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The outcome statistics of an informationally complete quantum measurement for a system in a given
state can be used to evaluate the ensemble expectation of any linear operator in the same state, by
averaging a function of the outcomes that depends on the specific operator. Here we introduce two novel
data-processing strategies, non-linear in the frequencies, which lead to faster convergence to theoretical
expectations.
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1. Introduction

In Quantum Mechanics measuring a single observable provides
only partial information about the state of the measured system.
According to the Born interpretation, the quantum state is a rule
for evaluating the outcome probabilities in all conceivable mea-
surements, and a complete information about the quantum state
requires a thorough outcome statistics for a quorum of observables,
or for a suitable informationally complete measurement (shortly info-
complete) [1,2], in conjunction with a suitable data-processing, as
it is done in quantum tomography (for a review see Ref. [3]).
There are two main classes of approaches in quantum tomography:
(a) Averaging “patterns functions”, a method initiated in Ref. [4];
(b) Maximum likelihood techniques [5].

Method (a) has the advantage of providing any expectation
value, e.g. a single density matrix element, without the need of
estimating the entire density operator. However, the estimated full
matrix is not necessarily positive, which is not a serious drawback,
since the non-positivity falls within a small fluctuation for large
numbers of data.

Method (b) has the advantage of providing a positive density
operator, with smaller fluctuations, however, it has the more seri-
ous drawback of needing to estimate the full density matrix, while
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is exponentially large versus the number of systems, and, in the
infinite-dimensional case needs a dimensionality cutoff which in-
troduce a bias that is under control only if there is some prior
knowledge of the state.

In a recent paper [6] the optimal data-processing for evaluating
ensemble averages from experimental outcomes was derived for a
completely general setting within a Bayesian scheme that assumes
a prior probability distribution of states. Using as optimality crite-
rion the rate of estimated-to-theoretical convergence of averages,
the optimal data-processing itself depends on the prior distribu-
tion of states.

The purpose of the present Letter is to exploit the depen-
dence of the optimal data-processing on the prior distribution of
states, in order to improve the convergence rate using an adap-
tive data-processing scheme. We will consider info-complete mea-
surements — more generally than a quorum of observables —
whose statistics allows to reconstruct all possible ensemble aver-
ages. Estimation of the quantum state itself is equivalent to the
estimation of all possible ensemble averages. We will adopt the
natural figure of merit used in Ref. [6], which, in the present con-
text, represents the estimated-to-theoretical convergence rate (in
Hilbert–Schmidt distance) of the state. As we will see, exploiting
the dependence of the optimal data-processing on the prior state
leads to two different data processing strategies, which both im-
prove the convergence rate compared to the standard tomographic
procedures, and are easily implementable and computationally ef-
ficient:
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Method 1 (Bayesian iterative procedure): Bayesian update of
the prior distribution after the first state reconstruction, with
subsequent iteration of the optimization.
Method 2 (Frequentist approach): replace the theoretical prob-
ability distribution of the info-complete in the optimal data-
processing with the experimental frequencies.

We will see that numerical simulations carried out with both
methods show relevant improvement of convergence compared to
the plain non-adaptive processing of Ref. [6].

The Letter is organized as follows. In Section 2 we re-derive
the optimal data-processing for given prior distribution of Ref. [6]
within an improved theoretical framework. In Sections 3 and 4 we
introduce Methods 1 and 2, respectively. Finally, in Section 5, we
present numerical simulations for testing both methods in com-
parison with the original plain non-adaptive data-processing, and
in Section 6 we end the Letter with concluding remarks.

2. Optimization of the data processing

In the modern formulation of Quantum Mechanics, the state
of a quantum system associated to a d-dimensional Hilbert space
H ∼ C

d is represented by a density matrix, namely a positive op-
erator ρ � 0 with Tr[ρ] = 1. The Born formula provides the prob-
abilities of outcomes in a quantum measurement in terms of the
state ρ as follows

p(i|ρ) := Tr[ρ Pi], (1)

where the POVM (Pi) (Positive Operator Valued Measure) is a set
of (generally non-orthogonal) positive operators Pi � 0 resolving
the identity as

∑N
i=1 Pi = I , thus guaranteeing positivity and nor-

malization of probabilities.
The linear span of the POVM elements Pi , defined as S :=

Span{Pi}1�i�n , is a linear subspace of the space L(H) of linear
operators on H, and we will take as a canonical basis in L(H)

the operators |m〉〈n|, where |n〉 is an orthonormal basis thus rep-
resenting operators X by the vectors of their matrix elements
Xm,n = 〈m|X |n〉. A POVM is info-complete if S ≡ L(H), namely all
operators X ∈ L(H) can be expanded on the POVM elements, and
it is possible to determine all ensemble averages 〈X〉ρ , as in Quan-
tum Tomography. For each complex operator X ∈ S the following
decomposition holds

X =
N∑

i=1

f i[X]Pi, (2)

where f i[X] is not unique if the set {Pi} is over-complete.
With the above expressions we can write the ensemble average

of X as follows:

〈X〉ρ := Tr[Xρ] =
N∑

i=1

f i[X]p(i|ρ), (3)

with the following statistical error

(
δX2)

ρ
:=

N∑
i=1

∣∣ f i[X]∣∣2
p(i|ρ) − |〈X〉ρ |2. (4)

In a Bayesian scheme one has an a priori ensemble E := {ρi, pi}
of possible states ρi of the quantum system occurring with prob-
ability pi . We want to minimize the average statistical error on
E in the determination of the expectation value of X , namely the
variance

(
δX2)

ε
:=

N∑∣∣ f i[X]∣∣2
p(i|ρε) − |〈X〉|2ε, (5)
i=1
where ρε = ∑
i piρi and |〈X〉|2ε = ∑

i pi |Tr[ρi X]|2 is the squared
modulus of the expectation of X averaged over the states in the
ensemble (since this term depends only on the ensemble it will be
neglected from now on). Using Eq. (1) the first term in Eq. (5) can
be rewritten as

Σ f (X) :=
N∑

i=1

∣∣ f i[X]∣∣2
Tr[Piρε]. (6)

Given a POVM (Pi), it is possible to define a linear map Λ from
an abstract N-dimensional space K of coefficient vectors c ∈ K to
L(H), with range S :

Λc =
N∑

i=1

ci P i, (7)

so that using the canonical basis in K, Λ has matrix elements
Λmn,i = (Pi)mn . A generalized inverse (shortly g-inverse) of Λ is
any matrix Γ representing linear operators from L(H) to K such
that the following identity holds

ΛΓ Λ = Λ. (8)

Notice that the matrix elements (Γi,mn) of Γ define a set of opera-
tors Di with matrix elements (Di)mn := Γ ∗

i,mn . The role of g-inverse
Γ is assessed by the two following important theorems

Theorem 1. The following statements are equivalent

1. Γ is a g-inverse of Λ.
2. For all y ∈ Rng(Λ), x = Γ y is a solution of the equation Λx = y.

Proof. See Ref. [7]. �
Theorem 2. For all g-inverse Γ of Λ all solutions of Λx = y are of the
form

x = Γ y + (I − Γ Λ)z, (9)

with arbitrary z.

Proof. See Ref. [7]. �
We now define a norm in K as follows

‖c‖2
π :=

N∑
i=1

|ci|2πii, (10)

where πi j = δi jπii is a positive matrix which is diagonal in the
canonical basis in K. In terms of π we define the minimum norm
g-inverses Γ that satisfy [8]

πΓ Λ = Λ†Γ †π. (11)

Notice that the present definition of minimum norm g-inverse re-
quires that the norm is induced by a scalar product (in our case
	a · 	b := ∑N

i=1 a∗
i πiibi ). We will now prove the following crucial the-

orem

Theorem 3. The following assertions are equivalent

1. Γ is a minimum norm g-inverse of Λ.
2. For all y ∈ Rng(Λ), x = Γ y is a solution of the equation Λx = y

with minimum norm.

Proof. We first prove that 1 ⇒ 2. For Γ g-inverse of Λ, one has
due to Theorem 2
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∥∥Γ y + (I − Γ Λ)z
∥∥2
π

= [
y†Γ † + z†(I − Λ†Γ †)]π[

Γ y + (I − Γ Λ)z
]

= ‖Γ y‖2
π + ∥∥(I − Γ Λ)z

∥∥2
π

+ z†(I − Λ†Γ †)πΓ y + y†Γ †π(I − Γ Λ)z. (12)

Since by hypothesis y ∈ Rng(Λ), then y = Λu for some u in K. For
a minimum norm g-inverse Γ as in the hypothesis, due to Eq. (11)
one has

z†(I − Λ†Γ †)πΓ Λu + u†Λ†Γ †π(I − Γ Λ)z

= z†(I − Λ†Γ †)Λ†Γ †πu + u†πΓ Λ(I − Γ Λ)z = 0, (13)

where the last equality is due to Eq. (8). Finally, this proves that
∥∥Γ y + (I − Γ Λ)z

∥∥2
π

= ‖Γ y‖2
π + ∥∥(I − Γ Λ)z

∥∥2
π

� ‖Γ y‖2
π , (14)

namely the solution x = Γ y is minimum-norm.
Now we prove 2 ⇒ 1. If x = Γ y is a solution of Λx = y for all

y ∈ Rng(Λ), by Theorem 1 Γ is a g-inverse of Λ, namely ΛΓ Λ =
Λ. Then if Γ y is minimum norm solution of |Λx = y| then due to
Theorem 2

‖Γ y‖2
π �

∥∥Γ y + (I − Γ Λ)z
∥∥2
π

(15)

for all y ∈ Rng(Λ) and for all z one has

0 �
∥∥(I − Γ Λ)z

∥∥2
π

+ z†(I − Λ†Γ †)πΓ y + y†Γ †π(I − Γ Λ)z. (16)

Since an arbitrary y ∈ Rng(Λ) is Λu for arbitrary u, the second
term in Eq. (16) becomes

z†(I − Λ†Γ †)πΓ Λu + u†Λ†Γ †π(I − Γ Λ)z

= 2�(
z†(I − Λ†Γ †)πΓ Λu

)
. (17)

Let us keep z fixed and multiply u by an arbitrary α. If the
expression in Eq. (17) is not vanishing then taking |α| sufficiently
large, for suitable phase one can contradict the bound in Eq. (16),
hence �(z†(I − Λ†Γ †)πΓ Λu) = 0 for all u and z and by the same
reasoning �(z†(I − Λ†Γ †)πΓ Λu) = 0 for all u and z. We can then
conclude that (I − Λ†Γ †)πΓ Λ = Λ†Γ †π(I − Γ Λ) = 0, and conse-
quently πΓ Λ = Λ†Γ †π �

Using Eq. (11), and considering that Σ f (X) is the norm of the
vector of coefficients f[X] with πii = Tr[Piρε], it has been proved
in [6] that the minimum noise is achieved by Γ corresponding to
the set of operators Di given by

Dopt
i := Δi −

N∑
j=1

{[
(I − M)π(I − M)

]‡
π M

}
i jΔ j, (18)

where Δi is the set of operators corresponding to the Moore–
Penrose g-inverse Γmp of Λ, satisfying the properties

ΓmpΛ = Λ†Γ
†

mp, ΓmpΛΓmp = Γmp, Γ
†

mpΛ† = ΛΓmp, (19)

and M := ΓmpΛ = M† = M2. The symbol X‡ denotes the Moore–
Penrose g-inverse of X . It is indeed easy to verify that

Γopt := Γmp − [
(I − M)π(I − M)

]‡
π MΓmp (20)

satisfies Eq. (11). Notice that being Γopt minimum norm indepen-
dently of X , the statistical error is minimized by the same choice
Dopt

i for all operators X .
When a N-outcomes POVM on a d-dimensional Hilbert space

H ∼ C
d is info-complete the state ρ can be written as

ρ =
N∑

Di p(i|ρ), (21)

i=1
where Di corresponds to any g-inverse Γ . It is then possible to
reconstruct any state ρ using the statistics from measurements:

ρ =
N∑

i=1

p(i|ρ)Di ∼=
N∑

i=1

νi Dopt
i , (22)

where νi = ni
ntot

is the experimental frequency of the ith outcome,
ni being the number of occurrence of the ith outcome, and ntot =∑

i ni . By the law of large numbers we have that limntot→∞ νi =
p(i|ρ). However, the convergence rate of ρ̃ to ρ depends on the
choice of Di . It turns out [9] that the choice Dopt

i , corresponding
to Γopt, is the one with the fastest convergence (in average over all
possible experimental outcomes) in the Hilbert–Schmidt distance,
defined as follows

‖ρ̃ − ρ2‖2
2 := Tr

[
(ρ̃ − ρ)2]. (23)

This can be easily proved considering that the Hilbert–Schmidt dis-
tance can be written as the sum of the variances δ(|m〉〈n|)2, and all
of the summands are minimized by the choice of minimum-norm
Γ = Γopt.

3. The Bayesian iterative procedure

In this section we describe the iterative estimation procedure
based on the update of the prior information by means of the
state reconstruction provided by experimental data. Here we pro-
vide an algorithmic description of the procedure, that yields a
self-consistent solution:

1. The protocol starts with the choice of a priori ensemble E :=
{ρi, pi} (where ρi are states and pi are their prior probabil-
ities), with the corresponding density matrix ρ(0) := ρ

(0)

E =∑
i piρi , e.g. the one of the uniform ensemble of all pure states

ρ(0) = I/d.
2. Using ρ(0) it is possible to calculate the diagonal matrix with

the probability of the different outcomes:

πi j := δi j Tr
[

Piρ
(0)

]
. (24)

3. Using πi j in Eq. (18) we can find the optimal g-inverse Γopt

corresponding to Dopt
i associated with ρ(0) .

4. Now the initial a priori density matrix ρ(0) ≡ ρE will be up-
dated as follows:

ρ(1) =
N∑

i=1

νi Dopt
i . (25)

5. If ρ(1) ∼= ρ(0) within a given tolerable error ε then the average
input state is ρ̃ := ρ(1) and the procedure stops.

6. Otherwise after setting ρ(0) := ρ(1) the procedure will go back
to the step 2.

It is important to remark that at each step the matrices ρ(1)

and Dopt
i are automatically self-adjoint and normalized: Tr[ρ(1)] =

1 since for all i: Tr[Dopt
i ] = 1 [6], however, they are not necessarily

positive.
This protocol in principle provides reliable state reconstructions,

however, its iterative character makes it less efficient than the one
introduced in next section, since at any iterative step one has to
calculate the Moore–Penrose g-inverse in Eq. (18), which is typ-
ically a time-consuming operation, especially for POVMs with a
large number N of outcomes.

4. The frequentist approach

In this section we introduce the second processing strategy,
based on the substitution of prior probabilities by experimental



1114 G.M. D’Ariano et al. / Physics Letters A 373 (2009) 1111–1115
frequencies in Eq. (11). While the previous protocol is essentially
a Bayesian update, in this case the processing relies on the law
of large numbers, namely on the fact that limntot→∞ νi = p(i|ρ),
where the limit has to be understood in probability. We name this
approach frequentist because it fits the frequentist interpretation of
probabilities as approximations of experimental frequencies, avoid-
ing prior probabilities, which are the signature of the Bayesian
approach.

If we substitute the metric matrix π in Eq. (10) with the diag-
onal matrix of the frequencies νi , we get:

νΓ Λ = Λ†Γ †ν (26)

and following the same proof as for Eq.(18) we obtain the fol-
lowing expression of the optimal g-inverse Γν satisfying condition
Eq. (26), in terms of the corresponding operators D(ν)

i

D(ν)
i := Δi −

N∑
j=1

{[
(I − M)ν(I − M)

]‡
νM

}
i jΔ j (27)

that is non-linear in the outcomes frequencies due to the Moore–
Penrose g-inverse of (I − M)ν(I − M).

This protocol has the advantage that it requires only one eval-
uation of Moore–Penrose g-inverse, and it is then much faster
— in terms of computational resources — than the iterative
one introduced in the previous section. However, here generally
Tr[D(ν)

i ] �= 1, whence in addition to positivity of the estimated
state ρ̃ , also the normalization constraint is lost (but not hermitic-
ity).

5. Numerical simulations

In order to test these two methods and to compare their per-
formances with the plain un-updated procedure some Monte Carlo
simulation have been performed. As an example, we considered
the info-complete POVM composed by the following six elements

P±i = 1

6
(I ± σi), (28)

σ0 = I and 	σ = (σx, σy, σz) denoting the usual Pauli matrices. The
theoretical state is

ρ =
( 4

5
1
7 + i

3
1
7 − i

3
1
5

)

= 1

2

(
I + 2

7
σx − 2

3
σy + 3

5
σz

)
. (29)

The simulation consists in 1000 experiments, each consisting in
1000 single-shot measurements, simulated by POVM events extrac-
tion according to the theoretical probabilities p(±i|ρ) := Tr[P±iρ].
The number of iterations in the Bayesian processing is 10.

In Fig. 1 we show the histograms representing the number of
experiments as a function of the Hilbert–Schmidt distance of the
resulting state ρ̃ from the theoretical one ρ . The plots show a
well evident shift of the histograms for both new processing meth-
ods towards small errors compared to the plain processing without
updating. In Table 1 we summarize these considerations by show-
ing the average Hilbert–Schmidt distance obtained with the three
kinds of processing, along with the corresponding variance and the
relative improvement of the figure of merit.

6. Conclusions

In conclusion, we have presented two novel data-processing
strategies to improve convergence of estimation of ensemble av-
erage via info-complete measurements. The two approaches adap-
tively update the data-processing functions in a Bayesian and fre-
Fig. 1. Histograms representing the number of experiments versus the Hilbert–
Schmidt distance of the resulting state from the theoretical one. Upper plot: the
light gray bars correspond to the Bayesian processing, the dark grey correspond to
the plain processing without updating, the white part is the overlap. Lower plot: the
dark grey bars correspond to the frequentist processing method. Both plots show a
well visible shift of the histograms corresponding to the new adaptive methods to-
wards small errors compared to the plain processing without update. [For other
data concerning plots see text.]

Table 1
Average Hilbert–Schmidt distance, variance σ of the histogram, and relative im-
provements compared to the plain un-updated procedure of the new data-
processing strategies presented in the Letter. [For other data concerning this table
see text.]

Procedure 〈H.S. dist.〉 σ Δ(〈H.S. dist.〉) Δ(σ )

Plain (no update) 0.06 0.03 – –
Bayesian 0.05 0.02 −17% −33.3%
Frequentist 0.05 0.02 −17% −33.3%

quentist fashion, respectively, by substituting the prior probabili-
ties with experimental frequencies (frequentist) and the prior state
with the updated state (Bayesian). The two methods have been
tested by numerical simulations, and both showed improved con-
vergence rate compared to the original plain un-updated strategy.
Clearly, further improvement is possible using both procedure to-
gether, however, this would be an higher-order correction.
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