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Self-homodyne tomography of a twin-beam state

Giacomo M. D’Ariano,* Michael Vasilyev, and Prem Kumar
Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208

~Received 2 February 1998!

A self-homodyne detection scheme is proposed to perform two-mode tomography on a twin-beam state at
the output of a nondegenerate optical parametric amplifier. This scheme has been devised to improve the
matching between the local oscillator and the signal modes, which is the main limitation to the overall quantum
efficiency in conventional homodyning. The feasibility of the measurement is analyzed on the basis of Monte
Carlo simulations, studying the effect of nonunit quantum efficiency on detection of the correlation and the
total photon-number oscillations of the twin-beam state.@S1050-2947~98!00607-6#

PACS number~s!: 42.50.Dv
tu
-
s
ns
re
ct
do
nc
-
in
e
to
am
tio
a
s
di
e
l

at
f
e
-

o

he
ct
it

z
ju
to
re
to

n-
on-
the
the
ton
ra-
le-

oret-

ral

g-
a-
ak
er
ast
ffi-
his
ne
LO
-
he

an-
the
ton

se-
or

al-

the

the
nal
or
for
m
ily

g a
of
ner-
I. INTRODUCTION

One of the most significant advances in modern quan
optics is the theoretical development@1# and subsequent ex
perimental realization@2# of homodyne tomography. Thi
measurement scheme allows one to reconstruct the de
matrix of the quantum state from a set of field quadratu
measured by a balanced homodyne detector. Reconstru
methods, initially based on an approximate inverse Ra
transform of the quadrature histograms, have been enha
later through exact algorithms@3–6# that achieve the mea
surement of the matrix element by sampling a correspond
pattern function of the experimental homodyne outcom
~for a review see@7#!. These algorithms have been proven
be very stable and fast enough to allow real-time data s
pling. For the photon-number representation, the calcula
of the pattern functions has been greatly improved by me
of factorization formulas@8# and asymptotic approximation
@9# for large photon numbers of the matrix indices. The
rect sampling approach has been implemented experim
tally to measure the photon statistics of a semiconductor
ser @10#, and the density matrix of a squeezed vacuum@11#.
The success of optical homodyne tomography has stimul
the development of state-reconstruction procedures
atomic beams@12#, the experimental determination of th
vibrational state of a molecule@13#, of an ensemble of he
lium atoms @14#, and of a single ion in a Paul trap@15#.
Finally, some nontomographic state reconstruction meth
have also been recently proposed@16#.

While the full density matrix reconstruction requires t
knowledge of the phase of the detected mode with respe
the local oscillator~LO!, for the diagonal matrix elements
is just sufficient to average over a random phase@10#. The
typical nonclassical states of interest—such as squee
states—already exhibit interesting quantum features in
the photon number distribution; this makes homodyne
mography especially attractive. Among the quantum featu
of interest, there are the even-odd oscillations in the pho
number distribution of a squeezed vacuum@17#, which were
recently observed experimentally@11#. In two-mode tomog-

*Also at Theoretical Quantum Optics Group, INFM, Unita` di Pa-
via, via Bassi 6, I 27100 Pavia, Italy.
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raphy of a twin-beam state produced in parametric dow
conversion, we are interested in features of the joint phot
number distribution of the signal and the idler, such as
delta-function correlation between the photon numbers of
two modes, and the even-odd oscillations of the total pho
number. The sampling algorithm for the two-mode tomog
phy is obtained by a straightforward extension of the sing
mode case@18#. In the relatively new field of multimode
tomography, recent advances have been made in the the
ical description@19# and the experimental measurement@20#
of the photon-number correlation between two tempo
modes.

From the experimental point of view, homodyne tomo
raphy of the photon-number distribution is a viable altern
tive to direct detection. It allows one to measure very we
photon fluxes—of the order of a fraction of a photon p
measurement time—using high quantum efficiency f
p- i -n photodiodes, as compared to the slow and less e
cient avalanche photodiodes used for direct detection. T
convenience, however, comes with its own price tag. O
encounters the problem of mode matching between the
and the detected modes@21#, determined by their spatiotem
poral overlap, which gives a detrimental contribution to t
overall quantum efficiency. As shown in Ref.@4#, the detec-
tion of the quantum features is rapidly degraded by less-th
unity quantum efficiency of the homodyne detector, and
degree of degradation rapidly increases for larger pho
numbers.

The problem of mode matching becomes especially
vere for quantum states generated in traveling-wave
pulsed experiments, particularly those employing the optic
parametric amplifiers~OPA’s!. It has been shown that a LO
well matched to a squeezed vacuum can be generated in
same parametric process@22#. For example, in Ref.@22# a
polarizationally nondegenerate OPA was used to produce
squeezed vacuum and the matched LO in two orthogo
polarizations. However, while this approach is justified f
measurements of the squeezing, it cannot be used
density-matrix reconstruction, as a tiny leakage of light fro
the LO polarization into the signal polarization can eas
spoil the signal photon-number distribution.

In this paper, we address the problem of generatin
matched LO for the reconstruction of the density matrix
the output state of a polarization-and-frequency nondege
636 © 1998 The American Physical Society
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PRA 58 637SELF-HOMODYNE TOMOGRAPHY OF A TWIN-BEAM STATE
ate OPA. In the spirit of Ref.@22#, we develop a concept o
self-homodyning that allows one to create both the LO a
the signal in the same OPA. In the direct detection of
output signal field, a strong mean field at the central f
quencyv0 can serve as a LO for measuring a mode t
consists of two sidebands atv06V. As we will show in the
following, the relative phase between the LO and the tw
sideband mode can be varied, thus allowing homodyne
mography of the latter. In this way one can perform t
tomographic reconstruction of full joint density matrix of th
signal and idler twin-beam modes. In this paper, we cons
the measurement of the joint photon-number distribution
these two modes and the photon-number distribution of
signal mode alone. For the latter, a thermal distribution
expected, as seen in recent self-homodyning experim
@23#. We also show that self-homodyning can be used
measure the photon statistics of the145°- and the
245°-polarized linear combinations of the signal and id
modes.

From Monte Carlo simulations we will estimate the e
perimental conditions that are needed to extract the j
photon-number probability distribution of the twin beam
the photon correlation between the modes, and the quan
oscillations of the total photon number. We will show ho
these quantities can be experimentally measured for rea
values of quantum efficiency~;0.9! of the photodiodes and
for reasonable number of data points (;106).

In Sec. II we give a detailed theoretical description of t
self-homodyne measurement, relating the measuremen
the field quadratures to the output photocurrents in Sec. I
and evaluating the joint probability distribution of the ph
tocurrents in Sec. II B, in a form suitable for Monte Car
simulations, also taking into account the effect of nonu
quantum efficiency. In Sec. III we briefly review the exa
reconstruction algorithm for quantum tomography, for o
mode only in Sec. III A, and then with extension to a
number of modes in Sec. III B. In Sec. III C we analyze ho
the two-mode tomography is achieved through se
homodyne detection. In Sec. III D we introduce the conce
of the measurement of the ‘‘dressed’’ state, often adopte
experiments—as opposed to the ‘‘bare’’ state, usually
sumed by the theorists. In Sec. IV we present some sele
Monte Carlo simulations, also for nonunit quantum ef
ciency, for both the bare and the dressed states. We
focus attention on the joint photon-number probability,
the correlation between the photon numbers of the
modes, and finally on the total photon-number probabil
which exhibits oscillations typical of the twin-beam sta
Section V concludes the paper with a discussion of the
sults in view of the feasibility of the real experiment. Th
Appendix covers the details of derivation of the joint pho
current distribution used in Sec. II B.

II. THEORETICAL DESCRIPTION
OF THE SELF-HOMODYNE MEASUREMENT

A. The detector

The scheme of a self-homodyne detector is depicted
Fig. 1, along with the relevant modes of the electromagn
field involved in the measurement. A nondegenerate opt
parametric amplifier~NOPA! is injected with an input field
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having a strong coherent component at frequencyv0 with
amplitudesal anda↔ depending on the polarization, withl
denoting the vertical and↔ the horizontal polarization, re
spectively. The amplifier is pumped at the second harmo
vp52v0 with amplitudeap@al ,a↔ , such that the pump
can be considered as classical and undepleted during the
plification process. At the output of the amplifier two phot
detectors separately measure the intensities of a coupl
orthogonally polarized components of the fieldÊl and Ê↔ .
At the output of the photodetectors, a narrow band of
photocurrent is selected, centered around frequencyV!v0
~typically v0 is an optical frequency, whereasV is a radio
frequency!. In the narrow-band approximation and for radi
tion absorbed in a thin detector layer, the filtered output p
tocurrents are given by the~complex! operators

Î p~V!}E
2`

1`

dteiVt:uÊp~ t !u2:

5E
2`

1`

dv Êp
2~v1V!Êp

1~v!, p5$l,↔%, ~1!

where : : denote the customary normal ordering with
~output! field annihilation-operator componentsÊp

1 on the

right and the creation operatorsÊp
2 on the left, and the sub

indexp runs on the two independent polarizationsl and↔.
In terms of the annihilation and creation operatorsb̂ and b̂†

of the relevant output modes one has

Î p~V!5b̂0p
† b̂2p1b̂1p

† b̂0p , ~2!

where the subindex 0 refers to the central mode at freque
v0, and6 refer to the sidebands at frequenciesv06V, re-
spectively. The input-output Heisenberg evolutions of t
relevant field modes across the NOPA are given by

b̂0l5mâ0l1nâ0↔
† , b̂0↔5mâ0↔1nâ0l

† ,

b̂1l5mâ1l1nâ2↔
† , b̂1↔5mâ1↔1nâ2l

† , ~3!

b̂2l5mâ2l1nâ1↔
† , b̂2↔5mâ2↔1nâ1l

† ,

wherea anda† denote the annihilation and creation oper
tors for the input modes,m5coshr, n5eiupsinhr, r

FIG. 1. Scheme of a self-homodyne detector along with
relevant modes of the electromagnetic field involved in the m
surement. The nondegenerate optical parametric amplifier~NOPA!
is seeded with input fields having strong coherent component
frequencyv0, and is pumped at the second harmonicvp52v0. At
the output of the amplifier the intensities of the two different pol
izations are separately measured by photodetectors, and a na
band of the output photocurrents is selected, centered around
quencyV!v0.
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638 PRA 58D’ARIANO, VASILYEV, AND KUMAR
}Lx(2)uapu ~L is the amplifier length,x (2) is the effective
second-order susceptibility!. In the following we putup50,
namely, we set the pump phase as the reference phase f
modes. We assume the modeâ0l to be in a highly excited
coherent state with amplitudeal . For the purpose of mea
surement of the joint photon-number distribution, the mo
â0↔ will also be assumed in a highly excited coherent st
with amplitudea↔ . In the case where we are interested
measuring the photon-number distribution of one beam o
the photocurrent produced by the ‘‘↔ ’’-polarized beam can
be ignored or the modeâ0↔ can be assumed to be in th
vacuum state. In the process of direct detection, the hig
excited central modesâ0l,↔ beat with thev06V sideband
modes, thus playing the role of the LO of homodyne a
heterodyne detectors. This converts the direct detectors
self-homodyne detectors whose experimental outcomes
the measured values of the following rescaled output ph
currents in the limit of strong LO’s:

ı̂ l~V!5 lim
uau→`

TrLO@ Î l~V!r̂LO#

A2hlumal1na↔* u
,

ı̂↔~V!5 lim
uau→`

TrLO@ Î↔~V!r̂LO#

A2h↔uma↔1nal* u
, ~4!

wherehl andh↔ denote the quantum efficiencies of the tw
photodetectors,a* denotes the complex conjugate ofa, r̂LO
represents the density operator of the LO state, and TLO
denotes the partial trace over the LO modes. In Eq.~4!

Î p(V) is modified from that in Eq.~2! because of the non
unity quantum efficiencies of the two photodetectors. It
given by

Î p~V!5b̂0p8
† b̂2p8 1b̂1p8† b̂0p8 , ~5!

where b̂gp8 5Ahpb̂gp1A12hpv̂gp . Here v̂gp for gP$0,
1,2% andpP$l,↔% are independent vacuum-state ope
tors accounting for the loss at the three frequency com
nents of each polarization mode. For the sake of simplic
we will assumehl5h↔51 for the rest of this subsection
We will take into account the effect of nonunity quantu
efficiency on the photocurrent probability distribution in Se
II B. Thus, using Eqs.~3! and quantum efficiency equal t
unity, one obtains@24#

ı̂ l~V!5
1

A2
~e2 ifb̂2l1eifb̂1l

† !,

~6!

ı̂↔~V!5
1

A2
~e2 icb̂2↔1eicb̂1↔

† !,

wheref5arg(al1ta↔* ) is the phase of the modeb̂0l rela-
tive to that of the pump witht5tanhr, and analogouslyc
5arg(a↔1tal* ). Taking the real part of the photocurren
at given radio-frequency phasesj andx one has
all

e
e

y,

ly

d
to
re

o-

s

-
o-
,

.

Re@ ı̂ l~V!ei j#5X̂f~B̂l
~j!!,

~7!

Re@ ı̂↔~V!eix#5X̂c~B̂↔
~x!!,

where the operatorX̂f( ĉ) denotes the quadrature at phasef

of the mode with annihilation operatorĉ, namely,

X̂f~ ĉ!5 1
2 ~e2 ifĉ1eifĉ†!, ~8!

and the operatorB̂p
(l) is the annihilator of the polarized out

put mode

B̂p
~l!5

1

A2
~eilb̂2p1e2 ilb̂1p!. ~9!

It is easy to check that the output modes~9! have corre-
sponding input modes given by

Âp
~l!5

1

A2
~eilâ2p1e2 ilâ1p!, ~10!

and they are related by the Heisenberg evolutions

B̂l
~l!5mÂl

~l!1nÂ↔
~l!†,

~11!

B̂↔
~l!5mÂ↔

~l!1nÂl
~l!†.

By scanning the relative phasef betweenb̂0l and the pump

mode, one can measure any quadratureX̂f(B̂l
(j)) of the out-

put field. If the input sideband modesâ6 are in a state with
a completely random phase, such as the vacuum, then

only phase reference in the output modesb̂6 is the pump
phaseup50. In that case, the phasef can be easily change
by delaying all the input fields with respect to the pump fie
with no need to change the phase ofâ0l separately from the
other input modes.

From Eq. ~9! one can recognize that there are actua
four output modes that commute with each other; hen
their quadratures could be jointly measured by the s

homodyne detectors. They areB̂l
(j) , B̂l

(j1p/2) , B̂↔
(x) , and

B̂↔
(x1p/2) , corresponding to the ‘‘cosine’’ and ‘‘sine’’ com

ponents of the two photocurrents in Eqs.~6! at phasesj and

FIG. 2. Theoretical two-mode photon-number probabil
p(n,m) of parametric fluorescence in the signal and idler~twin-
beam! modes~left!, and in the645°-polarized modes~right!, given
by Eqs.~17! and ~26!, correspondingly. The mean number of ph

tons in each moden̄510.



tio

o

l

’’

s

es

n

PRA 58 639SELF-HOMODYNE TOMOGRAPHY OF A TWIN-BEAM STATE
x, respectively. The modesB̂l
(l) and B̂↔

(l) are correlated due
to the parametric interaction in Eq.~11!. This interaction,

however, does not couple the modesB̂l
(l) and B̂↔

(l1p/2) .

B. Photocurrent probability distribution

Since we are interested in using self-homodyne detec

to measure the quadratures of two correlated modesB̂l
(l) and

B̂↔
(l) , the radio-frequency phasel can always be set to zer

by shifting the time origin. Then, the quadraturesX̂f(B̂l
(0))

andX̂c(B̂↔
(0)) are jointly measured. In the following we wil

use the shorthand notationB̂p[B̂p
(0) andX̂f

p[X̂f(B̂p
(0)), and

analogously for the input modesÂp[Âp
(0) . For perfect de-

tectors, the joint probability distribution of the ‘‘cosine
photocurrents withj5x in Eqs.~7! coincides with the joint

probability distribution of the two quadraturesX̂f
l and X̂f

↔ ,
namely,
n-
t

ur
he
n

p~x,x8;f,c!5^x,x8;f,cuR̂ux,x8;f,c&, ~12!

whereux,x8;f,c&[ux&f ^ ux8&c represents the simultaneou

eigenvector of the two quadraturesX̂f
l and X̂f

↔ with eigen-
valuesx andx8 in the Fock spaceHl^H↔ of the two modes

B̂l and B̂↔ , respectively, andR̂ denotes their joint density
operator. For detectors with nonunit quantum efficiencieshl
andh↔ , the joint probability distributionphlh↔

(x,x8;f,c)
of the photocurrents is the convolution@24# of the ideal prob-
ability in Eq. ~12! with Gaussians for each mode of varianc

Dhp

2 5
12hp

4hp
. ~13!

In this way, the resulting output probability distribution ca
be written in the form
phlh↔
~x,x8;f,c!5

1

2pDhl
Dh↔

TrH R̂expF2
~x2X̂f

l !2

2Dhl
2 2

~x82X̂c
↔!2

2Dh↔
2 G J . ~14!
PA
of

n
de

r-
For simplicity, in the following we will assume equal qua
tum efficiencieshl5h↔[h for both detectors. Notice tha
in the limit of unit quantum efficiency,h→1, one hasDh
→0, and the ideal probability in Eq.~12! is recovered.

We are now interested in the simplest case of meas
ment, that withv06V sidebands in the vacuum state at t
input of the NOPA ~i.e., parametric fluorescence!. In the
Schrödinger picture, Eqs.~11! correspond to the following
state generated at the output of the NOPA:

uC&5~12t2!1/2(
n50

`

tnun,n&, ~15!

wheret5tanhr, and the two-mode Fock stateun,m& pertain-

ing to B̂l and B̂↔ is given by

un,m&[
~B̂l

†!n~B̂↔
† !m

An!m!
u0,0&, ~16!

whereu0,0& denotes the vacuum for both theB̂p modes. For
the state~15! the photon-number probability is given by
e-

p~n,m![u^n,muC&u25dnm~12t2!t2n

5
dnm

n̄11
S n̄

n̄11
D n

, ~17!

where

n̄5
t2

12t2
5n25sinh2r ~18!

is the average number of photons in each mode at the NO
output due to parametric fluorescence. The main feature
the distribution~17! is the perfect correlation of the photo
numbers in the signal and idler modes. The two-mo
photon-number probabilityp(n,m) of Eq. ~17! is shown in
Fig. 2 ~left!.

The joint probability distribution of the output photocu
rents is derived in the Appendix, and is given by
ph~x,x8;f,c![
1

2pDh
2 K CUexpH 2

1

2Dh
2

@~x2X̂f
l !21~x82X̂c

↔!2#J UCL ~19!

5
2

pA~dk
214Dh

2 !~d2k
2 14Dh

2 !
expF2

~x1x8!2

dk
214Dh

2 2
~x2x8!2

d2k
2 14Dh

2 G , ~20!
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640 PRA 58D’ARIANO, VASILYEV, AND KUMAR
which can also be cast in the equivalent form

p~x,x8;f,c!5
akbk

p
exp@2ak

2~x2ckx8!22bk
2x82#,

~21!

where

k5e2 i ~f1c!tanhr ,

dk
25

u11ku2

12uku2 ,

ak
25

dk
21d2k

2 18Dh
2

~dk
214Dh

2 !~d2k
2 14Dh

2 !
,

ck5
dk

22d2k
2

d2k
2 1dk

218Dh
2

,

bk
25ak

2~12ck
2!.

In the case that we measure only a single output photo
rent, sayı̂ l(V)—namely, we ignore the measured value

the other photocurrentı̂↔(V)—the self-homodyne detecto
is equivalent to a conventional homodyne detector, wh

measures only the quadratureX̂f
l of mode B̂l . The output

probability distribution is given by

ph~x;f![
1

A2pDh
2

TrH %̂ expF2
~x2X̂f

l !2

2Dh
2 G J , ~22!

where the reduced density operator of the modeB̂l is

%̂5Tr↔@ uC&^Cu#5
1

n̄11
S n̄

n̄11
D B̂l

†B̂l

~23!
u-
t

n-

or
r-
f

h

with Tr↔ denoting the partial trace over the Hilbert space

the undetected modeB̂↔ . The reduced density operator o

the modeB̂l in Eq. ~23! is that of a thermal state with th
photon-number probability

p~n!5
1

n̄11
S n̄

n̄11
D n

, ~24!

where the average photon numbern̄ is given by Eq.~18!.
The probability distribution of the output photocurrent, E

~22!, is a Gaussian with varianceD25 1
2 (n̄1 1

2 )1Dh
2 , cen-

tered at zero. This result of self-homodyning of only t
signal mode has been recently demonstrated experimen
@23#.

Let us note that, while our analysis is aimed at the m
surement of the joint signal-idler photon distribution, a sim
lar self-homodyning approach can also be implemented
measure the joint distribution of645°-polarized OPA out-
puts. In that case, a quadrature of the annihilation opera

B̂p5mÂp1nÂp
† ~25!

is detected at a phase arg(ap1tap* ), where the subindexp
runs on the two independent645° polarizations, namely,↗
and↖, andap is the coherent-state amplitude of the corr
sponding central-frequency component of the input. Sin
the interaction~25! does not couple the145° and245°
modes with each other, the polarization nondegenerate O
is equivalent to two degenerate OPA’s. Two-mode jo
photon-number distribution is just a product of the margin
distributions for each mode, and in the case of vacuum-s
input sidebands is given by@17#
p~n,m!5H 0 for n52k11 or m52l 11

~2k21!!! ~2l 21!!!

2k1 lk! l !

1

n̄11
S n̄

n̄11
D k1 l

for n52k, m52l ,
~26!
to
tec-

-
ri-
by

the
the
where the mean photon numbern̄ in each mode is given by
Eq. ~18!. The probability distribution~26! is shown in Fig. 2
~right!, next to the signal-idler joint photon-number distrib
tion of Eq.~17!. While the645° modes exhibit independen
photon-number oscillations in Fig. 2~right!, the signal and
idler correlations in Fig. 2~left! result in oscillations of the
total photon number.

III. QUANTUM HOMODYNE TOMOGRAPHY

In this section we briefly review the method for reco
structing the quantum state that was introduced in Refs.@3,4#
for one field mode. Then we show how it can be straightf
 -

wardly extended to any number of modes—in particular,
the case of two modes involved in the self-homodyne de
tion of the OPA output—and we will obtain an algorithm
similar to those in Refs.@18#. Finally, we introduce the mea
surement of the ‘‘dressed’’ state, often performed in expe
ments, as opposed to the ‘‘bare’’ state, typically assumed
the theorists.

A. Single-mode detection

The method for reconstructing the matrix elements of
density operator is based on the following resolution of
identity on the Hilbert-Schmidt space
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%̂5E d2w

p
Tr@%̂D̂~w!#D̂†~w!, ~27!

where the integral is extended to the complex planeC for w,

and D̂(w)5exp(2w* â1wâ†) denotes the displacement o
erator for the field mode of interest with annihilation ope
tor â. Equation~27! simply follows from the orthogonality
relation for displacement operators

Tr@D̂~w!D̂†~v !#5d2~w2v !, ~28!

whered2(w) denotes the Dirac delta function on the com
plex plane. By changing to polar variablesw5( i /2)keif, Eq.
~27! becomes

%̂5E
0

pdf

p E
2`

1`dkuku
4

Tr~ %̂eikX̂f!e2 ikX̂f, ~29!

whereX̂f5 1
2 (â†eif1âe2 if) denotes the quadrature oper

tor for the field modeâ. Then we evaluate the trace using t

eigenvectors$ux&f% of X̂f , and multiply and divide the func
tion inside the integral by exp@(12h)k2/(8h)# in the follow-
ing fashion:

%̂5E
0

pdf

p E
2`

1`dkuku
4

e2 @~12h!/8h# k2

3E
2`

1`

dx p~x;f!eikxe@~12h!/8h# k2
e2 ikX̂f, ~30!

wherep(x;f)5f^xu%̂ux&f is the ideal homodyne probabi
ity. Using the convolution theorem we obtain

%̂5E
0

pdf

p E
2`

1`

dx ph~x;f!K̂h~x2X̂f!, ~31!

whereph(x;f) is the homodyne probability distribution fo
nonunit quantum efficiencyh, which is the convolution of
p(x;f) with a Gaussian of varianceDh

2 given in Eq.~13!.

The kernelK̂h(x2X̂f) in Eq. ~31! is formally given by

K̂h~x2X̂f!5
1

2
ReE

0

1`

dk k expF12h

8h
k21 ik~x2X̂f!G ,

~32!

where convergence of the integral in Eq.~32! for the opera-

tor K̂h(x2X̂f) is intended in the weak sense of convergen

of the matrix elementŝ yuK̂h(x2X̂f)uy8& between the
Hilbert-space vectorsuy& and uy8&, which are evaluated be
fore integration. From Eq.~31! it follows that the matrix

element̂ yu%̂uy8& can be experimentally obtained by avera

ing the function^yuK̂h(x2X̂f)uy8& over the quadrature out
comesx that are homodyne detected at random phasef
with respect to the LO, namely,

^yu%̂uy8&5^yuK̂h~x2X̂f!uy8&, ~33!
-

e

-

where the overbar denotes the experimental average.

functions ^yuK̂h(x2X̂f)uy8& for different vectorsuy& and
uy8& are called ‘‘pattern functions’’ after Ref.@5#.

In Ref. @4# the boundness of different types of matr

elements of the operator kernelK̂h(x2X̂f) was analyzed as
a function of the quantum efficiency. It was shown that f
the photon-number and coherent-state representations
matrix elements become unbounded forh<1/2. The fact that
h51/2 is a lower bound for measuring the state in any~not
exotic! representation was thoroughly discussed in Ref.@7#.
The way in which nonunit quantum efficiency manifests
detrimental effect when approaching the lower bound
through increasingly large statistical errors. Let us rest
our attention to the photon-number representation. Ath51,
as proven in Ref.@25#, the statistical errors of the diagona

matrix elementŝnu%̂un& saturate at the limiting valueA2/N

for sufficiently largen, independently of the state%̂ (N is the
number of data collected in the experiment!. Also, errors of
the off-diagonal elements increase very slowly versus
distance from the main diagonal. On the other hand, foh
,1 the errors increase dramatically versus eithern or
12h, and eventually become infinite at the lower bou
h51/2 @26#. In the next section we will see how this beha
ior manifests itself in the two-mode tomography measu
ment, on the basis of numerical results from Monte Ca
simulation experiments.

B. Multimode detection

It is easy to see that Eq.~27! can be extended because
linearity to the case ofM modes as follows:

R̂5E
CM )

l 51

M
d2wl

p
TrF R̂)

s51

M

D̂s~ws!G)
r 51

M

D̂r
†~wr !, ~34!

where R̂ now denotes the jointM -mode density operator

andD̂ l(wl) is the displacement operator for thel th mode. As
a consequence, Eq.~33! is extended to the multimode mea
surement in the following way:

^FuR̂uF8&5^Fu)
l 51

M

K̂h l
~xl2X̂f l

~ l !!uF8&, ~35!

where uF& and uF8& are now multimode vectors, and th
experimental average is taken over the random outcomexl

of the joint homodyne measurement of quadraturesX̂f l

( l ) , l

51, . . . ,M , of all M modes with random LO phasesf l ~we
have also let the quantum efficiency be different for ea
homodyne detector!. Equation~35! agrees with the results
obtained in Refs.@18#.

C. Two-mode tomography through self-homodyning

As we have seen in Sec. II, in the self-homodyne m

surement one can jointly measure the quadraturesX̂f
l and

X̂c
↔ of two different modesB̂l and B̂↔ , and thus, in prin-

ciple, perform a two-mode tomography of the OPA outp
However, in order to perform two-mode tomography w
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need uncorrelated phasesf and c for the quadratures
whereas in the self-homodyne measurement they are act
correlated. In fact, one has

f5arg~al1ta↔* !,
~36!

c5arg~a↔1tal* !.

In the case when we are interested in the photon distribu
of one mode only, we can assumea↔50. Then, by letting
the phase ofal fluctuate with a uniform distribution from 0
to 2p, one can perform one-mode tomography of Eq.~33!.
On the other hand, if we are interested in the joint phot
number distribution, then we cannot make the measurem
by simply averaging the two-mode pattern functions over
experimental outcomes as in Eq.~35!. This is because the
LO phasesf andc in this case are not independent rando
variables. We will show, however, that it is possible to ta
the correlation off and c into account and still perform
two-mode tomography by appropriately weighting the e
perimental outcomes in Eq.~35!. We first rewrite Eq.~35! in
the two-mode case as follows:

^FuR̂uF8&5E
0

2pdf

2pE0

2pdc

2pE2`

1`

dxE
2`

1`

dx8p~x,x8;f,c!

3^FuK̂h~x2X̂f
l !K̂h~x82X̂c

↔!uF8&. ~37!

We focus our attention on the phase average only. For L
with equal intensitiesua↔u5ualu and phaseswl5arg(al)
andw↔5arg(a↔), one has

f2c5wl2w↔ ,
~38!

f1c5wl1w↔12 arg@11te2 i ~wl1w↔!#.

After performing the change of variables

s5 1
2 ~wl1w↔!,

~39!

d5 1
2 ~wl2w↔!,

the average over the phases can be rewritten in terms o
average over the sum and difference phases with an ap
priate weighting function as follows:

E
0

2p df

2pE0

2p dc

2p
5E

2p

1p dd

2pE0

2p

dsw~s!, ~40!

where the weighting function is given by

w~s!5
1

2p

12t2

11t212t coss
. ~41!

Since the input phaseswl and w↔ can certainly be consid
ered as random and uncorrelated, the same must hold tru
their half-sums and half-differenced in Eq. ~39!. Then, the
measurement of the matrix element in Eq.~37! is obtained by
averaging over the experimental random phasess and d
with the weighting function~41!. Also, the weighting func-
tion can be rewritten in terms of the gaing(s) of the central-
frequency component that is given by
lly

n

-
nt
e

-

’s

he
ro-

for

g~s!5
umal1na↔* u2

ualu2 5m2~11t212t coss!. ~42!

Hence, the weighting function is simply

w~s!5
1

2pg~s!
, ~43!

which can be easily and independently measured for ev
data point while the homodyne data are collected.

This approach to phase averaging can also be used
detection of the645° modes mentioned in Sec. II B. In tha
case, the quadrature phases arg(a↗1ta↗* ) and arg(a↖
1ta↖* ) are independent, but nonuniformly distribute
Then, the averaging is done over the input phases
5arg(a↗) or s5arg(a↖), respectively, with the weighting
function ~43! given by the phase-sensitive gain of the cent
component.

D. Measuring the ‘‘bare’’ or the ‘‘dressed’’ state

For nonunit quantum efficiency one can measure the d
sity matrix elements forh above the boundh51/2. How-
ever, instead of measuring the density matrix of the statR̂
of interest, one can always measure the density matrix of
state that has been damped—or ‘‘dressed’’—by the quan
efficiency, without any limitation forh, even though such a
dressed state would be less and less significant for lo
quantum efficiencies. The concepts of ‘‘dressed’’ a
‘‘bare’’ states are two faces of the same measurement
scription when regarded in the equivalent Schro¨dinger and
Heisenberg pictures. The conventional description co
sponds to the Heisenberg picture, in which the true stat
also called the ‘‘signal’’ or the ‘‘bare’’ state—is measure
and the effect of quantum efficiency is ascribed to the de
tor observable~photocurrent!. In the ‘‘dressed’’ state de-
scription, on the other hand, one regards the measurem

with h,1 on the true stateR̂ as the corresponding hypo
thetical ‘‘bare measurement’’ withh51, but now on the

‘‘dressed’’ state R̂h , ascribing the effect of the nonun
quantum efficiency to the quantum state itself, rather than
the detector. In other words, the effect of the nonunit qu
tum efficiency is regarded in a Schro¨dinger-like picture, with

the state evolving fromR̂ to R̂h , where the quantum effi-
ciency plays the role of a time parameter.

An easy way to perform tomographic measurement o
dressed state is just to use the experimental data forh,1
and analyze them using the pattern function withh51. As
shown in Sec. II B, the effect of nonunit quantum efficien
is to convolve the quadrature-probability distributions for
LO phases with a Gaussian of varianceDh

2 given by Eq.~13!.
This corresponds to convolving the Wigner function with
isotropic Gaussian of the same varianceDh

2 in the complex
plane, which, in turn, corresponds to adding Gaussian n

to the quantum state. In terms of the bare state%̂, the state

Ĝh(%̂) dressed with the Gaussian noise is given by@27#

Ĝh~ %̂ !5E d2w

pn̄
exp~2uwu2/m̄!D̂~w!%̂D̂†~w!, ~44!
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where the noise-equivalent mean thermal photon numbem̄
is related to the quantum efficiency through

m̄52Dh
25

12h

2h
. ~45!

In the multimode case, one needs to apply the transforma
~44! repeatedly, once per each mode, with the correspon
displacement operator of the mode. In the context of mea
ing the bare state, Eq.~44! was exploited in Ref.@28# to
show that the measurement is possible even in the pres

of quantum noise, however, with no more thanm̄51/2 ther-
mal photons.

Another way of dressing the state, which is often e
ployed in experimental analysis of the tomographic data~see
Refs.@10,11,23#! is to consider the state that has undergon
loss equivalent toh. In this case, the analysis is done b
rescaling the output photocurrents byAh instead ofh as in
Eqs.~4!, and then using the pattern functions forh51. It is
easy to see that this procedure corresponds to measurin

dressed stateL̂h(%̂), which is related to the bare stater̂ as
follows:

L̂h~ %̂ !5 (
n50

`
~h21!n

n!
ânh2 ~1/2!â†â%̂h2 ~1/2!â†â~ â†!n.

~46!

Again, in the multimode case the transformation~46! is ap-
plied separately to all modes. One can also regard the s

L̂h(%̂) in Eq. ~46! as the state of the mod
Ahâ1A12h v̂—instead of the state of just the modeâ of
interest—wherev̂ is the independent vacuum-state mode
sponsible for the loss.

Before concluding this section, we need to say a f
words regarding the difference between the two dres

statesL̂h(%̂) andĜh(%̂). In the loss model corresponding t

L̂h(%̂), the dressed state loses some signal, and become
vacuum state in the limit ofh→0, independently of%̂,
which makes the state less and less meaningful for decr
ing h. On the other hand, in the Gaussian-noise model c

responding toĜh(%̂), there is no loss of signal, but the sta
gets an increasingly large number of thermal photons
decreasingh. In this way, the most interesting quantum fe
tures of the state—as, for example, oscillations in
photon-number probability—are lost, as shown in Ref.@4#,
and all states tend to look ‘‘classical.’’ In the next section w
will see these effects at work in some Monte Carlo numer
experiments for the two-mode case.

IV. MONTE CARLO SIMULATIONS

In this section we present some numerical results fr
Monte Carlo simulations of the self-homodyne measurem
Our aim is to analyze the feasibility of a real experiment a
to see how many measurements are needed for a state r
struction, especially in the presence of the detrimental ef
of nonunit quantum efficiency of the photodetectors. We w
restrict our analysis to the measurement of the joint den

matrix R̂ of the two modes,B̂l andB̂↔ , assumed to be in the
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correlated state given by Eq.~15!.
The simulation of the homodyne outcomes is based on

probability distribution in Eq.~20!, which shows how the
outcomes can be obtained from a Gaussian random gen
tor, starting from the generation ofx8, then generatingx, and
finally shifting the latter byckx8. The phasesf andc of the
quadrature are chosen randomly for every sample. The d
sity matrix in the photon-number representation is measu
by averaging the pattern functions over the random data

^n1 ,m1uR̂un2 ,m2&

5^n1uK̂h~x2X̂f!un2&^m1uK̂h~x82X̂c!um2&. ~47!

The pattern functions for a generich are obtained from the
pattern functions forh51, using the inverse generalize
Bernoulli transformation as in Ref.@29#. The pattern func-
tions for h51, in turn, are obtained from the factorizatio
formulas of Refs.@8# ~following our conventions for the
quadratures, we actually use the factorization formulas
given in Ref.@7#!. In Fig. 3 we show the results of a simu
lation for the measurement of the two-mode photon-num
probability p(n,m) for unit quantum efficiency. The theo
retically expected distribution, given by Eq.~17!, is shown in
Fig. 2 ~left!. In Fig. 4 the diagonal elementsp(n,n) of Fig. 3
are shown with their respective error bars, and compa
against the theoretical probability of Eq.~17!. From both
Figs. 3 and 4 we see that there is an excellent agreem
between the theoretically obtained and tomographically
constructed joint probabilities, and the fluctuations in the l
ter are already very small for a number of data samples
low as 106, which can be easily acquired within the stabili
time of a typical twin-beam setup.

In Figs. 5 and 6 the same tomographic measuremen
Figs. 3 and 4 is reported, but now for a quantum efficien
h50.8 for each detector. However, in the reconstruction,
pattern functions forh51 are used. As explained in Se

III D, this corresponds to a measurement of the stateĜh(R̂)
that has been dressed by the Gaussian-noise equivalent o
quantum efficiency, instead of a measurement of the t
twin-beam state.~For values of the quantum efficiencyh
50.8 andh50.9 used throughout this paper, the two kin
of state dressing—Gaussian-noise or loss—give sim
qualitative results.! The smearing effect of the nonunit qua
tum efficiency is evident in Fig. 5, where the perfect photo
number correlation between the two modes is smudged
sulting in nonvanishing probabilitiesp(n,m) for nÞm.

FIG. 3. Two-mode photon-number probabilityp(n,m) of the
twin-beam state of parametric fluorescence in Eq.~15! ~two differ-
ent perspectives!, obtained by a Monte Carlo simulation of sel

homodyne tomography at unit quantum efficiency forn̄510 and
with 106 simulated data.
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644 PRA 58D’ARIANO, VASILYEV, AND KUMAR
Because of the preservation of the normalization in
(n,m) plane, the diagonalp(n,n) is decreased, resulting i
the evident disagreement in Fig. 6, where the reconstru
diagonal elementsp(n,n) are reported with relative erro
bars and compared with the theoretical probability~17! for
the bare state.

In Fig. 7 we present the results of Monte Carlo simulati
for a realistic measurement of the bare state, but now u
the pattern functions with the correct experimental value
the quantum efficiencyh. One can see that the smearin
effect of the nonunit quantum efficiency has been clea
out, which, however, comes at the expense of increas
fluctuations for largen. This is even more evident in Fig. 8
where the reconstruction of the diagonal probabilityp(n,n)
for the bare state is shown for two different values,h50.9
and h50.8, of the quantum efficiency. One can see t
there is no longer the disagreement between the re
structed and the theoretical values, of the kind shown in F
6, but now the error bars have increased dramatically
largern, becoming worse for smallerh @cf. Fig. 8 ~right!#.

The off-diagonal number probabilities and the correlat
between the two modes can be analyzed by evaluating
following sums of matrix elements:

FIG. 4. Diagonal elementsp(n,n) of Fig. 3 ~shown by thin solid
line on an extended abscissa range! with their respective error bar
in gray shade, compared to the theoretical probability~17! ~thick
solid line!.

FIG. 5. Monte Carlo simulation of self-homodyne tomograp
of the two-mode photon-number probabilityp(n,m) for quantum
efficiencyh50.8 ~two different perspectives!. The state is the sam

as in Fig. 3, but in its Gaussian-noise dressed formĜh(R̂) @see Eq.
~44!#. Notice the smearing effect of the nonunit quantum efficien
e
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s~n!5(
l 50

n

^ l ,n2 l uR̂u l ,n2 l &, ~48!

dN~n!5 (
l 5max~2n,0!

N

^ l ,n1 l uR̂u l ,n1 l &. ~49!

The quantitys(n) is the probability distribution for the tota
number of photons in the two modes. The theoretical re
for our state in Eq.~15! is the oscillating function

s~n!5H ~12t2!t2n, n even

0, n odd, ~50!

similar to the photon-number distribution of a single-mo
squeezed vacuum@11,17#. On the other hand, the quantit
dN(n) represents the photon-number correlation between
two modes, and in the limitN→` is the Kronekerdn0 for a
twin-beam state. For finiteN its theoretical value for the stat
in Eq. ~15! can be evaluated to be

dN~n!5dn0~12t2~N11!!. ~51!

.

FIG. 6. The same as in Fig. 5, but for the diagonal eleme
p(n,n) only ~thin solid line with error bars in gray shade!, com-
pared to the theoretical probability~17! for the bare state~thick
solid line!. The disagreement between the theoretical probability

the bare stateR̂ and the simulated measurement for the dressed s

Ĝh(R̂) is a typical manifestation of the nonunit quantum efficienc

FIG. 7. Reconstruction of the bare state using the pattern fu
tions with the correct experimental value of the quantum efficien

h ~two different perspectives are shown!. Heren̄510, h50.9, and
we used 107 data samples for the Monte Carlo simulation.
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PRA 58 645SELF-HOMODYNE TOMOGRAPHY OF A TWIN-BEAM STATE
In Fig. 9 we show the results of a simulation of the to
photon-number probabilitys(n), Eq. ~48!, for h51 and
compare them to the theoretical value, Eq.~50!. As shown,
the theoretically expected distribution is well reproduc
from 106 data samples with very small statistical errors.
Fig. 10 a similar simulation is presented as in Fig. 9, but n
for a quantum efficiency ofh50.8. The total photon-numbe
probability s(n) is reconstructed for both the dressed st
and the bare state. Once again, one can see the sme
effect of the quantum efficiency in the dressed-state c
where the oscillations of the total photon number are alm
completely washed out. On the other hand, the oscillati
are nicely recovered in the reconstruction of the bare st
albeit at the expense of increasingly large statistical errors
Fig. 11 we present a simulation forh50.9 to show how
these quantum oscillations would be detected in an exp

mentally feasible measurement of the dressed state win̄
54 and 106 data samples.

FIG. 8. Reconstruction of the diagonal probabilityp(n,n) for
the bare state, using the pattern functions with the correct exp

mental value of the quantum efficiencyh. Here n̄510 and h
50.9 (0.8) in the left~right! figure. The theoretical probability
~thick solid lines! is superimposed onto the results of the Mon
Carlo experiments (107 data samples!; the latter are shown with
thin solid lines with statistical errors in gray shade. Notice that th
is no longer the disagreement shown in Fig. 6, but now error b
increase dramatically vsn and for smallerh.

FIG. 9. Oscillations of the total photon-number probabilitys(n)
in Eq. ~48! due to the perfect correlation of the photon number
the twin-beam state, Eq.~15!. Thin solid line with error bars in gray
shade represents the results of a Monte Carlo simulation with

quantum efficiency,n̄510, and 106 data samples. Thick solid line
is the theoretical result, Eq.~50!.
l
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Regarding measurement of the photon-number correla
dN(n) @Eqs.~49! and~51!#, comments similar to those mad
for the total photon-number probabilitys(n) hold. Figure 12
presents the results of a simulation of the correlation funct
for the twin-beam state withN5n̄510 and unit quantum
efficiency, whereas Fig. 13 shows the results of simulati
with quantum efficiencyh50.8, once again, reconstructin
the correlation for both the dressed-state and the bare-
cases. Here also, the nonunit quantum efficiency in the c
of dressed-state reconstruction partially smears out the
relation, which is well recovered in the case of bare-st
reconstruction. In Fig. 14, we compare the reconstructed
relation function for the dressed state in Fig. 13~left! to that
for two modes in uncorrelated coherent states, each ha
the same mean photon numbern̄510 as the modes of the
twin-beam state. One can see that, in spite of the detrime
effect of the nonunit quantum efficiency, the correlation f
the reconstructed dressed state is still stronger than tha
the uncorrelated coherent states, the latter representing
standard quantum limit.

ri-

e
rs

it

FIG. 10. Similar to Fig. 9, but for a quantum efficiencyh
50.8. Results for the Gaussian-noise-dressed state reconstru
are shown on the left and for the bare state reconstruction on

right. Heren̄510, and we used 53106 data samples for the left plo
and 107 data samples for the right plot. In the left plot, the ordina
is truncated at the maximum value of the simulated probability. T
oscillations are nicely recovered in the right plot, wherein patt
functions with the correct value of quantum efficiency~0.8! were
used for reconstruction.

FIG. 11. Similar to Fig. 10~left!, but for h50.9, n̄54, and 106

data samples.
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V. DISCUSSION

We have proposed a method for performing two-mo
optical-homodyne tomography of the twin beams produ
from a nondegenerate optical parametric amplifier. The lo
oscillators~LO’s! needed for the homodyne tomography a
generated in the same parametric process as the twin be
and, therefore, are automatically matched to the signal
idler twin-beam modes. In our self-homodyning method,
polarized central spectral component atv0 serves as the LO
for a mode that consists of two sidebands atv06V, and the
relative optical phase between the central component and
sidebands can be varied. We have presented a theore
description for both one- and two-mode tomography, w
main focus on measurement of the photon-number distr
tions. For the signal mode alone, a thermal distribution
photons is found, in agreement with the results of a rec
experiment@23#. In the case of two modes, we have pr
sented some selected Monte Carlo simulations of the tom
raphic measurement of the joint photon-number distri
tions, choosing realistic values for the quantum efficiency

FIG. 12. Correlation function, Eq.~49!, for the twin beam state

in Eq. ~15! with n̄510 andh51 reconstructed from 33105 data
samples. Results of the Monte Carlo simulation~thin solid line with
error bars in gray shade! are superimposed onto the theoretical c
relation, Eq.~51!, shown by thick solid line.

FIG. 13. Similar to Fig. 12, but forh50.8. Results for the
Gaussian-noise-dressed state reconstruction are shown on th
and for the bare state reconstruction on the right. In both sim
tions 53106 data samples were used. The nonunit quantum e
ciency in the dressed-state case partially smears out the correla
which is recovered in the bare-state reconstruction~right!, however
at the expense of increasingly large statistical errors.
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the photodetectors. In particular, we have analyzed the
sibility of detecting photon-number oscillations and deltali
photon correlation between the twin-beam modes. We h
shown that for ideal photodetectors such features can
clearly observed even with a small number of data samp
(106). However, for realistic quantum efficiencies the osc
lations are exhibited with less contrast in the dressed-s
reconstruction for the same number of data samples. On
other hand, for a tomographic measurement of the true
put state of the OPA, more data samples are needed in o
to reduce the statistical errors. Our Monte Carlo simulatio
show that for a quantum efficiency ofh50.9, the oscilla-
tions in the total photon number can be observed, even in
dressed-state reconstruction, with as little as 106 data
samples, which makes such an experiment feasible.

We have also shown how the self-homodyning meth
can be used in detection of the645°-polarized modes, in-
stead of the signal and idler modes. Since in a polarizati
nondegenerate optical parametric amplifier these modes
amplified independently, their joint photon-number distrib
tion is factorized into a product of marginal distribution
each exhibiting even-odd oscillations in its photon numbe

While the focus of our paper has been on the twin-be
state, the self-homodyning approach can be applied in o
instances as well. There are a number of mode-match
critical situations where it is possible to mix the signal wi
another mode that underwent a similar generation proces
key requirement in such situations would be the scanning
the relative phase between the two modes. Among poten
applications are detection of the superposition~Schröd-
inger’s cat! states, and squeezed states generated in op
fibers.
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FIG. 14. Comparison of the correlation function, Eq.~49!, for
the Gaussian-noise-dressed state of Fig. 13~left!, shown by thin
solid line with error bars in gray shade, with that for two modes
uncorrelated coherent states~thick solid line!, having the same

mean photon numbern̄510 per mode.
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In this Appendix we derive the joint probability distribu
tion, Eq.~19!, of the output photocurrents for two-mode h
modyne detection.

In the Fock representation, the state at the output of
NOPA is given by Eq.~15!, namely,
s

lle

s.
-

,

ol-

.

G.
e

uC&5~12t2!1/2(
n50

`

tnun,n&. ~A1!

Expanding the Fock stateun& in terms of the quadrature rep
resentationux&f for each mode, one has
g the
uC&5A2~12t2!

p E
2`

1`

dxE
2`

1`

dx8e2x22x82

(
n50

`
@te2 i ~f1c!#n

2nn!
Hn~A2x!Hn~A2x8!ux&f ^ ux8&c , ~A2!

whereHn(x) denotes the Hermite polynomial of degreen. Using the following identity@30#, which is valid for any complex
numberz,

(
n50

` ~ 1
2 z!n

n!
Hn~x!Hn~x8!5~12z2!21/2expH 2xx8z2~x21x82!z2

12z2 J , ~A3!

we can rewrite Eq.~A2! as

uC&5F12uku2

12k2 G1/2A2

pE2`

1`

dxE
2`

1`

dx8ux&f ^ ux8&cexpF4xx8k2~x21x82!~11k2!

12k2 G , ~A4!

wherek5texp@2i(f1c)# @the choice of the branch for the square root in the normalization of the state vector~A4! gives only
an overall phase factor that is irrelevant for probabilities#. Equation~A4! corresponds to the following joint probability:

p~x,x8;f,c!5
2

pudkd2ku
expF2

~x1x8!2

dk
2 2

~x2x8!2

d2k
2 G , ~A5!

where dk
25u11ku2/(12uku2). Nonunit quantum efficiency of the photodetectors is taken into account by evaluatin

convolution of the ideal joint probability in Eq.~A5! with Gaussians for each mode of variances given by Eq.~13!. This
immediately leads to Eq.~20!.
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