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Tomographic measurements of nonclassical radiation states
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We propose to test experimentally the nonclassical character of radiation states through homodyne tomog-
raphy. For single-mode states we check violations of inequalities involving the photon-number probability. For
two-mode states we test the nonclassicality by reconstructing some suitable number-operator functions. The
test can be performed with available quantum efficiency of homodyne detection, by measuring the pertaining
quantities on the corresponding noisy states.
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I. INTRODUCTION

The concept of nonclassical states of light has dra
much attention in quantum optics@1–11#. The customary
definition of nonclassicality is given in terms of the Glaube
SudarshanP function: a nonclassical state does not admi
regular positiveP-function representation, that is, it cann
be written as a statistical mixture of coherent states. S
states produce effects that have no classical analog. T
kinds of states are of fundamental relevance not only for
demonstration of the inadequacy of a classical descript
but also for applications, e.g., in the realms of informati
transmission and interferometric measurements@5,6,10#.

In this paper we are interested in testing the nonclassi
ity of a quantum state by means of an operational criteriu
which is based on a set of quantities that can be meas
experimentally with some given level of confidence, even
the presence of loss, noise, and less-than-unity quantum
ficiency. The positivity of theP function itself cannot be
adopted as a test, since there is no method available to m
sure it. TheP function is a Fourier transform on the comple
plane of the generating function for the normal-ordered m
ments; hence, in principle, it could be recovered by mea
ing all the quadrature components of the field, and sub
quently performing an ~deconvolved! inverse Radon
transform@12#. Currently, there is a well-established quan
tative method for such a universal homodyne measurem
and it is usually referred to as quantum homodyne tomog
phy ~see Ref.@13# for a review!. However, as proven in Ref
@14#, only the generalized Wigner functions of orders,1
2h21 can be measured,h being the quantum efficiency o
homodyne detection. Hence, through this technique, all fu
tions from s51 to 0 cannot be recovered, i.e., we cann
obtain theP function and all its smoothed convolutions up
the customary Wigner function. For the same reason,
nonclassicality parameter proposed by Lee@8#, namely, the
maximums parameter that provides a positive distributio
cannot be experimentally measured.

Among the many manifestations of nonclassical effec
one finds squeezing, antibunching, even-odd oscillation
the photon-number probability, and negativity of the Wign
PRA 591050-2947/99/59~1!/826~5!/$15.00
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function @2–5,10,15–17#. Any of these features alone, how
ever, does not represent the univocal criterium we are lo
ing for. Neither squeezing nor antibunching provides a n
essary condition for nonclassicality@7#. The negativity of the
Wigner function, which is well exhibited by the Fock stat
and the Schro¨dinger-cat-like states, is absent for th
squeezed states. As for the oscillations in the photon-num
probability, some even-odd oscillations can be simply o
tained by using a statistical mixture of coherent states@18#.

Many authors @7,9,11# have adopted the non
positivity of the phase-averagedP function F(I )5(1/
2p)*0

2pdf P(I 1/2eif) as the definition for a nonclassica
state, sinceF(I ),0 invalidates Mandel’s semiclassical fo
mula@1# of photon counting, i.e., it does not allow a classic
description in terms of a stochastic intensity. Of cour
some states can exhibit a ‘‘weak’’ nonclassicality@11#,
namely, a positiveF(I ), but with a nonpositiveP function ~a
relevant example being a coherent state undergoing K
type self-phase modulation!. However, from the point of
view of the detection theory, such ‘‘weak’’ nonclassic
states still admit a classical description in terms of having
intensity probabilityF(I ).0. For this reason, we adopt th
nonpositivity ofF(I ) as the definition of nonclassicality.

II. SINGLE-MODE NONCLASSICALITY

The authors of Refs.@7,9,11# have recognized relation
betweenF(I ) and generalized moments of the photon dis
bution, which, in turn, can be used to test the nonclassica
The problem is reduced to an infinite set of inequalities t
provide both necessary and sufficient conditions for nonc
sicality @9#. In terms of the photon-number probabilit
p(n)5^nur̂un& of the state with density matrixr̂, the sim-
plest sufficient condition involves the following three-poi
relation forp(n) @9,11#:

B~n![~n12!p~n!p~n12!2~n11!@p~n11!#2,0 .
~1!

Higher-order sufficient conditions involve five-, seven
. . . ,(2k11)-point relations, always for adjacent values
826 ©1999 The American Physical Society
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n. It is sufficient that just one of these inequalities be sa
fied in order to assure the negativity ofF(I ). Notice that for
a coherent stateB(n)50 identically for alln.

In the following we show that quantum tomography c
be used as a powerful tool for performing the nonclassica
test in Eq. ~1!. For less-than-unity quantum efficiency (h
,1), we rely on the concept of a ‘‘noisy state’’%̂h , wherein
the effect of quantum efficiency is ascribed to the quant
state itself rather than to the detector. In this model, the
fect of quantum efficiency is treated in a Schro¨dinger-like
picture, with the state evolving from%̂ to %̂h , and withh
playing the role of a time parameter. Such lossy evolution
described by the master equation

] t%̂~ t !5
G

2
$2â%̂~ t !â†2â†â%̂~ t !2%̂~ t !â†â%, ~2!

wherein%̂(t)[%̂h with t52 ln h/G.
For the nonclassicality test, reconstruction in terms of

noisy state has many advantages over the true-state re
struction. In fact, for nonunit quantum efficiencyh,1 the
tomographic method introduces errors forp(n) which are
increasingly large versusn, with the additional limitation that
quantum efficiency must be greater than the minimum va
h50.5 @19,20#. On the other hand, the reconstruction of t
noisy-state probabilitiesph(n)5^nur̂hun& does not suffer
such limitations, and even though all quantum features
certainly diminished in the noisy-state description, nevert
less the effect of nonunity quantum efficiency does
change the sign of theP function, but only rescales it a
follows:

P~z!→Ph~z!5
1

h
P~z/h1/2!. ~3!

Hence inequality~1! still represents a sufficient condition fo
nonclassicality when the original probabilitiesp(n)
5^nur̂un& are replaced with the noisy-state probabiliti
ph(n)5^nur̂hun&, the latter being given by the Bernoul
convolution

ph~n!5 (
k5n

` S k
nDhn~12h!k2np~k!. ~4!

Hence, when it refers to the noisy-state probabilitiesph(n),
the inequality in Eq.~1! keeps its form and simply rewrite
as follows:

Bh~n![~n12!ph~n!ph~n12!2~n11!@ph~n11!#2,0.
~5!

According to Eq.~5!, the quantityBh(n) is nonlinear in
the density matrix. This means thatBh(n) cannot be mea-
sured by averaging a suitable kernel function over the ho
dyne data, as for any other observable@14#. Hence in the
evaluation ofBh(n) one needs to tomographically reco
struct the photon-number probabilities, using the ker
functions@19#
-
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Kh
~n!~x!52k2e2k2x2

(
n50

n
~2 !n

n! S n
n2n D ~2n11!!k2n

3Re$D2~2n12!~22ikx!%, ~6!

where Ds(z) denotes the parabolic cylinder function, an
k5Ah/(2h21). The true-state probabilitiesp(n) are ob-
tained by averaging the kernel function in Eq.~6! over the
homodyne data. On the other hand, the noisy-state proba
ties ph(n) are obtained by using the kernel function in E
~6! for h51, without recovering the convolution effect o
nonunit quantum efficiency. Notice that expression~6! does
not depend on the phase of the quadrature. Hence a kn
edge of the phase of the local oscillator in the homody
detector is not needed for the tomographic reconstruct
and it can be left fluctuating in a real experiment.

Regarding the estimation of statistical errors, they
generally obtained by dividing the set of homodyne data i
blocks. However, in the present case, the nonlinear dep
dence on the photon number probability introduces a syst
atic error that is vanishingly small for increasingly larger s
of data. Therefore, the estimated value ofB(n) will be ob-
tained from the full set of data, instead of averaging t
mean value of the different statistical blocks.

In Figs. 1–7 we present some numerical results that
obtained by a Monte Carlo simulation of a quantum tomo
raphy experiment. The nonclassicality criterium is tested
ther on a Schro¨dinger-cat stateuc(a)&}(ua&1u2a&) or on
a squeezed stateua,r &[D(a)S(r )u0&, wherein ua&, D(a),
andS(r ) denote a coherent state with amplitudea, the dis-
placement operatorD(a)5eaâ†2āâ, and the squeezing op
eratorS(r )5er (â†22â2)/2, respectively. Figs. 1–3 show tomo
graphically obtained values ofB(n), with the respective
error bars superimposed, along with the theoretical values
a Schro¨dinger-cat state, for a phase-squeezed state (r .0),
and for an amplitude-squeezed state (r ,0), respectively.
For the same set of states the results forBh(n) @cf. Eq. ~5!#
obtained by tomographic reconstruction of the noisy state
reported in Figs. 4–6. Let us compare the statistical err

FIG. 1. Tomographic measurement ofB(n) ~dashed trace! with
the respective error bars~superimposed with gray shading! along
with the theoretical values~solid trace! for a Schro¨dinger-cat state

with average photon numbern̄55. The quantum efficiency ish
50.8, and the number of simulated experimental data used for
reconstruction is 107.
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that affect the two measurements, namely, those ofB(n) and
Bh(n), on the original and noisy states, respectively. In
first case~Figs. 1–3! the error increases withn, whereas in
the second~Figs. 4–6! it remains nearly constant, albeit wit
less marked oscillations inBh(n) than those inB(n). Figure
7 shows tomographically obtained values ofBh(n) for the
phase-squeezed state~cf. Fig. 5!, but for a lower quantum
efficiency h50.4. Notice that, in spite of the low quantum
efficiency, the nonclassicality of such a state is still expe
mentally verifiable, asBh(0),0 by more than five standar
deviations. In contrast, for coherent states one obtains s
statistical fluctuations around zero for alln. We remark that
the simpler test of checking for antibunching or oscillatio
in the photon-number probability in the case of the pha
squeezed state considered here~Figs. 2, 5, and 7! would not
reveal the nonclassical features of such a state.

III. TWO-MODE NONCLASSICALITY

Quantum homodyne tomography can also be employe
test the nonclassicality of two-mode states. For a two-m
state nonclassicality is defined in terms of nonpositivity
the following phase-averaged two-modeP function @11#:

FIG. 2. Tomographic measurement ofB(n) ~dashed trace! with
the respective error bars~superimposed with gray shading! along
with the theoretical values~solid trace! for a phase-squeezed sta

with n̄55 andn̄sq5sinh2r53 squeezing photons. The quantum e
ficiency ish50.8, and 107 simulated experimental data have be
used for the reconstruction.

FIG. 3. Same as in Fig. 2, but for an amplitude-squeezed sta
e
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all

-

to
e
f

F~ I 1 ,I 2 ,f!5
1

2pE0

2p

df1P~ I 1
1/2eif1,I 2

1/2ei ~f11f!!. ~7!

In Ref. @11# it is also shown that a sufficient condition fo
nonclassicality is

C5^~ n̂12n̂2!2&2~^n̂12n̂2&!22^n̂11n̂2&,0, ~8!

wheren̂1 andn̂2 are the photon-number operators of the tw
modes.

A tomographic test of the inequality in Eq.~8! can be
performed by averaging the kernel functions for the ope
tors in the ensemble averages in Eq.~8! over the two-mode
homodyne data. For the normal-ordered field operators
can use the Richter formula in Ref.@21#, namely

R@a†nam#~x,f!5ei ~m2n!f
Hn1m~A2hx!

A~2h!n1mS n1m
n D , ~9!

.

FIG. 4. Tomographic measurement ofBh(n) for a Schro¨dinger-

cat state withn̄55, degraded by a quantum efficiencyh50.8. The
number of simulated experimental data is 107.

FIG. 5. Tomographic measurement ofBh(n) ~dashed trace!
with the respective error bars~superimposed with gray shading!
along with the theoretical values~solid trace! for a phase-squeeze

state, which hasn̄55 and n̄sq5sinh2r53 squeezing photons, an
which has been degraded by a quantum efficiencyh50.8. For the
reconstruction a sample of 107 simulated experimental data ha
been used.
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whereHn(x) denotes the Hermite polynomial, andf is the
phase of the fields with respect to the local oscillator of
homodyne detector. Again, as for the kernel function in E
~6!, the valueh51 is used to reconstruct the ensemble av
ages of the noisy stater̂h . Notice that forn5m Eq. ~9! is
independent of the phasef, and hence no phase knowledg
is needed to reconstruct the ensemble averages in Eq.~8!. As
an example, we consider the twin-beam state at the outpu
a nondegenerate parametric amplifier

ux&[~12ulu2! (
n50

`

lnun& ^ un&, ~10!

whereun& ^ un& denotes the joint eigenvector of the numb
operators of the two modes with equal eigenvaluen, and the
parameterl is related to the gainG of the amplifier by the
relation ulu2512G21. The theoretical value ofC for the
state in Eq.~10! is C522ulu2/(12ulu2),0. A tomogra-
phic reconstruction of the twin-beam state in Eq.~10! is par-
ticularly facilitated by the self-homodyning scheme,
shown in Ref.@22#. With regard to the effect of quantum
efficiency h,1, the same argument still holds as for t
single-mode case: one can evaluateCh for a twin-beam state
that has been degraded by the effect of loss. In this case
theoretical value of Ch is simply rescaled to Ch
522h2ulu2/(12ulu2).

In Fig. 8 we reportCh vs 12h, h ranging from 1 to 0.3

FIG. 6. Same as in Fig. 5, but for an amplitude-squeezed sta

FIG. 7. Same as in Fig. 5, but here for a quantum efficiency
h50.4, and a sample of 53107 simulated experimental data.
e
.
-

of

r

the

in steps of 0.05, for the twin-beam state in Eq.~10! with
ulu250.5, corresponding to a total average photon num
equal to 2. The values ofCh result from a Monte Carlo
simulation of a homodyne tomography experiment with
sample of 43105 data, using the theoretical joint homodyn
probability of the stateux&

ph~x1 ,x2 ,f1 ,f2!5

2 expF2
~x11x2!2

dz
214Dh

2 2
~x12x2!2

d2z
2 14Dh

2 G
pA~dz

214Dh
2 !~d2z

2 14Dh
2 !

,

~11!

with

z5e2 i ~f11f2!L,

d6z
2 5

u16zu2

12uzu2 , ~12!

Dh
25

12h

4h
,

f1 andf2 denoting the phases of the two modes relative
the respective local oscillator. Notice that the nonclassica
test in terms of the noisy state gives values ofCh that are
increasingly near the classically positive region for decre
ing quantum efficiencyh. However, the statistical error re
mains constant, and is sufficiently small to allow recogniti
of the nonclassicality of the twin-beam state in Eq.~10! up to
h50.3.

IV. CONCLUSIONS

We have shown that quantum homodyne tomography
lows one to perform nonclassicality tests for various sing
and two-mode radiation states, even when the quantum
ciency of homodyne detection is rather low. The meth
involves reconstruction of the photon-number probability

.

f

FIG. 8. Tomographic measurement ofCh as defined in Eq.~8!
and modified by the quantum efficiency for the twin-beam state
Eq. ~10!. The respective error bars are shown by the gray shad
and ulu250.5 corresponding to an average of two total photo
The results are shown for various values of the quantum efficie
h ~in steps of 0.05!, and for each value ofh the number of simu-
lated data is 43105.
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of some suitable function of the number operators pertain
to the noisy state, namely, the state degraded by the
than-unity quantum efficiency. The noisy-state reconstr
tion is affected by the statistical errors; however, they
sufficiently small that the nonclassicality of the state can
tested even for low values ofh. For the cases considered
this paper, we have shown that the nonclassicality of
states can be proven~deviation from classicality by many
error bars! with 105– 107 homodyne data. Moreover, since
knowledge of the phase of the local oscillator in the hom
dyne detector is not needed for the tomographic reconst
es

d

g
s-
-
e
e

e

-
c-

tion, it can be left fluctuating in a real experiment. Hence
conclude that the proposed nonclassicality test should
easy to perform experimentally.
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