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Abstract

We consider the effect of loss on quantum-optical communication channels. The channel based on direct detection of
number states, which for a lossless transmission line would achieve the ultimate quantum channel capacity, is easily
degraded by loss. The same holds true for the channel based on homodyne detection of squeezed states, which also is very
fragile to loss. On the contrary, the ‘‘classical’’ channel based on heterodyne detection of coherent states is loss-invariant.
We optimize the a priori probability for the squeezed-state and the number-state channels, taking the effect of loss into
account. In the low power regime we achieve a sizeable improvement of the mutual information, and both the squeezed-state
and the number-state channels overcome the capacity of the coherent-state channel. In particular, the squeezed-state channel
beats the classical channel for total average number of photons N-8. However, for sufficiently high power the classical
channel always performs as the best one. For the number-state channel we show that with a loss hQ0.6 the optimized a
priori probability departs from the usual thermal-like behavior, and develops gaps of zero probability, with a considerable

Ž .improvement of the mutual information up to 70% of improvement at low power for attenuation hs0.15 . q 1998 Elsevier
Science B.V.

PACS: 03.65.–w; 42.50.Dv; 42.50.–p

1. Introduction

The detrimental effect of loss is a serious problem for
optical communications based on transmission of nonclas-
sical states of radiation. It is well known that the results for

w xthe lossless case 1–3 rapidly do not hold anymore for
w xincreasing losses 3–5 . As a matter of fact, as shown in

this paper, the ‘‘nonclassical’’ channels based on direct
detection of number states and homodyning of squeezed
states – channels that have been originally proposed in
order to improve the capacity of the ‘‘classical’’ channel
based on heterodyning of coherent states – both are much
more sensitive to loss than the classical channel. They also

w xhave been shown 5 to be easily degraded by additive
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Gaussian noise, which models any kind of environmental
effect due to linear interactions with random fields. Hence,
for long haul communications the great advantage of using
nonclassical states is completely lost, since a minimum
loss of 0.3 dBrkm is unavoidable with the current
optical-fiber technology. In the above scenario the opti-
mization of the quantum channel in the presence of loss is
the most relevant issue for achieving reliable communica-
tion schemes in practical situations.

Through a systematic approach, in this paper we evalu-
ate the optimal a priori probability in the presence of loss,
for both the squeezed-state and the number-state channels,
and compare the relative effectiveness in terms of mutual
information. Although for sufficiently high average trans-
mitted power even the optimized channels are anyway
beaten by the heterodyne one, at low power levels the
enhancement of the mutual information from optimization
makes both nonclassical channels more effective than the
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heterodyne one. As we will see in the following, such
improvement of the nonclassical channels is even more
dramatic for very strong attenuation and gives rise to
unexpected results.

The paper is organized as follows. In Section 2 we
introduce the master equation that models the effect of
loss, and we shortly review the heterodyne channel. Due to
the peculiar form of the master equation – which keeps
coherent states as coherent – in the presence of loss there
is no need for optimization of the a priori probability,
whereas the channel capacity only depends on the average
photon number at the receiver. In Section 3 the optimal a
priori probability for the squeezed-state channel is derived
analytically. We show that the optimal fraction of squeez-
ing photons rapidly decreases with loss, with a relative
improvement of the mutual information up to 30% at low
power for hs0.15. For total mean photon number N-8
the optimized squeezed-state channel beats the coherent-

w xstate one at any value of the loss. Following Hall 6 , we
also provide a general upper bound valid for any lossy
channel that uses homodyne detection, a bound that, how-
ever, is never achieved by our optimized squeezed-state
channel. Section 4 is devoted to the optimization of the
number-state channel. Using the recursive Blahut algo-

w xrithm 7 , we obtain an optimized a priori probability that
departs from the usual monotonically-decreasing thermal-
like behavior, and that, for attenuation hQ0.6, develops
gaps of zero probability at intermediate numbers of pho-
tons. An intuitive explanation of this result can be under-
stood as the effect of a loss so strong that it becomes more
convenient to use a smaller alphabet of well-spaced letters
in order to achieve a better distinguishability at the re-
ceiver. The sizeable improvement of the mutual informa-
tion – over 70% for high attenuation at low power –
partially stems the detrimental effect of loss. In Section 5
the main conclusions are drawn. The paper is accompanied

Žby many optimality capacity diagrams Figs. 2, 3, 6, 8 and
.9 , which compare the different communication channels,

giving the regions in the loss-power plane where each
channel is optimal with respect to the others.

2. Heterodyne channel

The communication channel based on heterodyne de-
tection encodes a complex variable on a coherent state
with Gaussian a priori distribution. The heterodyne 3 dB
detection noise is itself Gaussian additive, and the Gauss-
ian form of the a priori probability density that achieves
the channel capacity is dictated by the Shannon theorem
w x3,8 for Gaussian channels subjected to the quadratic
constraint of fixed average power. Under such constraint
the variance of the optimal Gaussian distribution equals
the value of the mean photon number N. In the following
we briefly redraw the analytical derivation of this result, in

order to show how the optimal a priori probability remains
unchanged in the presence of loss.

The effect of loss on a single-mode communication
channel is determined by the master equation

w x w † xE DsLL D(G n q1 L a DqG n L a DŽ .ˆ ˆ ˆ ˆt G a a

w x,G L a D , 1Ž .ˆ

where the superoperator LL gives the time derivative ofG

Žthe density matrix D of the radiation state in the interac-ˆ
.tion picture through the action of the Lindblad superoper-

1† † †w x Ž . w xators L a DsaD a y a aDqD a a 9 . The coefficientˆ ˆ ˆ ˆ2

G represents the damping rate, whereas n denotes thea

mean number of thermal photons at the frequency of mode
a, and can be neglected at optical frequencies. We intro-
duce the energy attenuation factor, or ‘‘loss’’, defined as
follows:

h(exp yG t , 2Ž . Ž .
according to the evolution of the average power

† † † LL tG² :a a t 'Tr a a D t sTr a ae D 0Ž . Ž . Ž .ˆ ˆ

² † :sh a a 0 . 3Ž . Ž .
More generally, h gives the scaling factor of any normal-
ordered operator function, namely

e LL k
G t : f a†,a :s : f h1r2a†,h1r2a : , 4Ž . Ž .Ž .

where LL k denotes the dual Liouvillian, which is definedG

through the identity

kLL t LL tG Gˆ ˆTr e O D sTr O e D , 5Ž .ˆ ˆŽ . Ž .
ˆvalid for any operator O. The mutual information transmit-

Ž .ted throughout the channel for a priori distribution p a of
the encoded complex variable a , and for input-output

Ž < . wconditional probability density Q b a , is given by 1–
x3,8

2 2 <Is d a p a d b Q b aŽ . Ž .H H

=
<Q b aŽ .

ln , 6Ž .
X X X2 <d a p a Q b aŽ . Ž .H

where the integrations are performed on the complex plane
with measure d2asd Rea d Im a . For heterodyning of a

< :coherent state a , the conditional probability density is
given by

1
2 2< <² < : < < <Q b a s b a s exp y bya . 7Ž .Ž . Ž .

p

Ž . Ž .In the presence of loss h, according to Eqs. 1 and 2 one
LLG tŽ < : ² <. < 1r2 : ² 1r2 <has e a a s h a h a , and hence the condi-

tional probability density simply rewrites

1
21r2< < <Q b a s exp y byh a . 8Ž .Ž . Ž .h

p
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The constraint of fixed average power at the transmitter
reads

2 ² < † < : 2 < < 2d a p a a a a a s d a p a a sN , 9Ž . Ž . Ž .H H
where in the following N will generally denote the total
mean photon number. We now maximize the mutual infor-

Ž .mation 6 over all possible normalized probability densi-
Ž . Ž . Ž .ties p a that satisfy the constraint 9 . Eq. 6 can be

simplified as follows:

Isylnpy1y d2b f b ln f b , 10Ž . Ž . Ž .H
Ž .where f b denotes the unconditioned or a posteriori

probability, namely

2 <f b s d a p a Q b a . 11Ž . Ž . Ž .Ž .H h

Ž .By transferring the normalization and power constraints
Ž . Ž .from p a to f b , we can maximize the mutual informa-

Ž .tion with respect to f b through a variational calculus on
Ž . Ž .Eq. 10 . While normalization condition for p a simply

Ž .corresponds to normalization of f b , the fixed-power
constraint needs the following algebra:

2 < < 2Ns d a p a aŽ .H
d2b

22 < <s d a p a aŽ .H H
h

=
< < 21 b

2< <exp y yh a qbaqbaž /p h

1
22 < <s d b b y1 f b , 12Ž . Ž .Ž .H

h

where the bar denotes the complex conjugate number.
Hence, the variational equation for the mutual information
writes

d m
22 2 < <0s Iyl d b f b y d b b y1 f b ,Ž . Ž .Ž .H H

d f h

13Ž .

Ž .with I given by Eq. 10 , and with l and m as Lagrange
Ž .multipliers to be determined. It is easy found that Eq. 13

has the Gaussian solution

< < 21 b
f b s exp y , 14Ž . Ž .ž /p hNq1 hNq1Ž .

Ž . Ž .and from Eqs. 10 and 14 one obtains the capacity of the
heterodyne channel in the presence of loss

Cs ln 1qhN . 15Ž . Ž .
Hence, the channel capacity depends only on the mean

Ž . Ž .photon number hN at the receiver. Eqs. 11 and 14 give
the optimal a priori probability density

< < 21 a
p a s exp y , 16Ž . Ž .ž /p N N

which is manifestly independent of h, with the conse-
quence that the optimal a priori probability for the lossless
heterodyne channel is still optimal in the presence of loss.
This result is due to the peculiar form of the master Eq.
Ž .1 , which keeps coherent states as coherent. As we will
show in the following, this will no longer hold true for the
squeezed-state and the number-state channels.

3. Homodyne channel

The homodyne channel encodes a real variable x on
the quadrature-squeezed state

< : < :x sD x S r 0 , 17Ž . Ž . Ž .r

< :which is generated from the vacuum 0 through the action
Ž .of the displacement operator D x and of the squeezed

Ž .operator S r , which are defined as follows:

†D x sexp x a ya , 18Ž . Ž . Ž .
r

2 †2S r sexp a ya . 19Ž . Ž . Ž .
2

The decoding is performed by homodyning a fixed quadra-
ˆ †Ž .ture, say X' aqa r2. For lossless transmission, the

conditional probability density of getting the value xX

< :when the transmitted state is x writesr

2X1 x yxŽ .
X X 2< <² < : <Q x x s x x s exp y ,Ž . r ( 2 22pD 2 D

20Ž .
X ˆ< :where x denotes the eigenstate of X, and the variance is

given by D2 sey2 rr4. According to Shannon’s theorem
w x Ž .3,8 the optimal a priori probability p x for the ideal
homodyne channel has the Gaussian form

21 x
p x s exp y , 21Ž . Ž .( 2 2ž /2ps 2s

with variance

N Nq1Ž .
2s s . 22Ž .

2 Nq1

The fixed-power constraint is given by

² < † < : 2 2Ns d x p x x a a x s d x p x x qsinh rŽ . Ž .Ž .H r Hr

ss 2 qsinh2r . 23Ž .
Ž .Hence, Eq. 22 corresponds to fix the fraction of squeez-



( )G.M. D’Ariano, M.F. SacchirOptics Communications 149 1998 152–161 155

2 2 Ž .ing photons at the value sinh rsN r 2 Nq1 . The ca-
pacity is given by

X <Q x xŽ .
X X <Cs d x d x p x Q x x lnŽ . Ž .H H

X <d x p x Q x xŽ . Ž .˜ ˜ ˜H
s 2

1s ln 1q s ln 1q2 N . 24Ž . Ž .2 2ž /D

Ž .In the presence of loss, by means of the identity 4 and
the following normal-ordered representation of the quadra-
ture projector:

dl 2 †yil x yl r8 i la r2 i lar2ˆ< : ² <x x sd Xyx s e e e e ,Ž . H
2p

25Ž .

one obtains the conditional probability density
X < ² X < LLG t < : ² < < X:Q x x s x e x x xŽ . Ž .rrh

k XLL tG ˆ < : ² <sTr e d Xyx x xŽ .Ž . rr

dl X 2 1r2 ˆyil x yl Ž1yh .r8 ih l X < : ² <sTr e e e x xH rr
2p

2X 1r21 x yh xŽ .
s exp y , 26Ž .2 2(2pD 2 Dh h

where
12 y2 rD s 1yh 1ye . 27Ž . Ž .h 4

ŽFor Gaussian a priori probability with variance Ny
2 . Ž .sinh r , which satisfies the fixed-power constraint 23 ,

the mutual information is given by

4h Nysinh2rŽ .
1Is ln 1q . 28Ž .2 y2 rž /1yh 1yeŽ .

Ž . y2 rUpon maximizing Eq. 28 with respect to j'e we
obtain

24j Ny 1yjŽ .
1Is ln 1q , 29Ž .2 2ž /w xj q 1yh rh jŽ .

with

'hq 1q4h 1yh NŽ .
js . 30Ž .

4Nq1 hq1Ž .
The optimal number of squeezing photons is given by
Ž .jq1rjy2 r4, and it is plotted versus N in Fig. 1 for
some values of the attenuation h. One can see that the
optimal fraction of squeezing photons rapidly decreases
with attenuation. This means that for increasing loss it is
more and more unprofitable to use much power to squeeze
the quadrature of the signal, since the quantum noise of the
state at the receiver approaches to that of the coherent
state. These results agree with previous investigations on

Fig. 1. Number of squeezing photons that optimizes the lossy
homodyne channel versus the total average number of photons, at
different values of the attenuation factor h. From the top to the
bottom, the plotted lines refer to hs1, 0.95, 0.85, 0.7, 0.5.

w xthe loss effects in terms of signal-to-noise ratio 4 . Figs. 2
and 3 are optimality capacity diagrams, which compare
different channels giving the regions on the loss-power
plane where each channel is optimal. The coherent-state
channel is compared to the squeezed-state channel without
and with loss-dependent optimization in Fig. 2 and Fig. 3,
respectively. One can see that the optimization leads to a
sizeable improvement of the mutual information, espe-

Žcially for strong attenuation and low power see also Fig.
.4 , making the diagram symmetric around the hs1r2

vertical axis. Notice the location of the minimum at hs0.5
and Ns8 on the boundary between the optimality regions
in Fig. 3: this means that for mean power less than eight
photons the squeezed-state channel always beats the coher-
ent-state one, independently of attenuation.

Fig. 2. Optimality capacity diagram, which represents the region
Ž .where the coherent-state channel is optimal black area and that

Ž .where the squeezed-state channel is optimal instead green area .
Both channels are the customary ones, which were optimized for
the lossless case.
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Fig. 3. Optimality capacity diagram comparing the coherent-state
channel to the squeezed-state channel in the presence of loss.
Among the two channels, in the grey region the squeezed state
channel has the highest capacity, whereas in the black region the
coherent state channel is the best.

Through a kind of exclusion principle for the informa-
w xtion contents of quantum observables 6 , Hall has proved

an upper bound for the information that can be achieved
by a homodyne channel subjected to Gaussian noise. Fol-
lowing Hall’s method, here we prove the following upper
bound for any lossy channel that uses homodyne detection:

IF ln 1q2hN . 31Ž . Ž .
ˆŽ < .By denoting with S A D the entropy associated to theˆ
² < < :probability distribution a D a of the eigenvalue a of theˆ

ˆobservable A when the state is D , namelyˆ

<̂ ² < < : ² < < :S A D sy da a D a ln a D a , 32Ž .ˆ ˆ ˆŽ . H
the mutual information retrieved from the measurement of

Fig. 4. Per cent improvement of the mutual information versus the
total average number of photons N, with h-dependent optimiza-
tion. The plotted lines refer to different values of the attenuation
factor h. From the top to the bottom hs0.15, 0.25, 0.4, 0.6, 0.9.

ˆthe observable A on a member of the ensemble specified
by the density matrix DsÝ p D is given byˆ ˆi i i

ˆ ˆ ˆ< < <I A D sS A D y p S A D . 33Ž .ˆ ˆ ˆŽ . Ž . Ý Ž .i i
i

A simple variational calculation gives the upper bounds

1 1 2ˆ ˆ< ² :S X D F q ln 2p DX , 34Ž .ˆŽ . DŽ .ˆ2 2

1 1 2ˆ ˆ< ² :S Y D F q ln 2p DY , 35Ž .ˆŽ . DŽ .ˆ2 2

for the entropy associated to the conjugated quadratures
ˆ † ˆ †Ž . Ž . ² :Xs aqa r2 and Ys aya r2 i, the notation . . . D̂

representing the ensemble average with density operator D.ˆ
Moreover, writing D as a mixture of pure statesˆ

< : ² <Ds p c c , 36Ž .ˆ Ý j j j
j

from the concavity of entropy one has

ˆ LLG t LL k
G t ˆ< <S X e D sS e X Dˆ ˆŽ . Ž .

LL k
G t ˆ < < : ² <G p S e X c cŽ .Ý j j jž /

j

LL k
G t ˆ < < : ² <G inf S e X c c , 37Ž .Ž .j j jž /

ˆand analogously for the other quadrature Y. A derivation
Ž .similar to that of Eq. 26 leads to the conditional probabil-

ity

< LLG t < : ² <p x e c cŽ .Ž .j j

1r22
sTr ½ p 1yhŽ .

21r2 ˆ2 h XyxŽ .
< : ² <=exp y c cj j 51yh

1r2 ˆ < : ² <'Tr G h Xyx c c , 38Ž .Ž . j j

where we introduced the Gaussian operator-valued mea-
sure defined as follows:

1r22
1r2 ˆG h Xyx 'Ž .

p 1yhŽ .

=

21r2 ˆ2 h XyxŽ .
exp y . 39Ž .

1yh

² <By varying over the bra c the following quantity:j

LL k
G t ˆ LL k

G t ˆ< < : ² < < < : ² <JsS e X c c qS e Y c cŽ . Ž .j j j jž / ž /
² < :yl c c y1 , 40Ž .Ž .j j
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one obtains the variational equation

d J
1r2 ˆ0s sy d x G h XyxŽ .H² <d cj

= 1r2 ˆ < : ² < < :ln Tr G h Xyx c c cŽ .½ 5j j j

1r2 ˆy d y G h YyyŽ .H
= 1r2 ˆ < : ² < < :ln Tr G h Yyy c c cŽ .½ 5j j j

< :y lq2 c , 41Ž . Ž .j

where l is the Lagrange multiplier for the normalization
< :constraint relative to the state c . It can be easily verifiedj
< : < : Ž .that the case of vacuum state c ' 0 satisfies Eq. 41 .j

Ž .Then, from Eq. 37 along with the following relation:

2k 1 1LL tG ˆ < < : ² <S e O 0 0 s y ln 42Ž . Ž .Ž . 2 2 ž /p

ˆthat holds for any quadrature operator O, one has

p
LL t LL tG Gˆ ˆ< <S X e D qS Y e D G1q ln . 43Ž .ˆ ˆŽ . Ž . ž /2

Ž . Ž .On the other hand, from Eqs. 34 and 35 one obtains

ˆ LLG t ˆ LLG t< <S X e D qS Y e Dˆ ˆŽ . Ž .
1 2 2ˆ ˆLL t LL t² : ² :F1q ln 2p q ln DX DY . 44Ž . Ž .G Ge D e Dˆ ˆž /2

Ž .The product of the expectation values in Eq. 44 can be
maximized as follows:

12 2 2ˆ ˆ ˆLL t LL t² : ² : ² :DX DY s h DX q 1yhŽ .G Ge D e D Dˆ ˆ ˆ 4

12ˆ² := h DY q 1yhŽ .D̂ 4

21yh
1 2 2ˆ ˆ² : ² :F h X q Y qD Dˆ ˆž /4 2

21 1†² :F h a a q , 45Ž .Ž .D̂4 2

and we obtain

ˆ LLG t ˆ LLG t< <S X e D qS Y e Dˆ ˆŽ . Ž .
p

†² :F1q ln q ln 1q2h a a . 46Ž .Ž .D̂ž /2

Ž . Ž . Ž .Finally, inequalities 43 and 46 , together with Eq. 33
yield the information exclusion relation

ˆ LLG t ˆ LLG t< <I X e D q I Y e D F ln 1q2hN , 47Ž . Ž .ˆ ˆŽ . Ž .
² † : Ž . Ž .where Ns a a . From Eq. 47 the bound 31 followsD̂

as a particular case. From the above derivation we see that
Ž .the bound 31 holds for any lossy channel that employs

homodyne detection.
Ž .The upper bound 31 is trivially achieved for hs1 by

a Gaussian ensemble of squeezed states, however, in the

presence of loss it is not reached by our optimized channel.
As a matter of fact, there is still room for a slight improve-
ment of the mutual information if one allows the squeezing

Ž .r to vary as a function of the signal x in Eq. 17 .
However, such further optimization is not achievable ana-
lytically – due to the now non-Gaussian form of the
conditional probability density – nor it can be worked out
numerically, as no viable method is at hand.

4. Direct-detected channel

The ideal communication channel that uses direct de-
tection of Fock-states with thermal a priori probability

n1 N
thp s 48Ž .n ž /1qN 1qN

Žachieves the ultimate quantum capacity the Holevo bound
w x.1,2 with the constraint of fixed average number of
photons N. The ultimate quantum capacity is given by

1
Cs ln 1qN qN ln 1q . 49Ž . Ž .ž /N

For ideal transmission the conditional probability density
is given by the Kronecker delta d . In the presence ofm,n

loss this is replaced by the binomial distribution

nymn mQ h s h 1yh , 50Ž . Ž . Ž .m ,n ž /m

which represents the probability of detecting m photons
< :when the transmitted state is n . The number-state chan-

nel is more sensitive to loss than the coherent-state and the
squeezed-state ones. In Fig. 5 the mutual information for
the three channels is plotted versus h, at fixed power
Ns10, and with the customary a priori probabilities opti-

w Ž . Ž . Ž .xmized for the lossless case Eqs. 16 , 21 and 48 . One

Fig. 5. Mutual information versus attenuation for the number-state
Ž . Ž . Žsolid , the coherent-state dashed , and the squeezed-state dash-

.dotted channels. The fixed average number of photons is Ns10.
The a priori probability densities are the customary ones for the

w Ž . Ž . Ž . xlossless case Eqs. 48 , 16 and 21 , respectively .
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Fig. 6. Optimality capacity diagram with h-independent optimiza-
tion. Black region: the coherent-state channel is optimal; dark grey
region: the number-state channel is optimal.

can see that at this power level a signal attenuation of 0.5
dB is sufficient to degrade the number-state channel below
the capacity of the coherent-state channel, whereas at
higher power levels the effect is even more dramatic. The
optimality capacity diagram in Fig. 6 compares the num-
ber-state with the coherent-state channels. One can see that
in the presence of loss the number-state channel rapidly
loses off its efficiency, especially for high power and
strong attenuation.

Now we address the problem of optimizing the a priori
probability distribution in the presence of loss. In principle
one could perform the optimization analytically by varying

� 4the information over the infinite set of variables p ,n

however with no viable method for constraining each pn

to be nonnegative. For this reason we decided to carry out

the optimization numerically, using the recursive Blahut
w xalgorithm 7 . The recursion is given by

Q hŽ .k ,nŽ rq1.c sexp Q h ln ymn ,Ž .Ýn k ,n Ž r .p Q hŽ .ž /Ý m k ,mk
m

cŽr .
nŽ rq1. Ž r .p sp , 51Ž .n n Ž r . Ž r .p cÝ m m

m

where pŽr . is the a priori probability at the r th iteration,n
Ž . Ž .Q h is the conditional probability 50 , and m is thek,n

Lagrange multiplier for the average-power constraint. The
series are actually truncated to a finite dimension, corre-
sponding to a maximum allowed number of photons. Blahut
proved that the quantity

J Žr .s I Žr .ymN Žr . 52Ž .
is increasing versus r, and achieves the desired bound, I Žr .

and N Žr . denoting the mutual information and the average
photon number with the r th iterated a priori probability
pŽr .. For a given m one evaluates the limit of pŽr . forn n

Ž .r™` under the recursion 51 , and determines the mutual
information I and the mean photon number N for such
limiting pŽ`.: in this way the capacity versus power Isn
Ž .I N is obtained as parameterized by m.

Now we present some numerical results. Fig. 7 shows
the number probability distribution for different values of
loss and power, evaluated by means of the Blahut recur-
sive algorithm, stopped at 105 iterations. The Hilbert space
has been truncated at dimension 200, however, truncation
at 100 gives almost identical results. For stronger loss, the
optimal a priori probability departs from the thermal-like
behavior, with an enhanced vacuum probability. For loss

Ž .hQ0.6 see Fig. 7 the probability plot develops gaps of
zero probability at intermediate numbers of photons. This

Ž .Fig. 7. A a priori probability p n versus n for different values of the attenuation factor h and the average power N, optimized in the
Ž . Ž . Ž . Ž . Ž .presence of loss. a hs0.9, Ns8.575, b hs0.75, Ns2.872, c hs0.6, Ns2.414, d hs0.6, Ns6.930 e hs0.55, Ns2.288,

Ž . Ž . Ž . w xf hs0.55, Ns6.729, g hs0.4, Ns1.888, h hs0.15, Ns4.040 see Table 1 .
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Ž .Fig. 7 continued .

can be intuitively understood as the effect of a loss so
strong that it becomes more convenient to use a smaller
alphabet of well-spaced letters in order to achieve a better
distinguishability at the receiver. The increase of the prob-
ability pertinent the vacuum state comes clearly from the
constant-energy constraint. Table 1 provides a list of nu-

Ž .merical results pertaining Fig. 7 . It gives the per cent
improvement of the mutual information after optimization,

along with the absolute value of the mutual information for
the optimized number-state channel, for the number-state
channel with customary thermal probability and for the
coherent-state channel at given value of the loss and of the
mean photon number. Also the values of the quantities eI

and e are reported, for convergence estimation of theP
Ž .Blahut recursion 52 . They are defined as the increment

Žr . Ž ry1. Ž r . Ž .e sJ yJ of the quantity J in Eq. 52 , and theI
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Table 1
Ž . Ž . Ž .Numerical values relative to the plots a – h of Fig. 7. The table lists the following quantities: attenuation factor h ; average number of

Ž . Ž . Ž . Ž .photons N ; mutual information in bits I for the optimized number-state channel, I for the number-state channel with customaryopt th
Ž . Ž .thermal probability, I for the coherent-state channel; per cent improvement % of the mutual information due to the optimization;coh

Ž .convergence parameters e and e see textP I

plot h N I I I % e eopt th coh P I

y12 y18Ž .a 0.9 8.575 3.157 3.097 3.124 1.93 2=10 1=10
y1 3 y18Ž .b 0.75 2.827 1.775 1.699 1.642 4.50 4=10 1=10
y8 y14Ž .c 0.6 2.414 1.340 1.218 1.292 10.03 1=10 1=10
y8 y14Ž .d 0.6 6.930 1.935 1.745 2.367 10.90 2=10 6=10
y8 y13Ž .e 0.55 2.288 1.219 1.083 1.175 12.56 8=10 7=10
y7 y12Ž .f 0.55 6.729 1.803 1.595 2.233 13.07 1=10 2=10
y8 y12Ž .g 0.4 1.888 0.887 0.715 0.812 24.18 6=10 2=10
y9 y13Ž .h 0.15 4.040 0.720 0.416 0.684 73.08 8=10 2=10

< Žr . Ž ry1. <distance e s max p y p between probabilityP n n n

plots, both e and e being evaluated at the last iterationI P

step rs105. One can see that, according to the small
values of e and e , the algorithm is converging quite fastI P
Žindeed only 10 steps are usually sufficient to obtain an

.estimate of the capacity up to the second digit . With the
occurrence of gaps in the a priori probability, the relative
improvement of the mutual information increases even
more dramatically, up to 70% for strong attenuation hs
0.15. At low power, this improvement allows the direct-de-
tection channel to overcome the coherent-state channel

wcapacity see Figs. 7a, 7c, 7e, 7g, 7h and their pertaining
xnumerical values in Table 1 . The optimality capacity

diagram in Fig. 8 compares the optimized number-state
channel with the coherent-state channel. Notice the differ-
ence with respect to Fig. 3: here the optimized number-state
channel beats the heterodyne channel at power much lower
than for the optimized squeezed-state channel in Fig. 3. As

Fig. 8. Optimality capacity diagram comparing the coherent-state
with the optimized number-state channels. In the dark grey region
the optimized number-state channel achieves a superior capacity,
whereas in the black region it is the coherent-state channel the
optimal one.

for the squeezed-state channel, the optimization makes the
diagram more symmetric around the hs1r2 vertical axis.

5. Conclusions

We analyzed the detrimental effect of loss on narrow-
Ž .band quantum-optical channels based on i heterodyne

Ž .detection of coherent states, ii homodyne detection of
Ž .squeezed states and iii direct detection of number states.

We have shown that the squeezed-state channel and, even
more, the number-state channel, are both easily degraded
by loss below the capacity of the coherent-state channel.
Because of the peculiar form of the master equation for the
loss, the coherent-state channel does not need optimiza-
tion, and remains as the most efficient one at sufficiently
high power.

Fig. 9. Optimality capacity diagram. In the black region the
coherent-state channel has the highest capacity, in the light grey
region the best channel is the optimized squeezed-state one.
Finally, in the dark grey region the optimal channel is the
optimized number-state one.
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The optimization of the squeezed-state channel leads to
Ža sizeable improvement of the mutual information over

.30% for hs0.15 at low power . Correspondingly, the
optimal fraction of squeezing photons rapidly decreases
with attenuation. For total average number of photons
N-8 the squeezed-state channel is always more efficient
than the coherent-state one, independently of attenuation
h. The optimization has been performed at constant
squeezing, whereas the problem of optimizing a signal-de-
pendent squeezing is still open.

As regards the number-state channel, we applied the
Blahut recursive algorithm to evaluate the optimal a priori
probability and the channel capacity. The improvement of
the mutual information is considerable, achieving 70% for
hs0.15. The optimal a priori probability departs from the
usual monotonic thermal-like distribution, and for hQ0.6
it develops gaps of zero probability at intermediate number
of photons. At low power the optimization of the number-
state channel makes its capacity better than that of the
coherent-state channel.

A comprehensive view of the numerical results of this
paper is offered by the optimality capacity diagram in Fig.
9: there one can find the regions on the loss-power plane
where the coherent-state, the optimized squeezed-state, and

the optimized number-state channels are respectively opti-
mal.
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