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We analyze the convex structure of the set of positive operator valued measures
�POVMs� representing quantum measurements on a given finite dimensional quan-
tum system, with outcomes in a given locally compact Hausdorff space. The ex-
treme points of the convex set are operator valued measures concentrated on a finite
set of k�d2 points of the outcome space, d�� being the dimension of the Hilbert
space. We prove that for second-countable outcome spaces any POVM admits a
Choquet representation as the barycenter of the set of extreme points with respect
to a suitable probability measure. In the general case, Krein–Milman theorem is
invoked to represent POVMs as barycenters of a certain set of POVMs concen-
trated on k�d2 points of the outcome space. © 2010 American Institute of
Physics. �doi:10.1063/1.3298681�

I. INTRODUCTION

In the modern formalism of quantum mechanics the statistical description of a measurement is
provided by the concept of positive operator valued measure (POVM),13,17,16,6 whose introduction
in the literature on quantum probability dates back to the seminal papers by Ludwig,26 Davies and
Lewis,14 and Holevo.18 A POVM associates with any possible event in a quantum experiment a
positive semidefinite operator on the Hilbert space of the measured system, in such a way that the
probability of the event is given by the expectation value of the corresponding operator on the
quantum state describing the system preparation. The concept of POVM generalizes, as far as it
concerns the statistical aspects, the traditional concept of “observable” by von Neumann,38 which
turned out to be a too restrictive idealization to efficiently describe actual experimental settings
�such as the heterodyne measurement in quantum optics24�, and even to give a realistic modeling
of photon counting in the presence of losses.29

In the case of finite dimensional quantum systems, the number of different outcomes of a von
Neumann observable must be finite, as the number of eigenvalues of a self-adjoint operator cannot
exceed the dimension d�� of the Hilbert space. Based on this observation, it is commonly argued
that all quantities measured on finite dimensional systems must be intrinsically discrete or “quan-
tized”. For example, when measured, a spin j particle would be found in only dj =2j+1 possible
spatial configurations, corresponding to the possible values of the angular momentum along a
given quantization axis. The limitation that the number of possible values cannot exceed the
Hilbert space dimension, however, only affects von Neumann measurements, which are a very
particular subset of all possible measurements in the statistical model of quantum mechanics.19 If
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one considers a generic POVM, then there is no bound on the number of outcomes in an experi-
ment, a number which can be even uncountably infinite, despite the Hilbert space dimension is
finite. This is indeed the case for the optimal measurement of the spatial orientation of a spin j that
has been devised in Ref. 20: in this measurement any direction in the unit sphere is a possible
outcome of the experiment.

From an operational point of view, a statement about the discreteness of physical quantities of
finite dimensional quantum systems cannot rely on the concept of von Neumann observables. The
question is then: Is it possible to give a rigorous account to the intuitive idea that the information
carried by finite dimensional systems is intrinsically discrete? This intuitive idea is indeed sup-
ported by several features, such as the existence of fundamental dimension-dependent limits to the
precision of phase measurements on atomic clocks,7 to the extraction of directional information
from quantum gyroscopes,10 and to the maximum accessible information in a coding-decoding
scheme.21 Since all mentioned limits arise in optimization problems where the goal is to find
quantum measurements that maximize some convex figure of merit, it is natural to analyze the
convex structure of the set of measurements �POVMs� with given outcome space, expecting that
the discrete nature of information in finite dimensional systems will be unveiled by the character-
ization of extreme points.

This paper fully characterizes the convex structure of the set of POVMs with outcomes in a
given locally compact Hausdorff space Y, by �i� identifying the extreme points and �ii� proving a
representation of arbitrary POVMs as barycenters of sets of POVMs with finite outcomes. We will
first show that any extreme POVM is concentrated on a finite number k of points, with k not
greater than d2, the square of the Hilbert space dimension. If ��Y is a possible event and M���
is the corresponding POVM operator, this means that an extreme POVM M must be of the form

M��� = �
i=1

k

���yi�Pi, �1�

where �� is the indicator function of the set �, �yi�Y � i=1,2 , . . . ,k� is a finite set of distinct
points, and �Pi � i=1,2 , . . . ,k� is a finite set of operators forming an extreme POVM with finite-
outcome space X= �1,2 , . . . ,k�, i.e., Pi�0, �iPi=1d. Operationally, this means that any extreme
POVM P can be realized by first performing a quantum measurement with finite set of outcomes
X= �1,2 , . . . ,k�, and then by injecting the result i�X in the outcome space Y via a postprocessing
rule i→yi. This result reduces the characterization of the extreme POVMs with locally compact
outcome space to the simpler characterization of extreme POVMs with finite outcomes, which has
been extensively studied in the works by Störmer,33 Parthasarathy,31 and D’Ariano et al.12 Finally,
we exploit Choquet theorem to show that for second-countable outcome spaces any POVM can be
represented as a barycenter of the set of extreme POVMs. For general outcome spaces, instead, a
barycentric representation in terms of the closure of the set of extreme points is obtained by means
of the Krein–Milman theorem. In both cases, combining the barycentric decomposition with the
characterization of the extreme POVMs shows that for finite dimensional quantum systems any
measurement with a continuum of outcomes is nothing but the randomized choice, according to a
continuous probability distribution, of a certain set of measurements with finite outcomes. In this
sense, the continuum of outcomes is simply equivalent to the presence of classical randomness
controlling the choice of the measuring apparatus. This provides the rigorous and complete proof
of the results announced in Ref. 11.

It is worth stressing that all our results are derived for finite dimensional Hilbert spaces, while
in infinite dimensions the situation is dramatically different. Indeed it is well known that von
Neumann observables always correspond to extreme POVMs, and any observable with continuous
spectrum is an example of extreme POVM with genuinely uncountable outcome space, despite the
Hilbert space has a countable orthonormal basis. Moreover, a remarkable feature in infinite di-
mensions is that von Neumann observables are dense in the set of POVMs with given outcome
space.22

The paper is organized as follows. In Sec. II we provide the basic notation and definitions. In
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particular, we highlight the equivalence between POVMs and regular operator valued expecta-
tions (OVEs), a class of positive maps that will be extensively used in the statement and in the
derivation of the main results. Regular OVEs coincide with what is known as quantization maps
in the literature on geometric quantization,1,25 namely, positive maps from functions on a classical
phase space to operators on the system’s Hilbert space. It is worth stressing that the present paper
can be read as well as a characterization of the extreme quantization maps for finite dimensional
quantum systems, along with a barycentric representation of arbitrary quantization maps. The
characterization of extreme POVMs/regular OVEs is carried out in Sec. III. Section IV presents a
few topological properties that will be useful for deriving barycentric decompositions. Finally,
Sec. V is devoted to the proof of barycentric representations of POVMs and regular OVEs, first in
the case of second-countable outcome spaces, and then in the general case.

II. POSITIVE OPERATOR VALUED MEASURES AND EXPECTATIONS

A. POVMs

In the following Md and Md
� will denote the C�-algebra of d�d complex matrices and the

Banach space of linear functionals on Md, respectively.
Definition 1: Let Y be a measure space with �-algebra ��Y�. A POVM in dimension d�� is

a map M :��Y�→Md that assigns to each measurable set ����Y� an operator M����Md

satisfying the following conditions.
Positivity. M����0 ∀����Y�.
Normalization. M�Y�=1d, with 1d�Md the identity matrix.
�-additivity. M��i�N�i�=�i�NM��i� for any countable family of mutually disjoint sets ��i

���Y� � i�N�, where the series converges weakly.
Throughout this paper the measure space Y will be always a locally compact Hausdorff space,

and ��Y� will always denote the Borel �-algebra.
In quantum mechanics, any POVM yields the probabilities of events occurring in a particular

experimental setup. The elements of the space Y are the possible outcomes of the experiment, and
Y is accordingly referred to as outcome space. The possible events are measurable subsets of Y,
the subset � corresponding to the event “the outcome of the experiment belongs to �.” The states
of a quantum system with finite dimensional Hilbert space H	Cd are the positive normalized
functionals over the C�-algebra of complex matrices Md. We will denote the positive functionals
over Md by Md,+

� . For a quantum system prepared in the state 	�Md,+
� the probability of the event

�, here denoted by m	���, is given by the Born rule,

m	��� = 	�M���� . �2�

All throughout this paper the term POVM will be used as a synonymous of regular Borel POVM,
i.e., a POVM such that for every state 	�Md,+

� the probability distribution m	 defined by Eq. �2�
is a regular Borel measure.

Definition 2: Let Y be a locally compact Hausdorff space with Borel �-algebra ��Y�. A Borel
POVM M is called regular if for every 	�Md,+

� and for every Borel set ����Y� one has

m	��� = sup�m	�K��K � �, K compact� , �3�

where m	 is the probability distribution defined by Eq. (2).
The set of regular Borel POVMs is a convex set, denoted by M�Y ,d�, and will be the focus

of our investigation.
Note that any bounded measurable function f can by averaged with respect to the probability

measure m	 defined by Eq. �2�, thus yielding the expectation value
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Em	
�f� = 


Y

m	�dy�f�y� = 

Y

	�M�dy��f�y� . �4�

The expectation Em	
�f� in Eq. �4� can be extended by linearity to a unique functional on Md

�, i.e.,
to a unique operator E�f��Md satisfying the relation

	�E�f�� = Em	
�f� ∀ 	 � Md

�. �5�

The map E : f �E�f� can be viewed as an OVE: indeed, comparing Eqs. �4� and �5� we obtain

E�f� =
 M�dy�f�y� , �6�

the integral converging in the weak operator topology.4

B. OVEs

Dealing with locally compact Hausdorff spaces, it is convenient to focus our attention to the
C�-algebra C0�Y� of continuous functions vanishing at infinity, equipped with the sup-norm �f�
=supy�Y�f�y��. In the following, we will consider C0�Y� as a subalgebra of the unital C�-algebra of
functions that are constant at infinity,

C0�Y� = C0�Y� � C = �af + b1Y�f � C0�Y�, a,b � C� , �7�

where 1Y is the constant function 1Y�y�=1∀y�Y. Moreover, we will extensively use that fact that

the C�-algebra C0�Y�, obtained by adding the unit to C0�Y�, is naturally isomorphic to C�Ȳ�, the

C�-algebra of continuous functions on the one-point compactification Ȳ =Y � ���.39

Definition 3: An OVE in dimension d�� is a map E :C0�Y�→Md that assigns to any function
f �C0�Y� an operator E�f��Md satisfying the following conditions.

Positivity. E�f��0 ∀f �0.
Normalization. E�1Y�=1d.
OVEs form a convex subset of the set B�Y ,d� of bounded maps from C0�Y� to Md, where the

norm is defined by

�E� = sup
f�C0�Y�:�f�=1

�E�f�� , �8�

�O� denoting the operator norm of O�Md. The set of all OVEs will be denoted by E�Y ,d�.
Remark 1: Since the domain of the positive map E�E�Y ,d� is the Abelian algebra C0�Y�, E is

automatically completely positive.28 Therefore, for any OVE E�E�Y ,d� we have

�E� = sup
0�f�1Y

�E�f�� = �E�1Y�� = �1d� = 1. �9�

This shows that the set E�Y ,d� is contained in the intersection between the cone of positive maps
and the unit ball in B�Y ,d�. Notice that such an intersection also contains positive maps that are
not OVEs: not any positive map E with �E�=1 satisfies E�1Y�=1d.

Remark 2: Since the unital algebra C0�Y� can be identified with C�Ȳ�, the set of OVEs E�Y ,d�
can be identified with the set of OVEs E�Ȳ ,d�, namely, E�Y ,d�	E�Ȳ ,d�. In the following we will
often exploit this identification.

C. Relation between POVMs and OVEs

Each POVM M �M�Y ,d� induces an OVE E�E�Y ,d� via the relation �6�. The converse,
however, is not straightforward, as in the definition of OVE there are no requirements entailing
�-additivity and regularity of measures. This motivates the following definition.

Definition 4: An OVE E�E�Y ,d� is called regular if for every 	�Md,+
� one has
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sup�	�E�f���f � C0�Y�,0 � f � 1� = 	�1d� . �10�

The subset of regular OVEs will be denoted by R�Y ,d�. Notice that for compact outcome
spaces Y all OVEs are regular, namely, R�Y ,d��E�Y ,d�.

As already mentioned in Sec. I, regular OVEs are also known as quantization maps in the
literature on geometric quantization.1,25 The relation between between regular OVEs �quantization
maps� and POVMs is a well known fact in such a literature �see, e.g., Ref. 25� and is reported here
for completeness of presentation.

Theorem 1: �Characterization of regular OVEs� Let Y be a locally compact Hausdorff space.
An OVE E�E�Y ,d� is regular if and only if there exists a POVM ME�M�Y ,d�, such that

E�f� =
 ME�dy�f�y� . �11�

The above equation sets a one-to-one affine correspondence between R�Y ,d� and M�Y ,d�.
Proof: Let E be an OVE. Then for any state 	�Md

� the composition 	 �E defines a state on
C0�Y�. Moreover, E is regular if and only if the restriction of 	 �E to the ideal C0�Y� satisfies �	
�E �C0�Y��=1, namely, if and only if 	 �E �C0�Y� is a state on C0�Y�. By Riesz–Markov theorem,34,9

states on C0�Y� are uniquely represented by regular probability measures on Y. Therefore, E is
regular if and only if for any state 	 there exists a unique probability measure mE,	, such that
	�E�f��=mE,	�dy�f�y� , ∀ f �C0�Y�. Since the map 	→mE,	��� is convex linear in 	, it extends
uniquely to a linear functional on Md

�, i.e., to an operator ME����Md. The map �→ME���,
uniquely determined by this construction, is clearly a POVM. Hence, E is regular if and only if
there exists a POVM ME, such that E�f�=YME�dy�f�y�. Of course, ME=MF implies E=F. �

Theorem 1 also provides a characterization of the whole set E�Y ,d�.
Corollary 1: Let Y be a locally compact Hausdorff space, and let Ȳ be its one-point compac-

tification. Then the following chain of isomorphisms holds:

E�Y,d� 	 E�Ȳ,d� 	 M�Ȳ,d� . �12�

Proof: Since C0�Y� is isomorphic to C�Ȳ�, one has the natural isomorphism E�Y ,d�	E�Ȳ ,d�.
Moreover, since Ȳ is compact, one has E�Ȳ ,d��R�Ȳ ,d�, and, due to Theorem 1, R�Ȳ ,d�
	M�Ȳ ,d�. �

D. Convexity and topology

The sets E�Y ,d� and R�Y ,d�	M�Y ,d� possess a natural convex structure, namely, the con-
vex combination of two �regular� OVEs is a �regular� OVE. Operationally, the convex combina-
tion of two quantum measurements corresponds to a random choice of the corresponding mea-
surement apparatuses with suitable probabilities. The extreme OVEs are those which cannot be
decomposed into nontrivial convex combinations.

Definition 5: An OVE E�E�Y ,d� is extreme if for any couple of OVEs E+ ,E−�E�Y ,d� the
equality E=1 /2�E++E−� implies E+=E−=E.

Similarly one can define the extreme regular OVEs. The extreme points of E�Y ,d� and
R�Y ,d� will be denoted by �E�Y ,d� and �R�Y ,d�, respectively.

The notion of finite convex combination can be generalized to the notion of barycenter, that
includes the possibility of infinite combinations with arbitrary probability distributions. For this
generalization, however, one has to first specify a topology on the set of OVEs. We will consider
here the weak�-topology induced by the family of seminorms,

w	,f�E� = �	�E�f��� , �13�

with 	�Md
� and f �C0�Y�. This topology has a direct operational interpretation in quantum me-

chanics: what can be tested in experiments are indeed the expectation values 	�E�f��, where 	 is
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the state of the quantum system, E describes the measurement, and f is a function of the outcome.
If the expectation values 	�En�f�� obtained in a sequence of measurements �En� converge to
	�E�f�� for any state 	 and any function f , then the sequence of measurements �En� converges to
E. Accordingly, the weak�-closure U of a set of quantum measurements contains all OVEs that can
be arbitrarily approximated with measurements in U in the sense of expectation values.

Let ��E�Y ,d�� be the Borel �-algebra generated by weak�-open sets. Then we have the
following definition.

Definition 6: Let p be a probability distribution on ��E�Y ,d�� and U���E�Y ,d�� be a Borel
set. An OVE E is the barycenter of U with respect to p, denoted by

E = 

U

p�dF�F �14�

if for any 	�Md
� and for any f �C0�Y� the following relation holds:

	�E�f�� = 

U

p�dF�	�F�f�� . �15�

Notice that the integral in Eq. �15� is well defined since the expectation value 	�F�f�� is by
definition a weakly�-continuous function of F, and therefore can be integrated with respect to any
Borel measure p�dF�.

III. CHARACTERIZATION OF EXTREME POVMS

A. Existence of densities for OVEs in finite dimensions

We first prove that every regular OVE admits a density with respect to a finite measure on Y.
Lemma 1: For any regular OVE E�R�Y ,d� there exist a regular finite measure 
E on Y and

a positive density function DE�L��Y ,
E� � Md, such that for any f �C0�Y�,

E�f� =
 
E�dy�DE�y�f�y� . �16�

The density function DE has unit trace, namely, tr�DE�y��=1 
E-almost everywhere.
Proof: Let tr be the trace on Md. Then 
̂Eª tr�E is a positive functional with norm �
̂E�=d.

Since E is regular, by Riesz–Markov theorem 
̂E can be represented by a regular finite measure 
E

on Y. Moreover, the dominance relation E�
̂E1d holds. Indeed, for any positive function f one
has E�f�� �E�f��1d� tr�E�f��1d= 
̂E�f�1d. The Radon–Nikodym theorem for OVEs �Lemma 11 of
Appendix A� then guarantees the existence of a positive density DE�L��Y ,
E� � Md, namely, an
operator valued function DE�y� satisfying the relation E�f�=
E�dy�DE�y�f�y�. Finally, for any
f �C0�Y� we have


 
E�dy�f�y� = 
̂E�f� �17�

=tr�E�f�� �18�

=
 
E�dy�tr�DE�y��f�y� , �19�

which implies tr�DE�y��=1 
E almost everywhere. �
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B. Extreme OVEs

We show here that every extreme POVM in dimension d is concentrated on a finite set of k
�d2 points. This is done by characterizing the set of extreme regular OVEs.

Lemma 2: Let E�R�Y ,d� be a regular OVE, and let 
E be the finite measure associated with
E as in Lemma 1. If E is extreme, then the associated measure 
E is concentrated on a finite set
of k�d2 points.

Proof: Let 
E and DE be the finite measure and the density function associated to E as in

Lemma 1, respectively. The density DE�L��Y ,
E� � Md induces a linear operator D̂E :Md
�

→L��Y ,
E� according to D̂E�	�= �id � 	�DE, id denoting the identity map on L��Y ,
E�. The

dimension of the image of D̂E is clearly bounded by d2, which is the dimension of its domain. By
absurd, suppose that E is extreme and the support of the measure 
E contains more than d2 points.
Since the space Y is Hausdorff, this implies that the dimension of L��Y ,
E� is strictly larger than
d2. �Indeed, for any finite collection of points �yi�supp�
E� � i=1, . . . ,k��� there is a collection
of open neighborhoods �Ui � i=1, . . . ,k� with Ui�Uj =0” for i� j. If the support contains more than
d2 points, then the dimension of L��Y ,
E� is clearly larger than d2, as the indicator functions of
the sets Ui are linearly independent elements of L��Y ,
E�.� Hence, there is at least one function

h�L��Y ,
E� that is linearly independent of all elements in the image of D̂E. The function h can
be chosen to be real without loss of generality. Moreover, since 
E is a finite measure on Y, the

inclusion L��Y ,
E��L2�Y ,
E� holds, and S= ��h+�D̂E�	� �� ,��C ,	�Md
�� is a

�d2+1�-dimensional closed subspace of L2�Y ,
E��L��Y ,
E�. It is then possible to choose a

nonzero real function g�S with �g����, that is orthogonal to all elements in the image of D̂E,
namely,

�g,D̂E�	�� = 

Y


E�dy�g�y�D̂E�	��y� = 0. �20�

This implies the decomposition E= 1
2 �E++E−�, where

E�f� = E��1  �g�f�, � =
1

2�g��

. �21�

We claim that the above decomposition is a nontrivial convex decomposition of E, in contradiction
with the fact that E is extreme. First, E is a positive map: E�f�=E��1�g�f��0 for any
positive function f �0. The normalization E�1Y�=1d follows from the relation 	�E�1Y��
=	�E�1Y����g , D̂E�	��=	�1d� holding for any 	�Md

� due to Eq. �20�. Hence, E is an OVE.
Finally, the decomposition is nontrivial, namely, E+�E−. Indeed, one has E+�f�−E−�f�
=2�E�fg�, which cannot be zero for any f �C0�Y�, otherwise using Lemma 1 one would have also

0 = tr�E�fg�� = 

Y


E�dy�tr�DE�y��f�y�g�y� �22�

=

Y


E�dy�f�y�g�y� = �g, f� �23�

for any f �C0�Y�, in contradiction with the fact that g�L2�Y ,
E� is nonzero by construction. �

As a consequence of the previous lemma one can reduce the characterization of extreme
OVEs with locally compact Hausdorff space Y to the characterization of extreme OVEs with
finite-outcome space.

Theorem 2: �Characterization of extreme regular OVEs� Let Y be a locally compact Haus-
dorff space, and X be a finite set with cardinality �X�=min�d2 , �Y��. A regular OVE E�R�Y ,d� is
extreme if and only if there exists an extreme OVE P�E�X ,d� and an injective function �
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�C�X ,Y�, such that the following identity holds:

E�f� = P�f � �� ∀ f � C0�Y� . �24�

Proof: Suppose that E is extreme. Then, according to Lemma 2, the measure 
E is concen-
trated on a finite set of points �yi � i=1, . . . ,k� with k�d2, namely, 
E���=�i=1

k ���yi�pi, with pi

�0, �ip1=1. Using Lemma 1 one obtains

E�f� = 

Y


E�dy�DE�y�f�y� �25�

=�
i=1

k

piDE�yi�f�yi� �26�

=�
i=1

�X�

Pif�yi� �27�

=P�f � �� , �28�

where X= �1,2 , . . . ,min�d2 , �Y���, P�h�=�ih�i�Pi for any h�C�X�,

Pi = �piDE�yi� , i = 1, . . . ,k

0, i = k + 1, . . . , �X� ,� �29�

and ��C�X ,Y� is any injective function, such that ��i�=yi , ∀ i=1, . . . ,k. Obviously P must be
extreme in E�X ,d�, otherwise one would obtain a nontrivial convex decomposition of E. Con-
versely, suppose E is as in Eq. �24�. Then the measure 
E associated with E has finite support
supp�
E����X�= �yi � i=1, . . . ,min�d2 , �Y���. Suppose that E=1 /2�E++E−� with E�E�Y ,d�.
Since E are positive maps, we have E�2E�2
̂E1d, where 
̂E is the functional associated with

E. Due to the Radon–Nikodym theorem for OVEs �Lemma 11 of Appendix A�, E admits a
density with respect to 
E, whence

E�f� = 

Y


E�dy�D�y�f�y� = �
i�X

piD�yi�f�yi� = P�f � �� , �30�

upon defining the OVE P�E�X ,d� by P�h�=�i�XpiD�yi�h�i� , ∀h�C�X�. Moreover, since Y
is a locally compact Hausdorff space and � is injective, the mapping f � f �� is surjective on C�X�.
�Since any locally compact Hausdorff space is completely Hausdorff, for any i�X there exists a
function f i�C0�Y� that separates yi from the finite set �yj � j�X , j� i�, namely, f i�yj�=�ij. As a
consequence, hi�j�ª f i ���j�= f i�yj�=�ij. Since the functions hi are a basis for the finite dimen-
sional vector space C�X�, the map f � f �� is surjective.� Therefore, we have P�h�=1 /2�P+�h�
+ P−�h�� for any h�C�X�, i.e., P=1 /2�P++ P−� and, due to extremality of P, P+= P−= P. In
conclusion, we obtained E+=E−=E, i.e., E is extreme. �

For any continuous function � :X→Y, we now define the continuous map �̂ :E�X ,d�
→E�Y ,d�, which maps P�E�X ,d� to the OVE �̂�P��E�Y ,d� defined by the relation

�̂�P��f� = P�f � �� ∀ f � C0�Y� . �31�

We denote by I�X ,Y� the set of injective functions in C�X ,Y� and define a map �X,Y that transforms
subsets of E�X ,d� into subsets of E�Y ,d� as follows:
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�X,Y�C� ª ��̂�P��� � I�X,Y�,P � C� ∀ C � E�X,d� . �32�

With this definition, we can state the following.

Corollary 2: Let X ,Y be as in Theorem 2, and let Ȳ be the one point compactification of Y.
Then the following equalities hold:

�R�Y,d� = �X,Y��E�X,d�� , �33�

�E�Y,d� = �X,Ȳ��E�X,d�� . �34�

Moreover, �R�Y ,d�=�E�Y ,d��R�Y ,d�.
Proof: Equation �33� directly follows from Theorem 2. Equation �34� follows from Theorem

2 and from the identification E�Y ,d�	E�Ȳ ,d��R�Ȳ ,d�. Finally, combining Eqs. �33� and �34�,
we have the inclusion

�R�Y,d� = �X,Y��E�X,d�� � �X,Ȳ��E�X,d�� � R�Y,d� = �E�Y,d� � R�Y,d� . �35�

Conversely, an OVE E��E�Y ,d�, given by E�f�= P�f ���=�i f���i��Pi, is regular only if ��i�
�Y for any i such that Pi�0. Therefore, there exists an injective function �̃�I�X ,Y�, such that
E�f�= P�f � �̃�, namely, E��R�Y ,d�. In conclusion, we have �R�Y ,d�=�E�Y ,d��R�Y ,d�. �

The characterization of extreme POVMs immediately follows as a corollary from the previous
theorem.

Corollary 3: �Extreme POVMs� Let X and Y be as in Theorem 2. A POVM M �M�Y ,d� is
extreme if and only if there exist an injective function ��C�X ,Y�, and an extreme finite-outcome
POVM P�M�X ,d�, such that for any Borel set ����Y�,

M��� = �
i�X

�����i��Pi, �36�

�� denoting the indicator function of �.
Remark 3: The above characterization implies that any extreme quantum measurement M

�M�Y ,d� with locally compact outcome space Y can be realized by first performing the finite-
outcome measurement �Pi � i�X�, and then, conditionally to outcome i�X, by declaring outcome
��i��Y. In such a scheme the function ��C�X ,Y� simply represents a classical postprocessing of
the measured data. It is worth stressing that for extreme POVMs such a postprocessing must be
injective: ��i�=��j� only if i= j.

For the sake of completeness we conclude this section with a characterization of extreme
OVEs in E�X ,d�, which coincides with the characterization of extreme finite-outcome POVMs of
Ref. 33.

Theorem 3: �Extreme finite-outcome OVEs� Let P�E�X ,d� be an OVE with finite-outcome
space, given by P�h�=�ihiPi, Pi�Md. Denote by Hi the range of Pi and by B�Hi� the algebra of
linear operators on Hi. Then, P is extreme if and only if the map TP : � i�XB�Hi�→Md given by

TP��
i

Ai� = �
i�X

�PiAi
�Pi �37�

is injective.
Proof: Suppose P=1 /2�P++ P−� for some P�E�X ,d�. This implies that 2P− P�0, i.e., P

is dominated by 2P. Let �HP ,�P ,VP� be the minimal Stinespring representation32 of P, given by
HP= � iHi, �P�h�= � ihi1Hi

, and VP=�i
�Pi � �i� �here the tensor with �i� denotes the embedding of

Hi in HP and the operator �Pi � �i� is defined by ��Pi � �i���= ��Pi�� � �i�, for any ��Cd�. The
Radon–Nikodym theorem for completely positive maps2,3,35 then implies P�h�=VP

† D�P�h�VP

for some positive operator D in the commutant of �P, i.e., in � iB�Hi�. Accordingly, we have
P�h�=�ihi

�PiDi
�Pi with Di

�B�Hi�. Since we have P�1X�=TP�D�, the normalization con-
dition P�1X�=1d is satisfied with P+� P− if and only if the map TP is not injective, i.e., P is not
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extreme if and only if TP is not injective. �

IV. TOPOLOGICAL PROPERTIES OF E„Y ,d… AND R„Y ,d…

OVEs are elements of the Banach space B�Y ,d� of bounded maps from C0�Y� to Md, which is
naturally isomorphic to the Banach space C0�Y�� � Md.

Lemma 3: Let V denote the Banach space V=C0�Y� � Md
�, equipped with the cross norm,

�B� = inf��
i

�f i��	i�1�B = �
i

f i � 	i� , �38�

� · �1 being the norm on Md
�. Then, the Banach space B�Y ,d� is isomorphic to the dual Banach

space V�.

Proof: Any map E�B�Y ,d� induces a linear functional Ê�V�, which is defined on product

vectors by Ê�f � 	�ª	�E�f�� and uniquely extended on V by linearity. The correspondence E� Ê

is invertible and preserves the norm, i.e., �E�= �Ê�V�, where �Ê�V� =supB,�B�=1�Ê�B��. Indeed, on the

one hand we have �E�=sup	,�	�1=1 supf ,�f�=1�	�E�f����supB,�B�=1�Ê�B��= �Ê�V�. On the other hand,

for any possible decomposition of B�V as B=�i f i � 	i, we have �Ê�B��= ��i	i�E�f i���
� �E��i�	i�1�f i�. Taking the infimum over all decompositions we get �Ê�V� � �E�, and, therefore,

�E�= �Ê�V�. �

Owing to the above isomorphisms, in the following we identify the map E with the functional

Ê and the set B�Y ,d� with V�.
Lemma 4: The convex set E�Y ,d��V� is closed and compact in the weak�-topology.
Proof: Suppose that a net �Ea�a�A�E�Y ,d� converges to the linear functional E�V� in the

weak�-topology, i.e., lima Ea�B�=T�B� for any B�V. In particular, for B= f � 	 we have
	�E�f��=lima 	�Ea�f��. Since for any positive function f �0 one has Ea�f��0 for any a�A, one
necessarily has also E�f��0. Similarly, Ea�1Y�=1d , ∀a�A implies E�1Y�=1d. This proves that E
is an element of E�Y ,d�, whence E�Y ,d� is weak�-closed. Finally, since E�Y ,d� is contained in the
unit ball of V� �see Eq. �9��, it is weak�-compact due to the Banach–Alaoglu theorem. �

Lemma 5: If Y is second countable, then the set E�Y ,d� is metrizable.

Proof: Since Y is second countable, also its one point compactification Ȳ is second countable.

Being a second-countable compact space, Ȳ is then metrizable due to Urysohn’s metrization

theorem.37 This implies that the Banach space of continuous functions C�Ȳ� is separable.30 More-

over, since the dimension d is finite, the Banach space V=C�Ȳ� � Md
� is also separable. We now

invoke the well known result that the unit ball in the dual of a separable Banach space is
weak�-metrizable.15 Since E�Y ,d� is a subset of the unit ball in V�, it is metrizable. �

We conclude with the following useful lemma about the set of regular OVEs.
Lemma 6: The set R�Y ,d� is a G�-set, namely, there exists a sequence of open sets �Un�, such

that R�Y ,d�=�nUn. Moreover, if a regular OVE E�R�Y ,d� is the barycenter of E�Y ,d� with
respect to a probability measure pE, then R�Y ,d� has unit measure, i.e., pE�R�Y ,d��=1.

Proof: Definition 4 of a regular OVE implies the condition

sup���E�f���f � C0�Y�, 0 � f � 1Y� = 1, �39�

where �=tr /d is the normalized trace on Md. Denote by Sn�E�Y ,d� the set of OVEs E
�E�Y ,d�, such that

sup���E�f���f � C0�Y�, 0 � f � 1Y� � 1 −
1

n
. �40�

The set Sn is a weak�-closed subset of E�Y ,d�. If an OVE E�E�Y ,d� is not regular, then it must
be in one of the sets Sn for some n�N, namely,
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E�Y,d� \ R�Y,d� = �
n
Sn. �41�

Since R�Y ,d�=�n�E�Y ,d� \Sn� and the each set UnªE�Y ,d� \Sn is open, R�Y ,d� is a G�-set. In
particular, R�Y ,d� is measurable. Moreover, for any f �C0�Y� , 0� f �1Y we have the following
bound:

��E�f�� = 

E�Y,d�

pE�dF���F�f�� �42�

=

Sn

pE�dF���F�f�� + 

E�Y,d�\Sn

pE�dF���F�f�� �43�

��1 − 1/n�pE�Sn� + �1 − pE�Sn�� �44�

=1 − pE�Sn�/n . �45�

Taking the supremum with respect to f and using the regularity condition �39�, we then obtain
pE�Sn�=0 for any n. As a consequence, R�Y ,d� has unit measure. �

V. BARYCENTRIC DECOMPOSITION

A. Case of second-countable outcome spaces

According to Lemma 4 and Lemma 5, the set E�Y ,d� is compact metrizable set. Choquet’s
theorem8,5 then implies the following.

Lemma 7: Let Y be a second countable locally compact Hausdorff space. Any OVE E
�E�Y ,d� is the barycenter of �E�Y ,d� with respect to a suitable probability measure pE.

Proof: Direct application of Choquet’s theorem. �

We now combine the Choquet representation with the regularity condition.
Theorem 4: �Barycentric representation of regular OVEs� Let Y be a locally compact second-

countable Hausdorff space. Then, any regular OVE E�R�Y ,d� is the barycenter of the set
�R�Y ,d� with respect to a probability distribution pE.

Proof: By Lemma 7 any OVE E�E�Y ,d� is the barycenter of the set �E�Y ,d� with respect to
a probability measure pE. On the other hand, since E is regular, Lemma 6 requires the set R�Y ,d�
to have unit measure. Finally, by Corollary 2 we have �R�Y ,d�=�E�Y ,d��R�Y ,d�. Since both
�E�Y ,d� and R�Y ,d� are measurable sets with unit measure, also their intersection enjoys this
property. �

Owing to the affine bijection established by Theorem 1, the present result can be readily
translated into a Choquet representation of POVMs in finite dimensional Hilbert spaces.

Corollary 4: �Barycentric representation of POVMs� Let Y be a locally compact second-
countable Hausdorff space. Then, any POVM M �M�Y ,d� is the barycenter of the set �M�Y ,d�
with respect to a probability distribution pM, namely,

M��� = 

�M�Y,d�

pM�dP�P��� ∀ � � ��Y� . �46�

Remark 4: The above Choquet representation, once combined with the characterization of
extreme POVMs of Corollary 3, shows that quantum measurements with second-countable out-
come space can always be interpreted as randomizations of extreme finite-outcome measurements,
corresponding to operator valued measures concentrated on k�d2 points. It is worth stressing that
essentially all outcome spaces that are relevant for applications in quantum mechanics are sepa-
rable and metrizable, and that for locally compact Hausdorff spaces these two conditions are
equivalent to second countability, due to Urysohn’s metrization theorem.

022111-11 Barycentric decomposition of quantum measurements J. Math. Phys. 51, 022111 �2010�

Downloaded 19 Feb 2010 to 133.6.79.146. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



B. General case

If the outcome space Y is not second countable, the set E�Y ,d� is generally not metrizable. In
this situation, Choquet’s theorem cannot be applied, and a barycentric decomposition only in terms
extreme points might not be possible. However, since the set E�Y ,d� is compact in the
weak�-topology �Lemma 4�, we can still exploit Krein–Milman theorem, thus getting the follow-
ing.

Lemma 8: Let Y be a locally compact Hausdorff space, and �E�Y ,d� be the weak�-closure of
�E�Y ,d�. Any OVE E�E�Y ,d� is the barycenter of the set �E�Y ,d� with respect to a probability
measure pE.

Proof: Direct consequence of Krein–Milman theorem �Lemma 12 of Appendix B�. �

Remark 5: Notice that in most situations the set �E�Y ,d� is not weak�-closed. For example,
take d=2 and Y �X= �1,2 ,3 ,4� and consider the OVEs Ea defined by Ea�h�=�ihiEi,a , ∀h
�C�X� with

E1,a = �1 + cos a�x + sin a�y�/4,

E2,a = �1 + cos a�x − sin a�y�/4,

�47�
E3,a = �1 − cos a�x + sin a�z�/4,

E4,a = �1 − cos a�x − sin a�z�/4,

where �x= � 0 1
1 0

�, �y = � 0 −i
i 0

�, and �z= � 1 0
0 −1

�. Using Theorem 3 it is immediate to verify that the OVE
Ea is extreme for any a� �0,� /4�, while the limit E=lima→0Ea is not extreme, namely, �E�Y ,d�
is not closed, whence the decomposition of Lemma 8 necessarily involves some nonextreme
OVEs.

Theorem 5: �Barycentric decomposition of regular OVEs� Let Y be a locally compact Haus-
dorff space, and F�Y ,d� be the intersection,

F�Y,d� = �E�Y,d� � R�Y,d� . �48�

Then, any regular OVE E�R�Y ,d� is the barycenter of the set F�Y ,d� with respect to a suitable
probability measure pE.

Proof: By Lemma 8, any OVE E is the barycenter of the set �E�Y ,d� with respect to a
probability measure pE. Combining this fact with Lemma 6 we immediately obtain the thesis. �

Although the set F�Y ,d� contains also OVEs that are not extreme, it is simple to realize that
it only contains OVEs that correspond to POVMs concentrated on a finite set of points of Y. We
now conclude the paper by proving this fact, by first showing that all OVEs in �E�Y ,d� correspond

to POVMs concentrated on a finite set of points of Ȳ, and then using the regularity condition. Let

us identify C�X ,Y� with X�Y �X� Ȳ and equip it with the product topology. Accordingly,
I�X ,Y� denotes the closure of the set of injective functions in C�X ,Y�. Define the map �̄X,Y

transforming subsets of E�X ,d� into subsets of E�X ,d� as follows:

�̄X,Y�C� ª ��̂�P��� � I�X,Y�,P � C� , �49�

where the map �̂ is defined as in Eq. �31�. We then have the following.
Lemma 9: Let X and Y be as in Theorem 2, and �X,Y and �̄X,Y be the maps defined in Eqs. (32)

and (49), respectively. Then, for any subset C�E�X ,d�, one has

�X,Y�C� = �̄X,Y�C̄� . �50�

Proof: Let E be a point of �X,Y�C� and take a net �Ea�a�A� �X,Y�C� converging to E. Since

Ea� �X,Y�C�, one has Ea�f�= Pa�f ��a�, with Pa�C and �a�I�X ,Y�. Moreover, since C̄ is com-
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pact, the net �Pa�a�A� C̄ will have a cluster point P� C̄. Similarly, the net ��a�a�A�I�X ,Y� will
have a cluster point ��I�X ,Y�. We can then choose a subnet �Eb�b�B, such that limb Pb= P and
limb �b=�, thus obtaining

E�f� = lim
b

Eb�f� = lim
b

Pb�f � �b� = P�f � �� . �51�

To evaluate the limit we used the fact that E�X ,d� is finite dimensional, whence the
weak�-convergence of the net �Pb�b�B is equivalent to norm convergence. The above equation

proves that E is in �̄X,Y�C̄�, namely, �X,Y�C�� �̄X,Y�C̄�. Conversely, let E be a point in �̄X,Y�C̄�,
defined by E�f�= P�f ���, with P� C̄ and ��I�X ,Y�. Take a net �Pa�a�A�C, such that lima Pa

= P and a net of injective functions ��b�b�B�X�Y, such that limb �b=�. Let us equip A�B with
the product order and define the net Ea,b� �X,Y�C� by Ea,b�f�ªPa�f ��b�. Clearly, the net

�Ea,b��a,b��A�B converges to E, whence E� �X,Y�C�. This proves that �̄X,Y�C̄�� �X,Y�C�. �

As a consequence, we have the following characterization.
Lemma 10: The closure of the set �E�Y ,d� is given by

�E�Y,d� = �̄X,Ȳ��E�X,d�� , �52�

namely, every E��E�Y ,d� is of the form

E�f� = P�f � �� ∀ f � C0�Y� �53�

for some suitable OVE P�E�X ,d� and some suitable function ��C�X , Ȳ�, obtained as a limit of
injective functions.

Proof: By Corollary 2 we have �E�Y ,d�= �X,Ȳ��E�X ,d��. Application of Lemma 9 then yields
the thesis. �

Theorem 6: �Structure of the set F�Y ,d�� Let

K�X,Y� = I�X,Y� � C�X,Y� �54�

be the set of continuous functions from X to Y that are limits of injective functions. Then, the set
F�Y ,d� defined in Eq. (48) is given by

F�Y,d� = �E � E�Y,d��E�f� = P�f � ��, � � K�X,Y�, P � �E�X,d�� . �55�

Proof: By definition, F�Y ,d�=�E�Y ,d��R�Y ,d�. On the other hand, by Lemma 10 an OVE
E is in �E�Y ,d� if and only if has the form

E�f� = P�f � �� = �
i�X

Pif���i�� , �56�

with P��E�X ,d� and ��I�X , Ȳ�. Clearly, an OVE E in �E�Y ,d� is regular if and only if the

function � in Eq. �56� satisfies ��X��Y, namely, if and only if ��I�X , Ȳ��C�X ,Y�. We now

claim that I�X , Ȳ��C�X ,Y��K�X ,Y�. Indeed, we have the inclusion K�X ,Y�
=I�X ,Y��C�X ,Y��I�X , Ȳ��C�X ,Y�. Vice versa, let � be in I�X , Ȳ��C�X ,Y� and

��a�a�A�I�X , Ȳ� be a net of injective functions, such that lima �a=�. Since the topology of

C�X , Ȳ�	X� Ȳ contains the topology of C�X ,Y�=X�Y, for any neighborhood U�C�X ,Y� of �
we have that the net ��a�a�A must eventually be in U. Hence, � is the limit of a net of injective
functions in I�X ,Y� as well. Therefore, we have ��I�X ,Y��C�X ,Y�=K�X ,Y�, thus proving the
reverse inclusion. �

Any OVE in F�Y ,d� corresponds to a POVM concentrated on �X��d2 points of Y. Indeed, we
have
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E�f� = P�f � �� = �
i=1

�X�

f���i��Pi = 

Y

M�dy�f�y� , �57�

where M is the POVM defined by M���ª�i=1
d2

���yi�Pi for any Borel set �. The barycentric
decomposition for POVMs is the given by the following.

Corollary 5: Let Y be a locally compact Hausdorff space, and let Q�Y ,d� be the subset of
M�Y ,d� defined by

Q�Y,d� =�M � M�Y,d��M��� = �
i=1

d2

�����i��Pi, � � K�X,Y�, P � �M�X,d�� . �58�

Then, any POVM M �M�Y ,d� is the barycenter of the set Q�Y ,d� with respect to a probability
distribution pM, namely,

M��� = 

Q�Y,d�

pM�dP�P��� , �59�

for any Borel set �.
The barycentric representation of POVMs with locally compact Hausdorff space allows one to

interpret quantum measurements on finite dimensional systems as randomizations of measure-
ments with k�d2 outcomes, thus providing a rigorous proof of the fact that in finite dimensions
continuous spectrum is equivalent to continuous classical randomness controlling the choice of the
measuring apparatus.
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APPENDIX A: RADON–NIKODYM THEOREM FOR OVES

For completeness of the presentation, in the following we provide the proofs of two standard
results, the former on the existence of densities for OVEs and the latter on barycentric decompo-
sitions in locally convex spaces.

The following Radon–Nikodym theorem for OVEs is equivalent to the existence of a density
for POVMs in finite dimensions, which in turn is a consequence of the Radon–Nikodym theorem
for quantum instruments.13,27,23

Lemma 11: Let 
 be a finite regular measure on Y and let T�E�Y ,d� be an OVE satisfying
the dominance condition T�
̂1, 
̂�C0�Y�� being the positive functional associated to 
. Then,
there exists a unique positive operator density D�L��Y ,
� � Md, such that

T�f� =
 
�dy�f�y�D�y� . �A1�

Proof: Since 
̂ is a positive functional, S= 
̂1 is a completely positive �CP� map. Moreover, due
to the dominance condition, S−T is also a CP map. The Radon–Nikodym theorem for CP
maps2,3,35 then implies that T�f�=VS

��S�f�DVS, where �HS ,�S ,VS� is the minimal Stinespring
representation of S and D is a unique positive operator in the commutant of �S�C0�Y��. The
minimal Stinespring representation of S is easily obtained here by the Gelfand–Naimark–Segal
�GNS� representation of 
̂, given by �H
̂ ,�
̂ ,�
̂�. Indeed, the Hilbert space HS can be identified
with H
̂ � Cd, the representation �S with �
̂ � 1d, and the isometry VS is defined by

VS� = �
̂ � � ∀ � � C . �A2�

Therefore, we have
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��1,T�f��2� = ��1,VS
��S�f�DVS�2� = ��
̂ � �1, D��
̂�f� � 1d��
̂ � �2� ∀ �1, �2 � Cd.

�A3�

Finally, the GNS Hilbert space H
̂ can be identified with L2�Y ,
�, where �
̂ is the constant
function, and �
̂ represents the function f �C0�Y� by a multiplication operator. With this identi-

fication, the commutant of �
̂�C0�Y�� � 1 is L��Y , 
̂� � Md. �Due to the identification C̄0�Y�
	C�Ȳ�, the commutant of �
̂ coincides with L��Ȳ ,
�. On the other hand, since 
̂ is regular one

has L��Ȳ ,
��L��Y ,
�.� Therefore, the positive operator D is an operator valued function, yield-
ing

��1,T�f��2� =
 
�dy���,D�y��2�f�y� ∀ �1, �2 � Cd. �A4�

which implies the identity T�f�=
�dy�D�y�f�y�. �

APPENDIX B: BARYCENTRIC DECOMPOSITION FROM KREIN–MILMAN THEOREM

Lemma 12: Let K be a compact subset of a locally convex vector space X. Denote with �K the
closure of �K. Then, any point x�K is the barycenter of �K with respect to a suitable probability
measure px, namely, the relation

f�x� = 

�K

px�dE�f�E� �B1�

holds for any function f �C�K�.
Proof: By Krein–Milman theorem,36 any x�K is in the closure of the convex hull of �K, i.e.,

that there exists a net �xa�a contained in the convex hull such that lima xa=x. Equivalently,
f�xa�=�ipi

�a�f�xi
�a��ª p̂�a��f� for any f �C�K�, where �pi

�a�� are probabilities and �xi
�a�� is a finite set

of points in �K. Clearly, the restriction of the functional p̂a to the C�-algebra C��K� is a state, i.e.,
a positive normalized functional. Since the set of states is compact, the net �p̂a�a�A must have a
cluster point px within it. We then have f�x�=lima f�xa�=lima p̂a�f�= p̂x�f�=�Kpx�dE�f�E�, px

being the probability distribution on �K associated with p̂x by Riesz–Markov theorem. �
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