishes that the transposed of a state-automorphism is an effect automor-
phism, which, due to the cone-isomorphism, is again a state-automorphism (see also
footnote 35).

(4) For deterministic T one has T ′χ = "(e, · ◦ T ′) = "(e · T , ·) = "(e, ·) = χ . The
last statement follows from (3) (see also footnote 35).

(5) (For the definition of the protocol, see Ref. [38]). For the protocol to be concealing
there must exist two ensembles of states {ρA

i } and {ρB
i } that are indistinguishable by

Bob. For
∑

i ρA
i = ∑

i ρB
i = χ these correspond to the two observables A = {ai }

and B = {bi } with ρA
i = "(ai , ·) and ρB

i = "(bi , ·). Instead of sending to Bob a
state from either one of the two ensembles, Alice can cheat by “entangling” her ancilla
(system S1) with Bob’s system in the state ", and then measuring either one of the
observables A = {ai } and B = {bi }.

Notice that atomicity of identity occurs in QM, whereas it is not true in a classical
probabilistic theory (see footnote 19). In classical mechanics one can gain infor-
mation on the state without making a disturbance thanks to the non-atomicity of
the identity transformation. According to Theorem 3 item (1) the need of distur-
bance for gaining information is a consequence of the purity of the preparationally
faithful state, whence disturbance is the price to be paid for the reduction of the
preparation complexity.
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5.3.3 The Scalar product over effects induced by a symmetric faithful state

In this subsection I briefly review the construction in Ref. [17] of a scalar product
over EC via a symmetric faithful state, together with the corresponding operational
definition of “transposed” and “complex conjugation” – with the composition of
the two giving the adjoint.

According to Theorem 2 item (2), for two identical systems in finite dimensions
any state that is preparationally faithful with respect to a system is also dynami-
cally faithful with respect to the same system. Moreover, according to Postulate
PFAITH, there always exists such a state, say !, which is symmetric under per-
mutation of the two systems. The state ! is then a symmetric real form over ER,
whence it provides a non-degenerate scalar product over ER via its Jordan form

∀a, b ∈ ER, !(b|a)! := |!|(b, a) = !(ς(b), a), (5.20)

where ς is the involution ς = π+−π−, π± denoting the orthogonal projectors over
the positive (negative) eigenspaces of the symmetric form, or, explicitly, ς(a) :=∑

j !(a, f̃ j ) f̃ j and { f̃ j } is the canonical Jordan basis.37 Notice that the Jordan
form is representation-dependent – i.e., it is defined through the reference test L =
{li } – whereas its signature – i.e., the difference between the numbers of positive
and negative eigenvalues – will be a property of the system S, and will generally
depend on the specific probabilistic theory. For transformations T ∈ TR we define
a ◦ ς(T ) := ς(ς(a) ◦ T ) =: a ◦ Z ◦ T ◦ Z . For the identity transformation we
have ς(I ) = Z ◦ Z = I . Corresponding to a symmetric faithful bipartite state
! one has the generalized transformation T!, given by

a ◦ T! :=
∑

k

!(lk, a)lk, (5.21)

for a fixed orthonormal basis L = {l j }, and in terms of the corresponding symmet-
ric scalar product (·, ·)L introduced in Section 5.2.10, one has

(a, b ◦ T!)L = (a ◦ T!, b)L = !(a, b). (5.22)

Using the dynamical and preparational faithfulness of ! we have defined oper-
ationally the transposed T ′ of a transformation T ∈ TR. Such an “opera-
tional” transposed is related to the transposed C̃ under the scalar product (·, ·)L
as C ′ = T! ◦ C̃ ◦ T −1

! . It is easy to check that Z̃ = Z = Z ′.
On the complex linear span TC one can introduce a scalar product as the

sesquilinear extension of the real symmetric scalar product (·, ·)! over ER via

37 In the diagonalizing orthonormal basis one has s j δi j = !( f̃i , f̃ j ) = |λ j |−1!( fi , f j ), s j = ±1, f̃ j =
f j /

√|λ j |.
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the complex conjugation η(T ) = TR − iTI, TR,I ∈ TR, and the adjoint for the
sesquilinear scalar product is then given by

T † = Z ◦ η(T ′) ◦ Z = |T"| ◦ η(T̃ ) ◦ |T"|−1, (5.23)

namely T † = Z ◦ T ′ ◦ Z on real transformations T ∈ TR. The Jordan invo-
lution ς thus plays the role of a complex conjugation on TR, which must be anti-
linearly extended to TC.

The faithful state " becomes a cyclic and separating vector of a GNS represen-
tation on noticing that (A (2)")(ηςb, a) = "(b, a ◦ A )",38 and in (5.23) one can
recognize the Tomita–Takesaki modular operator of the representation [39].

5.4 Axiomatic interlude: exploring Postulates FAITHE and PURIFY

In this section we investigate two additional postulates of a probabilistic theory:
Postulate FAITHE – the existence of a faithful effect (somehow dual to Postulate
PFAITH) – and Postulate PURIFY – the existence of a purification for every state.
As we will see, these new postulates bring the probabilistic theory closer and closer
to QM. However, I was still unable to prove (or to find counterexamples) that with
these two additional postulates the probabilistic theory is QM.

5.4.1 FAITHE: a postulate on a faithful effect

As previously mentioned, Postulate FAITHE is somehow the dual version of Pos-
tulate PFAITH.39

Postulate FAITHE (Existence of a faithful effect). There exists a bipartite effect
F ∈ E(S%2) achieving the inverse of the isomorphism a &→ ωa := "(a, ·). More
precisely,

38 The action of the algebra of generalized transformations on the first system corresponds to the transposed
representation (A (1)")(ηςb, a) = "(ηςb ◦ A , a) = "(ηςb, a ◦ A ′) = (A ′(2)")(ηςb, a).

39 At first sight it seems that the existence of an effect F such that F23"12"34 = α"14 could be derived
directly from PFAITH. Indeed, according to Lemma 5 for finite dimensions and identical systems we have
SF(S%2) = SF(S)⊗2 and EF(S%2) = EF(S)⊗2 for F = R, C. Moreover, according to Theorem 2
item (4) the map a &→ ωa = "(a, ·), for " symmetric preparationally faithful achieves the cone-isomorphism
S+ ) E+, whence for the bipartite system one has S+(S%2) ) E+(S%2). This leads one to think that it
should be possible to achieve a preparationally faithful state for S%4 as the product "12"34. However, this
is not necessarily true. In fact, since the map EF(S)⊗2 * E &→ &E = E23"12"34 is a linear bijection
between EF(S)⊗2 and SF(S)⊗2 (since SpanF{"12(·, a)"34(b, ·)|a, b ∈ E} = SF(S)⊗2 = SF(S%2))
is cone-preserving, it sends separable effects to separable states, whence it sends non-separable effects to
non-separable states (since it is one-to-one). However, it doesn’t necessarily achieve the cone-isomorphism
S+(S%2) ) E+(S%2), since it is not necessarily true that any bipartite state & is the mapped of a bipartite
effect E& (we remember that a cone-isomorphism is a bijection that preserves the cone in both directions).
If by chance this were the case – i.e., E &→ &E is a cone-isomorphism for S%2 – then this would mean that
there exists an effect F ∈ E(S%2) such that &F = α", with 0 < α ! 1.
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F23(ωa)2 = F23"12(a, ·) = αa3, 0 < α ! 1. (5.24)

Notice that, since " establishes an isomorphism between the cones of states and
effects, there must exist a generalized effect F ∈ E⊗2

R satisfying (5.24), but we are
not guaranteed that it is a physical one, i.e., F ∈ E+(S#2).

Let’s denote by F̂ = α−1 F the rescaled effect in the cone. Equation (5.24) can
be rewritten in different notation as follows:

F̂(ωa, ·) = F̂("(a, ·), ·) = a, (5.25)

"(aω, ·) = "(F̂(ω, ·), ·) = ω. (5.26)

(One needs to be careful with the notation in the multipartite case, e.g., in (5.26)
"(F̂(ω, ·), ·) = ω is actually a state, since F̂(ω, ·) is an effect, etc.) Both faithful
state " and faithful effect F can be used to express the state–effect pairing, namely

ζ(b) = "(aζ , b) = F̂(ωb, ζ ), aζ := F̂(ζ, ·), ωb := "(b, ·), (5.27)

or, substituting,

ζ(b) = "(F̂(ζ, ·), b) = F̂("(b, ·), ζ ). (5.28)

Equation (5.24) can also be rewritten as follows:

F23"12 = α Swap13, (5.29)

where Swapi j denotes the transformation swapping Si with S j . In Figure 5.4 Pos-
tulate FAITHE is illustrated graphically.

Equation (5.29) means that by using the state " and the effect F one can achieve
probabilistic teleportation of states from S2 to S4. In fact, one has

F23ω2"34 = F23"12(aω, ·)"34 = α"14(aω, ·) = αω4. (5.30)

Using the last identity we can also see that Postulate FAITHE is also equivalent to
the identity

F23"12"34 = α"14, (5.31)

which by linearity is extended from local effects to all effects, by virtue of E#2 =
E⊗2. With equivalent notation we can write (", ")(·, F, ·) = α".

Fig. 5.4 An illustration of Postulate FAITHE.
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The effect F is also completely faithful, in the sense that the correspondence
FA := F ◦ (A ′, I ) ⇐⇒ A is bijective (in finite dimensions). In fact one has

[F ◦ (A ′, I )]23(!, !) = α(A , I )!, (5.32)

and, since ! is dynamically faithful (it is symmetric preparationally faithful), the
correspondence FA := F ◦ (A ′, I ) ⇐⇒ A is one-to-one and surjective, whence
it is a bijection (in finite dimensions). It is also easy to see that F ◦ (A ′, I ) =
F ◦ (I , A ), since

[F ◦ (I , A )]23(!, !) = F23(!, (A , I )!) = F23(!, (I , A ′)!)

= α(I , A ′)! = α(A , I )! = [F ◦ (A ′, I )]23(!, !),

(5.33)

whence transposition can be equivalently defined with respect to the faithful effect
F . The bijection FA := F ◦(I , A ) ⇐⇒ A is cone-preserving in both directions,
since to every transformation there corresponds an effect, and to each effect A ∈
E(S&2) there corresponds a transformation, since

A23(!, !) = #A = (T#A , I )! =: (TA, I )!. (5.34)

Therefore, the map A '→ FA realizes the cone-isomorphism E+(S&2) ) T+(S),
which is just the composition of the weak self-duality and of the isomorphism
S+(S&2) ) T+(S) due to PFAITH. However, as mentioned in footnote 39, the
map

E+(S&2) * A '→ #A := A23(!, !) ∈ S(S&2) (5.35)

is bijective between SF(S&2) and EF(S&2), but it does not realize the cone-isomor-
phism S+(S&2) ) E+(S&2), since it is not surjective over E+(S&2). Indeed, for
A ∈ E(S&2) physical effect, one has A23(!, !) = (TA, I )! with TA ∈ T(S)

physical transformation. However, there is no guarantee that, vice versa, a physical
transformation always has a corresponding physical effect, e.g., for the identity
transformation in (5.31). It also follows that any bipartite observable A = {Al}
leads to the totally depolarizing channel T(e,e)ω = χ , ∀ω ∈ S.40 Using the
faithfulness of F it is possible to achieve probabilistically any transformation on
a state ω by performing a joint test on the system interacting with an ancilla, i.e.,
(ω!)(FA ′, ·) = αA ω (for Stinespring-like dilations in an operational context see
Ref. [31]).

40 Indeed, one has
∑

l (Al )23ω2!34 = (e, e)23ω2!34 = !12(aω, e)!34(e, ·) = ω(e)χ .



114 G. M. D’Ariano

More about the constant α. Notice that the number 0 < α ! 1 is the probability
of achieving teleportation α = (F23ω2#34)(e). It is independent of the state ω,
and depends only on F , since it is given by α ≡ αF = [F23#12#34](e, e). The
maximum value maximized over all bipartite effects

α(S) = max
A∈E(S#2)

{(#, #)(e, A, e)} (5.36)

is a property of the system S only, and depends on the particular probabilistic
theory.

More on the relation between Postulates PFAITH and FAITHE. Postulate
PFAITH guarantees the existence of a symmetric preparationally faithful state for
each pair of identical systems S#2. Now, consider the bipartite system S#2 # S#2,
and denote by ! a symmetric preparationally faithful state for it. The map A $→
$A := !(A, ·, ·) ∀A ∈ E(S#2) establishes the state–effect cone-isomorphism for
S#2, whence there must exist an effect A# such that

!(A#, ·, ·) = β#, 0 < β ! 1. (5.37)

Suppose now that the faithful state can be chosen in such a way that it maps sepa-
rable states to separable effects as follows:

!(·, ·, (a, b)) = γ (ωa, ωb) = γ#(·, a)#(·, b), γ > 0. (5.38)

Then one has

γ (A#)13(#, #) = !(A#, ·, ·) = β#, (5.39)

namely, according to (5.31) one has β−1γ A# ≡ F̂ , which is the effect whose
existence is postulated by FAITHE. Notice, however, that the factorization (5.38)
doesn’t need to be satisfied. In other words, the automorphism relating the cone-
isomorphism induced by ! to another cone-isomorphism that preserves local
effects may be unphysical (see also footnote 39). One can instead require a stronger
version of postulate PFAITH, postulating the existence of a preparationally super-
faithful symmetric state #, also achieving a four-partite preparationally symmetric
faithful state ! as (#, #) = !. A weaker version of such a postulate is thoroughly
analyzed in Ref. [31], where it is also shown that it leads to Stinespring-like dila-
tions of deterministic transformations.

The case of QM. It is a useful exercise to see how the present framework trans-
lates into the quantum case, and find which additional constraints can arise from
a specific probabilistic theory. For simplicity we consider a maximally entangled
state (with all positive amplitudes in a fixed basis) as a preparationally symmetric
state #. The corresponding marginal state is given by the density matrix d−1 I , I



Probabilistic theories 115

denoting the identity on the Hilbert space. For the constant α one has α = d−2,
where d is the dimension of the Hilbert space. A simple calculation shows that the
identity ωa = T ′

a χ for Ta ∈ a translates to41

ωa = √
ας(a), ⇐ in QM, (5.40)

where the involution ς of the Jordan form in (5.20) here is also an automorphism of
states/effects, whence identity (5.40) expresses the self-duality of QM. On rewrit-
ing (5.40) in terms of the faithful effect F (which would be an element of a Bell
measurement), one obtains42

(·, F)(%, ·) = √
α|%|, ⇐ in QM. (5.41)

Another feature of QM is that the preparationally faithful symmetric state % is
super-faithful, namely ! = (%, %) is preparationally faithful for S&4.

5.4.2 PURIFY: a postulate on purifiability of all states

In the present section for completeness I briefly explore the consequences of
assuming purifiability for all states, namely the following postulate.

Postulate PURIFY (Purifiability of states). For every state ω of S there exists a
pure bipartite state & of S&2 having it as marginal state, namely

∀ω ∈ S(S), ∃& ∈ S(S&2) pure, such that &(e, ·) = ω. (5.42)

Postulate PURIFY has been analyzed in Ref. [31], where the following lemma
is proved.

Lemma 6. If Postulate PFAITH holds, then Postulate PURIFY implies the follow-
ing assertions.

(1) Even without assuming purity of the preparationally faithful state %, the identity trans-
formation is atomic, and purity of % can be derived.

(2) S+ ≡ Erays(T+)χ , i.e., each state can be obtained by applying an atomic transfor-
mation to the marginal state χ := %(e, ·).

(3) E+ ≡ e ◦ Erays(T+), i.e., each effect can be achieved with an atomic transformation.

Points (2) and (3) correspond to the square root of states and effects in the quan-
tum case.

41 For % = d−1 ∑
nm |n〉|n〉〈m|〈m| the marginal state is χ = d−1 I and the Jordan involution is the com-

plex conjugation with respect to the orthonormal basis {|n〉}. For quantum operation T = ∑
n Tn · T †

n with

corresponding effect a = ∑
n T †

n Tn , one has T ′χ = d−1 ∑
n Tn

t T ∗
n = d−1 ∑

n(T †
n Tn)∗ = √

ας(a).
42 In fact, one has ωa := %(a, ·) = √

ας(a), namely %(ς(a), ·) = √
αa, i.e., |%|(a, ·) = √

αa, and, using
(5.25), one has

√
α F̂(%(a, ·), ·) = |%|(a, ·), namely the statement.
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5.5 What is special about quantum mechanics as a probabilistic theory?

The mathematical representation of the operational probabilistic framework
derived up to now is completely general for any fair operational framework that
allows local tests, test-calibration, and state preparation. These include not only
QM and classical–quantum hybrid, but also other non-signaling non-local proba-
bilistic theories such as the PR-boxes theories [20]. Postulate PFAITH has proved
to be remarkably powerful, implying (1) the local observability principle, (2) the
tensor-product structure for the linear spaces of states and effects, (3) weak self-
duality, (4) realization of all states as transformations of the marginal faithful
state !(e, ·), (5) locally indistinguishable ensembles of states corresponding to
local observables – i.e., EPR-cheating in bit commitment – and more. By adding
FAITHE one even has teleportation! However, despite all these positive landmarks,
it is still unclear whether one can derive QM from these principles only.

What is then special about QM? The peculiarity of QM among probabilistic
operational theories is the following.

Effects can not only be linearly combined, but also can be composed of each other, so
that complex effects make a C∗-algebra.

Operationally the last assertion is odd, since the notion of effect abhors com-
position! Therefore, the composition of effects (i.e., the fact that they make a
C∗-algebra, i.e., an operator algebra over complex Hilbert spaces) must be derived
from additional postulates. What I will show here is the following.

With a single mathematical postulate, and assuming atomicity of evolution, one can
derive the composition of effects in terms of composition of atomic events.

One thus is left with the problem of translating the remaining mathematical postu-
late into an operational one. Let’s now examine the two postulates.

Postulate AE (Atomicity of evolution). The composition of atomic transforma-
tions is atomic.

This postulate is so natural that it looks obvious.43 However, even though for
atomic events A and B the event C = B◦A is not refinable in the corresponding
cascade-test, there is no guarantee that C is not refinable in any other test. We
remember that mathematically atomic events belong to Erays(T+), the extremal
rays of the cone of transformations.

We now state the mathematical postulate.

43 Indeed, when joining events A and B into the event A ∧B, the latter is atomic if both A and B are atomic.
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Fig. 5.5 The Choi–Jamiolkowski isomorphism between the cone T+ of physical
transformations and the cone Lin+(EC) of positive matrices over complex effects
establishes a one-to-one correspondence between extremal-ray points of the two
cones, identifying effects (modulo a phase) with atomic transformations (the lines
over the cones represent a pair of corresponding rays).

Mathematical Postulate CJ (Choi–Jamiolkowski isomorphism (Figure 5.5)).
The cone of transformations is isomorphic44 to the cone of positive bilinear forms
over complex effects [27, 28], i.e., T+ ! Lin+(EC).

In terms of a sesquilinear scalar product over complex effects, positive bilinear
forms can be regarded as positive matrices over complex effects, i.e., elements of
the cone Lin+(EC).

The extremal rays Erays(Lin+(EC)) are rank-one positive operators |x〉〈x | ∈
Erays(Lin+(EC)) with x ∈ EC, and the map π : x %→ π(x) := |x〉〈x | is surjective
over Erays(Lin+(EC)). One has π(xeiφ) = π(x), and π−1(|x〉〈x |) = {eiφx} ⊆ EC,
i.e., the set of complex effects mapped to the same rank-one positive operator is
the set of complex effects that differ only by a multiplicative phase factor. We will
denote by |x | ∈ EC a fixed choice of representative for such an equivalence class,45

introduce the phase corresponding to such a choice as x =: |x |eiφ(x), and denote
by EC/φ the set of equivalence classes, or, equivalently, of their representatives.
Now, since the representatives |x | ∈ EC/φ are in one-to-one correspondence with
the points on Erays(Lin+(EC)), the CJ isomorphism establishes a bijective map
between EC/φ and Erays(T+) as follows:

τ : EC/φ ) |x | ↔ τ (|x |) ∈ Erays(T+). (5.43)

5.5.1 Building up an associative algebra structure for complex effects

Assuming Postulate AE, we can introduce an associative composition between the
effects in EC/φ via the bijection τ ,

|a||b| := τ−1(τ (|a|) ◦ τ (|b|)). (5.44)

44 For the definition of cone-isomorphisms, see footnote 34.
45 An example of choice of representative is given by ||x |〉 := 〈eι(x)|π(x)|eι(x)〉−1/2π(x)|eι(x)〉, namely |x | :=

|(x, eι(x))|−1(x, eι(x))x , with ι(x) = min{i : (x, ei ) ,= 0}, for given fixed basis for EC.
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Notice that, by definition, |a||b| is a representative of an equivalence class in EC,
whence |(|a||b|)| = |a||b|. The above composition is extended to all elements of
EC by taking

ab := |a||b|eiφ(a)eiφ(b), (5.45)

and, since |(|a||b|)| = |a||b|, one has |ab| = |a||b|, and φ(ab) = φ(a) + φ(b). It
follows that the extension is itself associative, since

(ab)c = |ab||c|eiφ(ab)+iφ(c) = |a||b||c|eiφ(a)+iφ(b)+iφ(c)

= |a||bc|eiφ(a)+iφ(bc) = a(bc). (5.46)

The composition is also distributive with respect to the sum, since it follows the
same rules as those of complex numbers. We will denote by ι the identity in EC/φ

when it exists, which also works as an identity for multiplication of effects as in
(5.45). Notice that, since the identity transformation I is atomic, one has ι :=
τ−1(I ) ∈ EC/φ according to (5.44).

5.5.2 Building up a C∗-algebra structure over complex effects

We want now to introduce a notion of adjoint for effects. We will do this in two
steps: (a) we introduce an antilinear involution on the linear space EC; (b) we
extend the associative product (5.45) under such antilinear involution.

(a) First we notice that the complex space EC has been constructed as EC = ER ⊕ iER
starting from real combinations of physical effects ER = SpanR(E+), i.e., one has the
unique Cartesian decomposition x = xR + ixI of x ∈ EC in terms of xR, xI ∈ ER. We
can then define the antilinear dagger involution † on EC by taking x† = x ∀x ∈ ER
and x† := xR − ixI ∀x ∈ EC. Notice that EC is closed under such involution. On taking
the involution of the defining identity x =: |x |eiφ(x) one has |x†| = |x |†e−iφ(x†)−iφ(x),
which is consistently satisfied by choosing |x†| = |x |† and φ(x†) = −φ(x) ∀x ∈ EC
(these identities are satisfied, e.g., for the choice of representative in footnote 45).

(b) The multiplications a†b and ab† are defined via the scalar product over EC as fol-
lows:46

∀c ∈ EC: (c, a†b) := (ac, b), (c, ab†) := (cb, a). (5.47)

This is possible since the scalar product over EC is supposed to be non-degenerate. It
is then easy to verify that one has the identities (ab)† = b†a† and ι† = ι.

In this way EC is closed under complex linear combinations, the adjoint, and asso-
ciative composition, and possibly contains the identity element ι; that is, it is an

46 The right and left multiplications are just special elements of the algebra Lin(EC), whence their adjoints are
definable via the scalar product as usual.
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associative complex algebra with adjoint, closed with respect to the adjoint. The
scalar product on EC in conjunction with the identity leads to a strictly positive lin-
ear form over EC, defined as ! = (ι, ·), and one has !(a†b) = (ι, a†b) = (a, b).47

Such a form is also a trace, i.e., it satisfies the identity !(ba) = !(ab), which can
be easily verified using definitions (5.47).48 The complex linear space of the alge-
bra closed with respect to the norm induced by the scalar product makes it a Hilbert
space, and the action of the algebra over itself regarded as a Hilbert space makes it
an operator algebra.49 It is a standard result of the theory of operator algebras that
the closure of EC under the operator norm (which is guaranteed in finite dimen-
sions) is a C∗-algebra. We have therefore built a C∗-algebra structure over the
complex linear space of effects EC. This is the cyclic representation [39] given by

!(a) = 〈ι|π!(a)|ι〉, (5.48)

π! denoting the algebra representation corresponding to !.50 In our case one has
π!(a)|ι〉 = |a〉, along with the trace property 〈ι|π!(a)π!(b)|ι〉 = 〈ι|π!(b)π!(a)|ι〉.
The latter can be actually realized as a trace as !(a†b)= Tr [O(a)† O(b)], via a
faithful representation O: a $→ O(a) ∈ Lin(H) of the algebra EC as a sub-algebra
of Lin(H) of operators over a Hilbert space H with dimension dim(H)2 ! dim(EC).
In this way, one has π!(a) = (O(a) ⊗ I ) with the cyclic vector represented as
|ι〉 = ∑

n |n〉 ⊗ |n〉, {|n〉} being any orthonormal basis for H.

5.5.3 Recovering the action of transformations over effects

In order to complete the mathematical representation of the probabilistic theory, we
now need to define the action of the elements of TC over EC, and to select the cone
of physical transformations T+. We will show that T+ is given by the completely
positive linear maps on EC, namely the linear maps of the Kraus form, i.e., the
atomic transformations act on x ∈ EC as x ◦ τ (|a|) = |a|†x |a| ≡ a†xa.

First, notice that the full span Lin(EC) is recovered from Erays(Lin+(EC)) via
the polarization identity

|a〉〈b| = 1
4

3∑

k=0

ik |(a + ikb)〉〈(a + ikb)|. (5.49)

47 The form is strictly positive since !(a†a) = (a, a) ! 0, with the equals sign only if a = 0, since the scalar
product is non-degenerate.

48 One has !(ab) = (ι, ab) = (ι, a(b†)†) = (b†, a) and !(ba) = (ι, ba) = (ι, (b†)†a) = (b†, a).
49 This construction is a special case of the Gelfand–Naimark–Segal (GNS) construction [40], in which the form

! is a trace. In the standard GNS construction the form ! may be degenerate, i.e., one can have !(a†a) = 0
for some a *= 0, and the vectors of the representation are built up as equivalence classes modulo vectors
having !(a†a) = 0.

50 This means that π!(a)π!(b) = π!(ab) and π!(a†) = π!(a)†.
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Fig. 5.6 An operational axiomatic framework for quantum mechanics: a summary
of the relevant logical implications.

Correspondingly, we introduce the generalized transformations

τ (b, a) := 1
4

3∑

k=0

ikτ (|a + ikb|) ∈ TC. (5.50)

The map

|a〉〈b| $→ χ(|a〉〈b|) := b† · a (5.51)

is a CJ isomorphism: it represents a bijective map between the cones Lin+(EC) and
T+, which can be extended to a cone-preserving linear bijection between Lin(EC)

and TC ≡ Lin(EC).51 As a consequence of (5.44), the CJ isomorphism τ : |a| $→
τ (|a|) will differ from the isomorphism χ by an automorphism U of the C∗-algebra
of effects; that is, one has x ◦ τ (|a|) = U(a†)xU(a), with U(a) = u†au with
uu† = u†u = ι. It follows that the probabilistic equivalence classes are given by
[τ (|a|)]eff = e ◦ τ (|a|) = u†a†au. Notice that [τ (ι)]eff = u†ι†ιu = ι; that is, ι

coincides with the deterministic effect ι = e. Complex effects are thus recovered
from atomic transformations via the identity e◦τ (e, a) = u†au. Figure 5.6 is a flow
diagram summarizing the relevant logical implications of the present operational
axiomatic framework for QM.

51 This can be directly checked using the operator algebra representation built over EC, whereas the isomor-
phism corresponds to the map O(b†xa)=χ(|a〉〈b|)(x) = Tr 1[(O(x) ⊗ I )|a〉〈b|], and, reversely, |a〉〈b| =
χ−1(τ (b, a)) = (τ (b, a) ⊗ I )(|ι〉〈ι|).
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5.5.4 Reconstructing quantum mechanics from the probabilistic theory

It is now possible to reconstruct from the probability tables of the systems the full
C∗-algebra of complex effects EC as an operator algebra EC ⊆ ⊕i Lin(Hi). Here is
the recipe.

(1) Look for all sub-cones (E+)i invariant under T+.
Then, for each i :

(2) introduce a complex Hilbert space Hi such that (EC)i ⊆ Lin(Hi), i.e., with
dim(Hi ) =

⌈√
dim[(EC)i ]

⌉
, %x& the smallest integer greater than x ;

(3) represent e as the identity over ⊕i Hi ;
(4) build (TC)i ⊆ Lin(Lin(Hi));
(5) look for atomic transformations Erays(T+)i ;
(6) for a given atomic transformation A ∈ Erays(T+)i take an operator A ∈ Lin(Hi) to

represent A as A† · A ∈ Lin(Lin(Hi));
(7) represent [A ]eff as A† A;
(8) repeat steps 6 and 7 for another transformation B;
(9) compose C = B ◦ A and represent C as C† · C , with C = AB;

(10) repeat steps 8 and 9 to build the whole algebra of effects and the corresponding rep-
resentation of the algebra of transformations; and

(11) construct states as density operators using the Gleason-like theorem [41] for effects
[42, 43].

5.6 Conclusions

Theoretical physics should be, in essence, a mathematical “representation” of real-
ity. By “representation” we mean describing one thing by means of another, to
connect the object that we want to understand – the thing-in-itself – with an object
that we already know well – the standard. In theoretical physics we lay down mor-
phisms from structures of reality to corresponding mathematical structures: groups,
algebras, vector spaces, etc., each mathematical structure capturing a different side
of reality.

Quantum mechanics somehow goes differently. We have a beautiful simple
mathematical structure – Hilbert spaces and operator algebras – with unprece-
dented predictive power in the entire physical domain. However, we don’t have
morphisms from the operational structure of reality into a mathematical struc-
ture. In this sense we can say that QM is not yet truly a “representation” of
reality. A large part of the formal structure of QM is a set of formal tools for
describing the process of gathering information in any experiment, independently
of the particular physics involved. It is mainly a kind of information theory, a
theory about our knowledge of physical entities rather than about the entities
themselves. If we were to strip off this informational part from the theory, what
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Table 5.1 A summary of notation

Symbol(s) Meaning Related quantities

S1 ! S2 Bipartite system obtained by
composing S1 with S2

S = {A, B, C, . . .} System
A, B, C, . . . Tests A = {A j }, Test := set of

possible events
A ,B,C , . . . Events ≡ transformations
ω States, S convex set of

states
ω(A ): probability that

event A occurs in state ω
T Convex monoid of

transformations/events
TR,TC: linear spans of T,

T+: convex cone
[A ]eff Effect containing event A
a, b, c, . . . Effects e: deterministic effect
E Convex set of effects ER, EC: linear spans of E,

E+: convex cone
L = {l j } observable

∑
li ∈L li = e

TC C∗-algebra of
transformations/events

a ◦ T Operation of
transformation T over
effect a

ωA Conditioned states ωA := ω(· ◦ A )/ω(A ),
A ω = ω(· ◦ A )

Lin+(EC) Cone of linear maps
corresponding to positive
bilinear forms over EC

Lin+(EC) =
{T ∈ TC : (a, a ◦ T ) ! 0,
∀a ∈ EC}

would be left should be the true general principle from which QM should be
derived.

In the present work I have analyzed the possibility of deriving QM as the math-
ematical representation of a fair operational framework made of a set of rules
that allows one to make predictions about future events on the basis of suitable
tests. The two postulates NSF and PFAITH need to be satisfied by an operational
framework that is fair, the former in order for one to be able to make predictions
that are based on present tests, the latter to allow calibrability of any test and
preparability of any state. We have seen that all theories satisfying NSF admit a
C∗-algebra representation of events as linear transformations of complex effects.
On the basis of a very general notion of dynamical independence, all such theories
are non-signaling. The C∗-algebra representation of events is just the informational
part of the theory. We have then added Postulate PFAITH. Postulate PFAITH has
been proved to be remarkably powerful, implying the local observability princi-
ple, the tensor-product structure for the linear spaces of states and effects, weak
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self-duality, and a list of features such as realization of all states as transformations
of the marginal faithful state !(e, ·), locally indistinguishable ensembles of states
corresponding to local observables – i.e., EPR-cheating in bit commitment, and
more. We have then explored a postulate dual to PFAITH, Postulate FAITHE for
effects, thus deriving additional quantum features, such as teleportation. We feel
that we are really close to QM: maybe we are already there and we only need to
prove it! All the consequences of these postulates need to be explored further. I
have also reported some consequences of a postulate about the purifiability of all
states. In any case, we have seen that, whatever the missing postulate is, it must
establish a one-to-one correspondence between complex effects and atomic trans-
formations, which, assuming atomicity of evolution (Postulate AE) will make also
effects a C∗-algebra. This is what is special about QM (and all hybrid quantum–
classical theories), and will exclude other non-signaling probabilistic theories of
the kind of the PR boxes.52 We have seen that the correspondence between effects
and atomic transformations is established by the Choi–Jamiolkowski isomorphism,
which is hoped to be not too far from an operational principle.

The notation used is summarized in Table 5.1
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