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Tomographic measurements of nonclassical radiation states
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We propose to test experimentally the nonclassical character of radiation states through homodyne tomog-
raphy. For single-mode states we check violations of inequalities involving the photon-number probability. For
two-mode states we test the nonclassicality by reconstructing some suitable number-operator functions. The
test can be performed with available quantum efficiency of homodyne detection, by measuring the pertaining
guantities on the corresponding noisy states.
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I. INTRODUCTION function[2-5,10,15—-1F Any of these features alone, how-
ever, does not represent the univocal criterium we are look-
The concept of nonclassical states of light has drawring for. Neither squeezing nor antibunching provides a nec-
much attention in quantum optidd—11]. The customary essary condition for nonclassicality]. The negativity of the
definition of nonclassicality is given in terms of the Glauber- Wigner function, which is well exhibited by the Fock states
SudarsharP function: a nonclassical state does not admit a@nd the Schrdinger-cat-like states, is absent for the
regular positiveP-function representation, that is, it cannot Saueezed states. As for the oscillations in the photon-number
be written as a statistical mixture of coherent states. SucRrobability, some even-odd oscillations can be simply ob-
states produce effects that have no classical analog. Thekined by using a statistical mixture of coherent st@fes}.
kinds of states are of fundamental relevance not only for the Many —authors [7,9,1] have adopted the non-
demonstration of the inadequacy of a classical descriptiorRositivity of the phase-average® function F(I)=(1/
but also for applications, e.g., in the realms of information27)/§"d¢ P(1¥%'?#) as the definition for a nonclassical
transmission and interferometric measurem¢ss, 10. state, sincd=(1)<0 invalidates Mandel's semiclassical for-
In this paper we are interested in testing the nonclassicamula[1] of photon counting, i.e., it does not allow a classical
ity of a quantum state by means of an operational criteriumgescription in terms of a stochastic intensity. Of course,
which is based on a set of quantities that can be measureipme states can exhibit a “weak” nonclassicality1],
experimentally with some given level of confidence, even innamely, a positivé=(1), but with a nonpositivé® function (a
the presence of loss, noise, and less-than-unity quantum efelevant example being a coherent state undergoing Kerr-
ficiency. The positivity of theP function itself cannot be type self-phase modulationHowever, from the point of
adopted as a test, since there is no method available to medgiew of the detection theory, such “weak” nonclassical
sure it. TheP function is a Fourier transform on the complex states still admit a classical description in terms of having the
plane of the generating function for the normal-ordered mointensity probabilityF(1)>0. For this reason, we adopt the
ments; hence, in principle, it could be recovered by measurronpositivity of F(1) as the definition of nonclassicality.
ing all the quadrature components of the field, and subse-
quently performing an (deconvolved inverse Radon Il. SINGLE-MODE NONCLASSICALITY
transform[12]. Currently, there is a well-established quanti-
tative method for such a universal homodyne measurement, The authors of Refd.7,9,11 have recognized relations
and it is usually referred to as quantum homodyne tomograbetweenF(l) and generalized moments of the photon distri-
phy (see Ref[13] for a review. However, as proven in Ref. bution, which, in turn, can be used to test the nonclassicality.
[14], only the generalized Wigner functions of ordex 1 The problem is reduced to an infinite set of inequalities that
— 5~ ! can be measured; being the quantum efficiency of Provide both necessary and sufficient conditions for nonclas-
homodyne detection. Hence, through this technique, all funcsicality [9]. In terms of the photon-number probability
tions froms=1 to O cannot be recovered, i.e., we cannotp(n)=(n|p|n) of the state with density matrig, the sim-
obtain theP function and all its smoothed convolutions up to plest sufficient condition involves the following three-point
the customary Wigner function. For the same reason, theelation forp(n) [9,11]:
nonclassicality parameter proposed by 8¢ namely, the
maximums parameter that provides a positive distribution, B(n)=(n+2)p(n)p(n+2)—(n+1)[p(n+1)]?><0 .
cannot be experimentally measured. 1)
Among the many manifestations of nonclassical effects,
one finds squeezing, antibunching, even-odd oscillations ikligher-order sufficient conditions involve five-, seven-,
the photon-number probability, and negativity of the Wigner . . . ,(2k+ 1)-point relations, always for adjacent values of
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n. It is sufficient that just one of these inequalities be satis- r— T ——
fied in order to assure the negativity B{1). Notice that for
a coherent statB(n)=0 identically for alln.

In the following we show that quantum tomography can T —
be used as a powerful tool for performing the nonclassicality ] 1
test in Eq.(1). For less-than-unity quantum efficiency ( %

< 1), we rely on the concept of a “noisy stat@’,,, wherein

the effect of quantum efficiency is ascribed to the quantum
state itself rather than to the detector. In this model, the ef-
fect of quantum efficiency is treated in a Scatiirger-like o T
picture, with the state evolving from to ¢, and with i T ]
playing the role of a time parameter. Such lossy evolution is 0 2 4 6
described by the master equation n

R r .. . . . R FIG. 1. Tomographic measurement®fn) (dashed tracewith
ao(t)= E{Zag(t)aT—aTaQ(t)—Q(t)aTa}, (2)  the respective error barfsuperimposed with gray shadjnglong
with the theoretical valuetsolid trace for a Schralinger-cat state
. . with average photon number=5. The quantum efficiency i%
whereing(t)=g,, with t=—In 7/ =0.8, and the number of simulated experimental data used for the
For the nonclassicality test, reconstruction in terms of theeconstruction is 10
noisy state has many advantages over the true-state recon-

struction. In fact, for nonunit quantum efficieney<1 the " (=) n

tomographic method introduces errors fofn) which are K%”’(x)zzxze‘“ZXZE ' ( B )(2v+ 1)1 k%
increasingly large versus with the additional limitation that v=0 VI \N=V

guantum efficiency must be greater than the minimum value XRE(D_ (2,4 2)(—2i kX)}, ©6)

7=0.5[19,20. On the other hand, the reconstruction of the

o ncatn e oeek sl A st snes arhereDslz) denote th parabolc yinder fncin, and
certainly diminished in the noisy-state description, neverthe{(ai:n eg/k()§ g;elrzgi-lr-]getr:?i-esrtr?gla fﬁ:]%tt)i%?:“;qgég)) o?/reer ?r? e-
Iehss thetheﬁept of fnt?]réu?ny tquan:)urtn ef|f|C|ency| dogts nOthomodyne data. On the other hand, the noisy-state probabili-
?olﬁ)r\;?se' € sign o unction, but only rescales it as jjoq p,(n) are obtained by using the kernel function in Eq.
' (6) for »=1, without recovering the convolution effect of
nonunit quantum efficiency. Notice that expressi6hdoes
P(z)—P, (2)= EP(Z/nl/z). 3) not depend on the phase of the quadrature. Hence a knowl-
7 Uj edge of the phase of the local oscillator in the homodyne
detector is not needed for the tomographic reconstruction,
Hence inequality(1) still represents a sufficient condition for and it can be left fluctuating in a real experiment.
nonclassicality when the original probabilitiep(n) Regarding the estimation of statistical errors, they are
=(n|p|n) are replaced with the noisy-state probabilitiesglenira”l)_"Obta'ned.b)([ﬁ'Vldlng thte set OftuomOd)fﬂe datéa into
—/nlt - - . blocks. However, in the present case, the nonlinear depen-
Egﬁ%lugigr?n'n)’ the latter being given by the Bemouli dence on the photon number probability introduces a system-
atic error that is vanishingly small for increasingly larger sets
p of data. Therefore, the estimated valueBtih) will be ob-
_ neq_ o vk—n tained from the full set of data, instead of averaging the
P,(N) k;n (n) 7'(1= = "p(k). @ mean value of the different statistical blocks.
In Figs. 1-7 we present some numerical results that are

Hence, when it refers to the noisy-state probabilifegn), obtained by a Monte Carlo simulation of a quantum tomog-

the inequality in Eq(1) keeps its form and simply rewrites "aphy experiment. The nonclassicality criterium is tested ei-
as follows: ther on a Schrdinger-cat stat¢y(a))o(|a)+|—a)) or on

a squeezed stafer,r)=D(a)S(r)|0), wherein|a), D(a),
and S(r) denote a coherent state with amplitudethe dis-
placement opehratd:r)(a)=e“ataa, and the squeezing op-
eratorS(r)=e'@'*~3)2 respectively. Figs. 1-3 show tomo-
According to Eq.(5), the quantityB,(n) is nonlinear in  graphically obtained values dB(n), with the respective
the density matrix. This means thBt,(n) cannot be mea- error bars superimposed, along with the theoretical values for
sured by averaging a suitable kernel function over the homoa Schralinger-cat state, for a phase-squeezed stateQ(,
dyne data, as for any other observapld]. Hence in the and for an amplitude-squeezed state<Q), respectively.
evaluation ofB,(n) one needs to tomographically recon- For the same set of states the resultsBg(n) [cf. Eq. (5)]
struct the photon-number probabilities, using the kernebbtained by tomographic reconstruction of the noisy state are
functions[19] reported in Figs. 4—6. Let us compare the statistical errors

B,(N)=(n+2)p,(n)p,(n+2)—(n+1)[p,(n+ 1)]2<(25)
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FIG. 4. Tomographic measurement®j(n) for a Schralinger-

cat state witm=5, degraded by a quantum efficiengy=0.8. The
number of simulated experimental data is’.10

FIG. 2. Tomographic measurement®fn) (dashed tragewith
the respective error barsuperimposed with gray shadinglong
with the theoretical valueésolid trace for a phase-squeezed state
with n=5 andng,= sintPr=3 squeezing photons. The quantum ef- 1 (2n
ficiency is =0.8, and 10 simulated experimental data have been F(ly,lp,¢)= _f de,P(I 124 ¢y |1/2ei(¢1+¢))_ 7
used for the reconstruction. e 27 Jo v 2

that affect the two measurements, namely, thosg(of) and  In Ref.[11] it is also shown that a sufficient condition for
B,(n), on the original and noisy states, respectively. In thenonclassicality is

first case(Figs. 1-3 the error increases with, whereas in

the secondFigs. 4—6 it remains nearly constant, albeit with C=((N;— N3 —((N1—N,))2— (N +N)<0, (8)
less marked oscillations iB,(n) than those ifB(n). Figure

7 shows tomographically obtained valuesBf(n) for the
phase-squeezed stafef. Fig. 5, but for a lower quantum
efficiency »=0.4. Notice that, in spite of the low quantum
efficiency, the nonclassicality of such a state is still experi-
mentally verifiable, a8,(0)<0 by more than five standard
deviations. In contrast, for coherent states one obtains sm
statistical fluctuations around zero for all We remark that
the simpler test of checking for antibunching or oscillations
in the photon-number probability in the case of the phase-

whereﬁ1 andﬁ2 are the photon-number operators of the two
modes.

A tomographic test of the inequality in E¢8) can be
performed by averaging the kernel functions for the opera-
tﬁ)rs in the ensemble averages in E8). over the two-mode
%omodyne data. For the normal-ordered field operators one
can use the Richter formula in R¢R21], namely

squeezed state considered h@figs. 2, 5, and 7would not Rlaam](x, ) el(m-no Hntm(V27X) ©
reveal the nonclassical features of such a state. ' n+m)’
(2 n)n-%—m n
Il TWO-MODE NONCLASSICALITY
Quantum homodyne tomography can also be employed to sl i
test the nonclassicality of two-mode states. For a two-mode =
state nonclassicality is defined in terms of nonpositivity of
the following phase-averaged two-moBeunction[11]: __© — ==
c L
\./:
- = m
— (@]
ol c‘i“ 7
N =
1 o
ST — = 1
= s I L I L
= == 0 2 4 6 8
1 n
© } } }
] 1 FIG. 5. Tomographic measurement Bf,(n) (dashed trace
- — — /. with the respective error barsuperimposed with gray shading
j e I I along with the theoretical valudsolid trace for a phase-squeezed

0 1 < 3 4 state, which hasi=5 andng,= sintfr=3 squeezing photons, and
which has been degraded by a quantum efficieney0.8. For the
reconstruction a sample of iGimulated experimental data has
FIG. 3. Same as in Fig. 2, but for an amplitude-squeezed state.been used.

n
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B, (n)
n
1

FIG. 6. Same as in Fig. 5, but for an amplitude-squeezed state. FIG. 8. Tomographic measurement©f, as defined in Eq(8)

) . . and modified by the quantum efficiency for the twin-beam state in
whereH(x) denotes the Hermite polynomial, arflis the  gq (10). The respective error bars are shown by the gray shading
phase Of the fle|dS W|th I’eSpeCt to the |Oca| OSCI||atOI‘ Of theand |}\|2: 0.5 Corresponding to an average Of two tota' photons_
homodyne detector. Again, as for the kernel function in Eq:The results are shown for various values of the quantum efficiency
(6), the valuen=1 is used to reconstruct the ensemble aver-; (in steps of 0.0§ and for each value of the number of simu-
ages of the noisy staie,. Notice that forn=m Eq. (9) is  lated data is % 10°.
independent of the phasg and hence no phase knowledge
is needed to reconstruct the ensemble averages itBEgds  in steps of 0.05, for the twin-beam state in E@0) with
an example, we consider the twin-beam state at the output ok |*=0.5, corresponding to a total average photon number
a nondegenerate parametric amplifier equal to 2. The values of, result from a Monte Carlo

simulation of a homodyne tomography experiment with a

* sample of 4< 1C° data, using the theoretical joint homodyne
Ix)=(1—|\]?) EO A"ny®|n), (10)  probability of the statey)
=

) F{ (X1 X2)?  (X1—Xp)?
d7+4A%2  d%,+4A7

where|n)®|n) denotes the joint eigenvector of the number

operators of the two modes with equal eigenvaiuand the _
parameten is related to the gaiiG of the amplifier by the Py(X1: X2, b1, ¢2) =
relation [\|?=1—G 1. The theoretical value o€ for the

state in Eq.(10) is C=—2|\|%(1—|\|?)<0. A tomogra-

phic reconstruction of the twin-beam state in ELQ) is par-  with

ticularly facilitated by the self-homodyning scheme, as

shown in Ref.[22]. With regard to the effect of quantum z=e (41T dIp,

efficiency <1, the same argument still holds as for the

single-mode case: one can evaluatgfor a twin-beam state ’ |1+2/?

that has been degraded by the effect of loss. In this case, the d:z:mz: (12
theoretical value of C, is simply rescaled toC,

=277\ ]\]). 1-y

In Fig. 8 we reportC, vs 1— 5, n ranging from 1 to 0.3 A":W'

m(d2+4A2)(d? ,+442)
(11)

— ¢, and ¢, denoting the phases of the two modes relative to
T ] the respective local oscillator. Notice that the nonclassicality
=g - test in terms of the noisy state gives valuesQof that are
°1 ] increasingly near the classically positive region for decreas-
il 1 ing quantum efficiencyy. However, the statistical error re-
mains constant, and is sufficiently small to allow recognition
of the nonclassicality of the twin-beam state in EL) up to
7n=0.3.

B, (n)
0

-0.01

| 1 IV. CONCLUSIONS

0 1 2 3 4 We have shown that quantum homodyne tomography al-
lows one to perform nonclassicality tests for various single-
and two-mode radiation states, even when the quantum effi-
FIG. 7. Same as in Fig. 5, but here for a quantum efficiency ofciency of homodyne detection is rather low. The method
7=0.4, and a sample of610" simulated experimental data. involves reconstruction of the photon-number probability or
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of some suitable function of the number operators pertainingion, it can be left fluctuating in a real experiment. Hence we
to the noisy state, namely, the state degraded by the lessenclude that the proposed nonclassicality test should be
than-unity quantum efficiency. The noisy-state reconstruceasy to perform experimentally.

tion is affected by the statistical errors; however, they are

sufficiently small that the nonclassicality of the state can be

tested even for low values of. For the cases considered in ACKNOWLEDGMENTS
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