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We address the problem of the information-disturbance tradeoff associated to the estimation of a quantum
transformation and show how the extraction of information about a black box causes a perturbation of the
corresponding input-output evolution. In the case of a black box performing a unitary transformation, randomly
distributed according to the invariant measure, we give a complete solution of the problem, deriving the optimal
tradeoff curve and presenting an explicit construction of the optimal quantum network.
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I. INTRODUCTION

One of the key features of quantum theory is the
impossibility of extracting information from a system without
producing a disturbance in its state; the only exception to
this rule is the trivial case when the state belongs to a set of
orthogonal states. A canonical illustration of the unavoidable
disturbance caused by quantum measurements is Heisenberg’s
γ -ray microscope thought experiment [1]. The impossibility
of a nondisturbing extraction of information is the working
principle of quantum cryptography, whose security relies
on the fact that any amount of information extracted by the
eavesdropper causes a corresponding amount of disturbance
that can be detected by the communicating parties. A
quantitative expression of such an information-disturbance
tradeoff is a nontrivial issue because there are many different
ways to quantify “information” and “disturbance” which have
been put forward in the literature [2–16].

All the scenarios analyzed in the past have one point in
common: they concern the disturbance produced by measure-
ments on quantum states. However, one can consider other
scenarios where the measurements produce a disturbance on
quantum transformations. For example, we may have a black
box implementing an unknown transformation belonging to a
set {Ei}, with the restriction that the black box can be used only
one time. On the one hand, we may try to identify the unknown
transformation (that is, to find out the index i). On the other
hand, we may want to use the black box on a variable input
state. Clearly, in general the two tasks are incompatible: In this
case there is a tradeoff between the amount of information that
can be extracted about a black box and the disturbance caused
on its action. In other words, we cannot estimate an unknown
quantum dynamics without perturbing it. Therefore, it is
important to find a quantitative formulation of the information-
disturbance tradeoff and to find the optimal scheme that
introduces the minimum amount of disturbance for any given
amount of extracted information. Like the tradeoff for states,
the tradeoff for transformations is relevant to the discussion
of quantum cryptographic protocols where the secret key is
encoded in a set of transformations, as it happens in the
two-way protocols of Refs. [17–19] for finite-dimensional
systems, and in the protocol of Ref. [20] for continuous
variables. Here for simplicity we restrict our attention to the
case of unitary transformations on finite-dimensional quantum
systems. As in Refs. [7,11], we quantify the information gain

and the disturbance with suitable fidelities, and we derive the
minimum amount of disturbance associated to any possible
value of the information gain.

The paper is structured as follows. In Sec. II we introduce
the problem and the notation. Section III then provides a brief
review of the formalism of quantum combs and generalized
instruments [21–23], which is crucial in our paper. The
complete analysis of the information-disturbance tradeoff for
arbitrary unitary transformations is presented in Sec. IV; in
particular, we first give the rigorous mathematical formulation
of the problem (Sec. IV A), the analysis of its symmetries
(Sec. IV B), the derivation of the optimal tradeoff curve
(Sec. IV C), and, finally, the construction of the optimal
network (Sec. IV D). We conclude the paper with a discussion
of the results in Sec. V.

II. PRELIMINARIES AND NOTATION

In the case of states, the mathematical tool to analyze the
information-disturbance tradeoff is the quantum instrument.
In the discrete-outcome case, a quantum instrument is a set
of quantum operations (trace-decreasing completely positive
maps) {Ti} transforming operators on the input system Hilbert
space H0 to operators on the output system Hilbert space
H1, with the normalization condition that T := ∑

i Ti is
trace preserving (that is, it is a quantum channel). A quantum
instrument describes a measurement process that outputs the
classical outcome i and the quantum state Ti(ρ)/Tr[Ti(ρ)]
with probability pi = Tr[Ti(ρ)]. To derive our results, we use
the generalization of the notion of instrument to measurement
processes on quantum transformations, rather than on quantum
states [21–23]. This extension is presented in Sec. III.

In the following we denote the linear operators on a Hilbert
space H by L(H). We make extensive use of the isomorphism
between linear operators in L(H) and vectors in H ⊗ H
given by

A =
∑
nm

〈n|A|m〉|n〉〈m| → |A〉〉 =
∑
nm

〈n|A|m〉|n〉|m〉, (1)

where {|n〉} is a fixed orthonormal basis for H. The isomor-
phism satisfies the property

|A〉〉 = (A ⊗ I )|I 〉〉 = (I ⊗ AT )|I 〉〉, (2)
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where T denotes transposition with respect to the fixed basis.
For the sake of clarity, we often use the notation Ha,b to denote
the tensor product Ha ⊗ Hb, Aa,b to stress that A belongs
to (Ha,b), and, similarly, |ψ〉a and |A〉〉a,b to stress that |ψ〉
belongs to Ha and |A〉〉 belongs to Ha,b.

Using the Choi isomorphism [24], we can associate each
completely positive map Ti : L(H0) → L(H1) with a positive
operator Ti ∈ L(H1 ⊗ H0) given by

Ti = (Ti ⊗ I0)(|I 〉〉〈〈I |0,0), (3)

where I0 is the identity map on H0.
In terms of the Choi operator, the condition that T is trace

preserving (resp. trace decreasing) becomes

Tr1[T ] = I0 (Tr1[T ] � I0), (4)

where Tr1 denotes a partial trace over H1.
We now introduce the tradeoff problem for quantum trans-

formations. Consider a quantum network R with an empty
slot that can be linked with a variable quantum device, the
input-output action of the latter being described by a channel
in the set {Ei}. Ideally, we would like the network R to give us
some information about the channel Ei without affecting the
output state Ei(ρ) that the channel should produce when an
input state ρ is fed in the corresponding device (see Fig. 1).
However, as already mentioned, this is not possible in general.

As we already mentioned, there are two extreme situations.
At one extreme, if we are only interested in extracting
information, the best strategy is to apply the channel on one
side of a suitable bipartite state σ ∈ L(Ho ⊗ H0), thus getting
the output state (Ei ⊗ I0) (σ ), and then to perform a suitable
measurement {Pj }. In this case the available use of the channel
is consumed for estimation; after this step, the best we can do
to produce an output state close to Ei(ρ) is to apply to the input
state ρ some channel Ẽj that depends on the outcome j of our
measurement. At the opposite extreme, if we do not tolerate
any disturbance, the only possibility is to apply the black box
to the input state ρ. In this case we correctly obtain the output
state Ei(ρ), but we have no measurement data to infer the
identity of the unknown device. In the intermediate cases, it
is important to assess the maximum amount of information
that can be gathered without trespassing a given disturbance
threshold.

Since the tradeoff problem involves optimization of quan-
tum networks, we use the approach of quantum combs
developed in Refs. [21–23]. This approach is based on the char-
acterization of the most general transformations that quantum

Ei

R

ρ

j

Ei≈ ρ

FIG. 1. Given a black box implementing an unknown channel Ei

drawn from a set {Ei}, we want to link it with a quantum network R
that both gives an estimate j of the parameter i and affects the output
state Ei(ρ) as little as possible. (The symbol ≈ means that the network
R is optimized in such a way that the output of the two circuits on
the left and right is as close as possible.)

. . .

0 1 2 43 2N+12N-1 2N

FIG. 2. A quantum comb with N + 1 teeth. The flow of quantum
information is from left to right. The input wires of the network are
labeled with even numbers from 0 to 2N , the output wires with odd
numbers from 1 to 2N + 1.

channels can undergo and on realization theorems proving
that all these abstract transformations can be implemented
by quantum networks. Since our theorems are constructive,
this approach also provides the explicit form of the optimal
quantum network.

III. QUANTUM COMBS AND GENERALIZED
INSTRUMENTS

By stretching and rearranging the internal wires, we can
give to every quantum network the shape of a comb. The
empty slots of the network become the empty spaces between
the teeth of the comb.

Referring to Fig. 2, each wire is labeled with a natural
number, which is even for the input wires and odd for the
output ones; the corresponding Hilbert spaces are labeled
accordingly.

If our network consists of a sequence of N quantum
channels (trace-preserving maps), then we call it deterministic.
To every deterministic network, we can associate a positive
operator R(N) � 0, called a quantum comb, satisfying the
normalization condition [21,23,25]

Tr2k−1[R(k)] = I2k−2 ⊗ R(k−1), k = 1, . . . ,N, (5)

where R(0) = 1, R(k) ∈ L(Houtk ⊗ Hink ) with Hink =⊗k−1
n=0 H2n and Houtk = ⊗k−1

n=0 H2n+1, is the comb of the
reduced circuit obtained by discarding the last N − k

teeth.
The normalization condition of Eq. (5) reflects the causal

ordering in the deterministic network. We call a comb
satisfying Eq. (5) deterministic, and we denote by
DetComb(

⊗2N−1
i=0 Hi) the set of all deterministic combs

with the given ordering of the input and output spaces. A
deterministic quantum comb with N = 1 is simply the Choi
operator of a quantum channel: in this case the condition of
Eq. (5) is equivalent to the normalization of the channel given
in Eq. (4). Accordingly, DetComb(Hb ⊗ Ha) is the set of
(Choi operators of) quantum channels from L(Ha) to L(Hb).

This framework of quantum combs can be easily extended
to the case of networks consisting of quantum operations
(trace-decreasing maps). We call a probabilistic comb a posi-
tive operator S(N) � 0 that is bounded by some deterministic
comb, that is, an operator S(N) with the property

∃R(N) ∈ DetComb

(
2N−1⊗
k=0

Hk

)
such that S(N) � R(N).

(6)

We denote by ProbComb(
⊗2N−1

k=0 Hk) the set of all proba-
bilistic combs with given ordering of the input and output
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spaces. A probabilistic comb with N = 1 is simply the Choi
operator of a quantum operation: in this case the condition of
Eq. (6) is equivalent to the bound in Eq. (4). Accordingly,
ProbComb(Hb ⊗ Ha) is the set of (Choi operators of)
quantum operations from L(Ha) to L(Hb).

Two quantum networks R(N) and S (M) can be linked
together by connecting some wires of R(N) with some wires
of S (M). Let us denote by J the set of wires that are connected
and by K (L) the set of wires of R(N) (S (M)) that are not. The
circuit resulting from the connection, denoted by R(N) ∗ S (M),
has a Choi operator given by the link product

R(N) ∗ S(M) = TrJ
[(

R
(N)
K,J ⊗ IL

)(
IK ⊗ S

(M)TJ
J,L

)]
, (7)

where R(N),S(M) are the Choi operators of R(N) and S (M),
respectively, and TJ denotes the partial transposition with
respect to the fixed orthonormal basis of Eq. (1). For
example, let E be a channel from H0 to H1 and F be
a channel from H1 to H2; then the Choi operator of the
composition FE is

F ∗ E = Tr1
[
(F2,1 ⊗ I0)

(
I2 ⊗ E

T1
1,0

)]
. (8)

As a particular case for H0 	 C, if ρ is a state on H1 and
E is a channel from H1 to H2, one has

E(ρ) = E21 ∗ ρ1 = Tr1
[
E21

(
I2 ⊗ ρT

1

)]
. (9)

A deterministic (probabilistic) quantum comb, besides rep-
resenting a quantum network with some empty slots, can also
represent a quantum channel (operation) R(N) from Heven :=⊗N−1

k=0 H2k to Hodd := ⊗N−1
k=0 H2k+1. Due to the Choi iso-

morphism, the channel R(N) is in one-to-one correspondence
with the comb R(N). In the following two subsections, we
exploit this correspondence to discuss the physical realization
of quantum combs, both in the deterministic case (Sec. III A)
and in the probabilistic case (Sec. III B).

A. Realization of deterministic combs

The following theorem, proved in Ref. [26], gives an
explicit construction for the realization of every deterministic
quantum comb as a sequence of isometric channels.

Theorem 1. Realization of deterministic combs. Every
deterministic comb can be realized as a concatenation of
isometric channels in the following way:

0

R(N)

1

2 3
...

...

2N−2 2N−1

=
0

V [1]

1 2

V [2]

3 . . . 2N−2

V [N ]

2N−1

A1 A2 . . . AN−1 AN I

,

(10)

where Ak is an ancilla with Hilbert space HAi
, V [k] :

L(H2k−2 ⊗ HAk−1 ) is the channel defined by V [k](ρ) =
V [k]ρV [k]†,∀ρ ∈ L(H2k−2 ⊗ HAk−1 ) for a suitable isometry
V [k] : H2k−2 ⊗ HAk−1 → H2k−1 ⊗ HAk

, and represents
the partial trace on HAN

. Precisely, the ancillary Hilbert
spaces HAk−1,HAk

are defined by HA0 := C and HAk
:=

Supp(R(k)∗) ⊆ ⊗2k−1
n=0 Hn for k � 1, where Supp(R(k)∗)

denotes the support of the complex conjugate of R(k) in the

fixed basis. The isometry V [k] is given by the expression

V [k] := {
I2k−1 ⊗ [(

R
(k)∗
(2k−1)′,...,0′

) 1
2
(
I(2k−1)′,(2k−2)′

⊗ R
(k−1)∗
(2k−3)′,...,0′

)− 1
2
]}

(|I 〉〉(2k−1),(2k−1)′

⊗ T(2k−2)′←(2k−2) ⊗ I(2k−3)′ ⊗ · · · ⊗ I0′ ), (11)

where Hk′ 	 Hk and Tm←n is the teleportation operator from
Hn to Hm, given by Tm←n = ∑

k |k〉m〈k|n.
Note that the isometry V [k] defined in Eq. (11) has the

correct input and output Hilbert spaces. Indeed, for k = 1, one
has R(0) = 1 and the isometry V [1], given by V [1] = [I1 ⊗
(R(1)∗

1′,0′ )
1
2 ](|I 〉〉1,1′ ⊗ T0→0′), sends vectors in H0 to vectors

in H1 ⊗ HA1 , where HA1 = Supp(R(1)∗
1′,0′ ) is a subspace of

H1′ ⊗ H0′ . For k > 1, since HAk−1 = Supp(R(k−1)∗
(2i−3)′,...,0′ ) is

a subspace of H(2k−3)′ ⊗ · · · ⊗ H0′ , the isometry V [k] sends
vectors in H2k−2 ⊗ HAk−1 to vectors in H2k−1 ⊗ HAk

, as stated
by the thesis.

B. Generalized N-instruments

In the discrete-outcome case, a generalized N-instrument is
a set of probabilistic combs {Ri} ⊂ ProbComb(

⊗2N−1
k=0 Hk)

satisfying the normalization condition

R(N) :=
∑

i

Ri ∈ DetComb

(
2N−1⊗
k=0

Hk

)
. (12)

When N = 1 the notion of a generalized instrument coin-
cides with the usual notion of a quantum instrument. Every
N -instrument can be realized as a quantum network, due to
an analog of Ozawa’s dilation theorem [27]. The proof of the
dilation theorem for generalized N -instruments was originally
presented in Ref. [23] and is combined here with Theorem 1.

Theorem 2. Realization of N -instruments. Every general-
ized N -instrument {R(N)

i } ⊂ ProbComb(
⊗2N−1

k=0 Hk) can be
realized as a quantum network of isometric channels followed
by a measurement of the last ancilla, as follows:

Here Ak , HAk
, and V [k] are the ancillas, the Hilbert spaces, and

the isometries providing the realization of the deterministic
comb R(N) = ∑

i R
(N)
i , as given by Theorem 1,

represents the partial trace on HAN
with the operator Pi . {Pi}

is a quantum measurement on the ancilla AN , described by the
positive operator-valued measure (POVM)

Pi = (R(N)∗)−
1
2 R

(N)∗
i (R(N)∗)−

1
2 . (13)

In our study of the information-disturbance tradeoff, we
use generalized 2-instruments, which can be graphically
represented by combs with two teeth and one empty slot where
the unknown black box can be inserted, as in Fig. 1. Since the
value of N is fixed to N = 2, in the following we drop the
index (N ) in R

(N)
i and R(N) and simply write Ri and R.
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IV. INFORMATION-DISTURBANCE TRADEOFF
FOR UNITARY CHANNELS

A. Formulation of the problem

Suppose that a black box performs an unknown unitary
channel U(ρ) = UρU †, where the unitary U ∈ SU(d) is
randomly drawn according to the normalized Haar measure
dU . LetH1 	 H2 	 Cd be the input and output Hilbert spaces
for the unknown channel, respectively. In order to extract in-
formation, we then use a quantum network like that of Eq. (12)
with N = 2. The network is then described by a generalized
2-instrument {RÛ }, where the outcome Û ∈ SU(d) is the esti-
mate of the unknown parameter U . For every possible outcome
Û, RÛ is an element of ProbComb(

⊗3
k=0 Hk)}, with H0 	

H1 	 H2 	 H3, and one has the normalization condition

R :=
∫

SU(d)
dÛRÛ ∈ DetComb

(
3⊗

k=0

Hk

)
, (14)

which is the continuous version of Eq. (12). Since there is no
ambiguity, from now on we omit the domain of integration
SU(d).

When the unknown black box with channel U is connected
to the quantum network with generalized instrument {RÛ },
one obtains a set of quantum operations RÛ ∗ U , each corre-
sponding to a possible result of the measurement. However, to
speak about the “probability of the outcome Û ,” we need to
know what input state ρ is fed in the circuit: we cannot speak of
the “probability of a quantum operation” without specifying its
input state. If the input state is ρ ∈ L(H0), then the probability
is given by the trace of the output state (RÛ ∗ U)(ρ):

p(Û |U,ρ) = Tr[(RÛ ∗ U)(ρ)]

= Tr[RÛ (I3 ⊗ |U ∗〉〉〈〈U ∗|2,1 ⊗ ρ∗
0 )], (15)

where we used the link product of Eqs. (7) and (9) to compute
the Choi operator of RÛ ∗ U and the action of the channel
RÛ ∗ U on the state ρ, respectively. We also used the fact that
AT = A∗ for every self-adjoint operator.

To quantify the information gain and the disturbance, we
now introduce two suitable fidelities. Suppose that the black
box performs the unitary channel U and that the measurement
outcome is Û . In this case we quantify information gain with
the fidelity

g(Û ,U ) = 1

d2
| Tr[ÛU †]|2. (16)

Note that the maximum value of the fidelity is 1, and it is
achieved if and only if Û = ωU for some phase |ω| = 1, that
is, if and only if the two unitary channels Û and U coincide.
The fidelity g(Û ,U ) enjoys the invariance property

g(Û ,U ) = g(V ÛW,V UW ) ∀V,W ∈ SU(d). (17)

Averaging the fidelity with the probability of the estimate Û

given the true value U and the input state ρ, we then obtain
the average information gain

Gρ :=
∫

dU

∫
dÛp(Û |U,ρ)g(Û ,U ). (18)

In our analysis we always assume that the input state is given
by ρ = I/d. The reason for this choice is that the condition
ρ = I/d arises in two relevant scenarios:

(1) when the input system (wire 0) of the circuit is prepared
in a maximally entangled state with some reference system 0′.
This is the case in the cryptographic protocols of Refs. [17,19]
(and, in the infinite energy limit, also in the continuous-variable
scenario of Ref. [20]).

(2) when the input system is prepared at random in one
of the states of an ensemble {ρi,pi}, with the property that∑

i piρi = I/d. This is the case of the cryptographic protocol
of Ref. [18].

Since we are setting ρ = I/d, we drop the subscript ρ

from Gρ . Using Eqs. (15) and (16), the expression for the
information gain G is

G = 1

d3

∫
dU

∫
dÛ Tr3,0[〈〈U ∗|2,1RÛ |U ∗〉〉2,1]|〈〈Û |U 〉〉|2.

(19)

We now introduce our figure of merit for the minimization
of the disturbance. To this purpose, we consider the channel
fidelity [28] between the overall quantum operation RÛ ∗ U
performed by the network and the input channel U . This is
the fidelity between the two output states produced by the two
operations RÛ ∗ U and U when applied on one side of the
maximally entangled state |�〉〉 = 1√

d
|I 〉〉0,0′ . In terms of Choi

operators, the channel fidelity is given by

F (RÛ ∗ U ,U) = 1

d2
〈〈U |3,0(RÛ ∗ |U 〉〉〈〈U |2,1)|U 〉〉3,0

= 1

d2
〈〈U |3,0〈〈U ∗|2,1RÛ |U 〉〉3,0|U ∗〉〉2,1,

where we used the fact that, by definition of the Choi operator
[Eq. (3)], one has (E ⊗ I) (|�〉〉〈〈�|) = E/d for every quantum
operation E .

Averaging over the outcomes and the true values, we then
obtain the average fidelity

F := 1

d2

∫
dU

∫
dÛ 〈〈U |3,0〈〈U ∗|2,1RÛ |U 〉〉3,0|U ∗〉〉2,1

= 1

d2

∫
dU 〈〈U |3,0〈〈U ∗|2,1R|U 〉〉3,0|U ∗〉〉2,1. (20)

Note that the fidelity F naturally arises also in the case
where the input state at the wire 0 is a pure state ϕ = |ϕ〉〈ϕ|
chosen at random according to the uniform measure on pure
states: in this case the fidelity between RÛ ∗ U(ϕ) and U(ϕ),
averaged over ϕ, U , and Û , is given by

F ′ =
∫

dϕ

∫
dU

∫
dÛ Tr[(UϕU †) (RÛ ∗ U) (ϕ)]

=
∫

dϕ

∫
dU

∫
dÛ Tr[(RÛ ∗ |U 〉〉〈〈U |2,1) (UϕU † ⊗ ϕ∗)]

=
∫

dϕ

∫
dU 〈Uϕ|3〈〈U ∗|2,1〈ϕ∗|0R|Uϕ〉3|U ∗〉〉2,1|ϕ∗〉0

=
∫

dU

(
d

d + 1
F (R ∗ U ,U)

+ 1

d(d + 1)
Tr[〈〈U ∗|2,1R|U ∗〉〉2,1]

)

= d

d + 1
F + 1

d + 1
,
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having used the relation∫
dϕϕ ⊗ ϕ∗ = |I 〉〉〈〈I | + I ⊗ I

d(d + 1)
(21)

and the normalization Tr[R] = d2, which follows directly
from Eq. (5) in the N = 2 case with H3 	 H2 	 H2 	 H0 	
Cd . Since there is a tradeoff, the information gain G and
the fidelity F cannot achieve their maximum values at the
same time. Therefore, we introduce a weight 0 � p � 1 that
quantifies how much we care about information extraction
versus disturbance minimization, and our figure of merit is
the convex combination pG + (1 − p)F . The extreme case
p = 0 (resp. p = 1) corresponds to the situation where we
do not tolerate any disturbance (resp. where we are only
interested in extracting maximum information). The tradeoff
curve obtained by the maximization of pG + (1 − p)F for
all possible values of p ∈ [0,1] is the same curve that would
be obtained by maximizing F for given G (i.e., by finding
the minimum disturbance for a given amount of extracted
information) or by maximizing G for given F (i.e., by finding
the maximum amount of extractable information for a given
disturbance threshold).

B. Symmetry of the estimating network

Here we exploit the symmetries of the figure of merit pG +
(1 − p)F to simplify the optimization problem. The crucial
simplification comes from the following theorem, which states
the symmetry properties of the optimal generalized instrument.

Theorem 3. Symmetries of the optimal instrument. Let G and
F be the information gain and the fidelity defined in Eqs. (19)
and (20). For every p ∈ [0,1], the generalized instrument that
maximizes pG + (1 − p)F can be chosen to be covariant, that
is, of the form

RÛ = (Û3 ⊗ Û∗
2 ⊗ I1,0) (�), (22)

for some positive operator � ∈ L(H3 ⊗ H2 ⊗ H1 ⊗ H0).
Moreover, the operator � satisfies the commutation relation

[�,V3 ⊗ V ∗
2 ⊗ V1 ⊗ V ∗

0 ] = 0, ∀V ∈ SU(d). (23)

Proof. The proof is based on the same argument used for
the proof of Lemma 2 in Ref. [29]. Consider an arbitrary
generalized instrument {RÛ }. Using the invariance of the Haar
measure and of the fidelity g(Û ,U ) [Eq. (17)], it is easy to
check that the values of F and G in Eqs. (19) and (20) do not
change if each RÛ is replaced by the group average

R′
Û

:=
∫

dV dW (V3 ⊗ V∗
2 ⊗ W1 ⊗ W∗

0 ) (RV †ÛW ), (24)

where V ,V∗,W,W∗ are the unitary channels corresponding to
the unitaries V,V ∗,W,W ∗, respectively. Note that {R′

Û
} is still

a generalized instrument, because it satisfies the normalization
condition of Eq. (14). Moreover, from Eq. (24) it is clear that
� := R′

I satisfies the commutation relation of Eq. (23). Finally,
from Eq. (24) it is also clear that for every Û ,V ,W ∈ SU(d)
one has

R′
V ÛW † = (V3 ⊗ V∗

2 ⊗ W1 ⊗ W∗
0 ) (R′

Û
).

Taking Û = W = I , one then obtains R′
V = (V̂3 ⊗ V̂∗

2 ⊗
I1,0)(�); namely, R′

Û
is of the form of Eq. (22). Since the

substitution {RÛ } → {R′
Û
} can be done for every generalized

instrument, in particular it can be done for the optimal one. �
Using Theorem 3, we can now express the normalization

condition of Eq. (14) in a particularly simple way. Indeed,
Eqs. (22) and (23) imply that the normalization operator
R = ∫

dÛRÛ satisfies the commutation relation

[R,V3 ⊗ V ∗
2 ⊗ W1 ⊗ W ∗

0 ] = 0, ∀V,W ∈ SU(d).

The Schur lemma then implies Tr3[R] = I2 ⊗ R(1) for some
positive operator R(1) ∈ L(H1 ⊗ H0), and Tr1[R(1)] = αI0 for
some positive number α ∈ R. Therefore, the normalization
condition for R to be a deterministic comb [Eq. (5) for N = 2]
becomes trivially Tr[R] = d2, or, equivalently,

Tr[�] = d2. (25)

C. Optimal tradeoff curve

Exploiting Theorem 3 and the Schur lemmas, we can now
rewrite the figure of merit as

pG + (1 − p)F = Tr{[p
G + (1 − p)
F ]�}, (26)

where 
G and 
F are the positive operators given by


F := 1

d2(d2 − 1)
[I3,2,1,0 + d2P3,2 ⊗ P1,0

−P3,2 ⊗ I1,0 − I3,2 ⊗ P1,0], (27)


G := 1

d
(I3 ⊗ Tr3,0[
F ] ⊗ I0)

= 1

d2(d2 − 1)

[(
1 − 2

d2

)
I3,2,1,0 + I3 ⊗ P2,1 ⊗ I0

]
,

(28)

where P = d−1|I 〉〉〈〈I | is the projector on the one-dimensional
invariant subspace of V ⊗ V ∗.

Since the only restrictions on � are positivity and the
normalization given by Eq. (25), the optimal choice is to take
� proportional to the projector on the eigenvector of p
G +
(1 − p)
F corresponding to the maximum eigenvalue; up to
normalization, this eigenvector the can be shown to be of the
form [11]

|χ〉 = x|I 〉〉3,0|I 〉〉2,1 + y|I 〉〉3,2|I 〉〉1,0, x,y ∈ R+. (29)

In order to satisfy Eq. (25), we then choose � = |χ〉〈χ | with
the normalization 〈χ |χ〉 = d2. Recalling Eq. (22), we get

RÛ = |χÛ 〉〈χÛ |,
(30)

|χÛ 〉 := x|Û 〉〉3,0|Û ∗〉〉2,1 + y|I 〉〉3,2|I 〉〉1,0.

The normalization of χ implies that x and y obey the quadratic
equation

x2 + y2 + 2xy

d
= 1. (31)

Note that in the above equation there is just one free parameter
(either x or y), which can be expressed, for example, as a
function on the tradeoff ratio p. Fidelity and gain can be
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calculated in terms of the parameters x and y, thus getting
the following expressions:

F = 1 − d2 − 2

d2
x2, G = 2 − y2

d2
. (32)

The extreme situation of minimum disturbance (resp. maxi-
mum extraction of information) can be retrieved in the extreme
case x = 0, y = 1 (resp. y = 1, x = 0). Indeed, when x = 0
and y = 1, one has RÛ = |I 〉〉〈〈I |3,2 ⊗ |I 〉〉〈〈I |1,0 for all Û .
In this case, there is no information extracted and one has
RÛ ∗ U = U ; that is, the instrument realizes the identity map.
Accordingly, the fidelity F reaches its maximum F = 1,
while the information gain takes its minimum G = 1

d2 , the
value achieved by a random guess according to the Haar
measure. In the opposite case (x = 1, y = 0), one has instead
RÛ = |Û〉〉〈〈Û |3,0 ⊗ |Û ∗〉〉〈〈Û ∗|2,1, which implies RÛ ∗ U =
|Tr[ÛU †]|2Û . This means that in this case our circuit performs
the optimal estimation of U [29] and then executes the
transformation Û on the input state. Accordingly, the fidelity
drops to its minimum value, F = 2

d2 , and the information gain
reaches its maximum, G = 2

d2 .
Following Ref. [11], we now introduce the information

variable 0 � I � 1 and the disturbance variable 0 � D � 1,
given by

I := G − Gmin

Gmax − Gmin
, D := Fmax − F

Fmax − Fmin
,

where Gmax = 2/d2, Gmin = 1/d2, Fmin = 2/d2, and Fmax = 1.
Note that I = 0 (D = 0) corresponds to no information (no
disturbance) and I = 1 (D = 1) corresponds to maximum
information (maximum disturbance).

Using Eq. (32) and the definitions of I and D, we
immediately obtain the relation

x =
√

D, y = √
1 − I . (33)

Substituting the above equations into the normalization con-
dition of Eq. (31), we finally obtain the curve of the optimal
tradeoff:

d2(D − I )2 − 4D(1 − I ) = 0. (34)

The corresponding plot is shown in Fig. 3.

FIG. 3. Plot of the minimum disturbance D(I ) as a function of
the information I [Eq. (34)], for various values of d: solid line, d = 2;
dashed line, d = 3; dotted line, d = 4.

D. Optimal quantum network

We now use Theorems 1 and 2 to construct explicitly
the optimal network achieving the tradeoff of Fig. 3. The
optimal network is derived for every possible value of the
parameters x,y with 0 � x, y � 1 belonging to the curve
x2 + y2 + 2xy/d = 1. Since x and y can be easily expressed
in terms of the information I and the disturbance D [Eq. (33)],
our construction provides the optimal network for every point
in the optimal tradeoff curve depicted in Fig. 3.

According to Theorem 2, the generalized instrument
{RÛ } is implemented as a sequence of N = 2 isometries
V [1] : H0 → H1 ⊗ HA1 and V [2] : H2 ⊗ HA1 → H3 ⊗ HA2 ,
followed by a measurement {PÛ } on the ancilla A2. The
ancillary Hilbert space HA1 (HA2 ) is given by HA1 =
Supp(R(1)∗

1′,0′ ) ⊆ H1′ ⊗ H0′ (HA2 = Supp(R∗
3′,2′,1′,0′ ) ⊆ H3′ ⊗

H2′ ⊗ H1′ ⊗ H0′ ), with Hk′ 	 Hk . The isometries V [1],V [2]

are obtained from the realization of the deterministic comb
R = ∫

dÛRÛ (Theorem 1) and the ancilla measurement is
given by the POVM

PÛ = (R∗)−
1
2 ∗R∗

Û
(R∗)−

1
2 . (35)

Let us start from the construction of the isometries. By
explicit calculation, we find

R =
(

x2d2

d2 − 1
+ y2d2 + 2xyd

)
(P3,2 ⊗ P1,0)

+
(

x2

d2 − 1

)
(I3,2,1,0 − P3,2 ⊗ I1,0 − I3,2 ⊗ P1,0).

Taking the partial trace on H3 and using the condition
Tr3[R] = I2 ⊗ R(1), we then obtain

R(1) = (x + dy)2

d
P1,0 + x2

d
(I − P )1,0,

and, therefore,

(R(1)∗)
1
2 = 1√

d
(ydP1,0 + xI1,0), (36)

(R(1)∗)−
1
2 =

√
d

( −yd

x(x + yd)
P1,0 + 1

x
I1,0

)
. (37)

According to Eq. (11), the isometry V [1] : H0 → H1 ⊗ HA1 ⊆
H1,1′,0′ is given by

V [1] = [
I1 ⊗ (

R
(1)∗
1′,0′

) 1
2
]
(|I 〉〉1,1′ ⊗ T0′←0)

= 1√
d

(yT1←0 ⊗ |I 〉〉1′,0′ + x|I 〉〉1,1′ ⊗ T0′←0).

If we input a pure state |ψ〉 ∈ H0, the output is then the
superposition

V [1]|ψ〉0 = y√
d

|ψ〉1|I 〉〉1′,0′ + x√
d

|I 〉〉1,1′ |ψ〉0′ .

Intuitively, we can understand the action of V1 as a superposi-
tion of two different processes:

(1) With amplitude y, the quantum state |ψ〉0 is propagated
undisturbed from the input system 0 to the output system 1
so that the unknown unitary U can act on it. As we see in the
following, the maximally entangled state |�〉〉1′,0′ = 1√

d
|I 〉〉1′,0′
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then serves as a resource to teleport the state U |ψ〉2 to the
output node 3.

(2) With amplitude x, the state |ψ〉0 is transferred to the
ancillary degree of freedom 0′: in this case the unknown
unitary does not act on it, but, instead, it acts on the maximally
entangled state |�〉〉1,1′ = 1√

d
|I 〉〉1,1′ , thus producing the state

|�U 〉〉2,1′ = 1√
d
|U 〉2,1′ . As we see in the following, the state

|�U 〉〉2,1′ is used for the optimal estimation of U . Finally, the
state |ψ〉0′ is transferred to the output system 3, and, depending
on the estimate, a transformation Û is applied on it.

The isometry V [2]H2,1′,0′ ⊇ H2 ⊗ HA1 → H3 ⊗ HA2 ⊆
H3,3′,2′,1′,0′ is given by

V [2] = {
I3 ⊗ [

(R∗
3′,2′,1′,0′ )

1
2
(
I3′,2′ ⊗ R

(1)∗
1′,0′

)− 1
2
]}

× (|I 〉〉3,3′ ⊗ T2′←2 ⊗ I1′,0′ ). (38)

On the other hand, using Eqs. (35) and (30), the POVM {PÛ }
on HA2 can be written as

PÛ = |ηÛ 〉〈ηÛ |, |ηÛ 〉 := (R∗)−
1
2 |χ∗

Û
〉. (39)

Combining the isometry V [2] with the POVM {PÛ }, we then
obtain the instrument {TÛ }, with TÛ : L(H2 ⊗ HA2 ) → L(H3)
given by

TÛ (ρ) = TrA2 [V [2]ρV [2]†(I3 ⊗ PÛ )], ∀ρ ∈ L(H2 ⊗ HA1 ).

We now use Eqs. (38) and (39) to show that the instrument
{TÛ } has a very simple form. To construct TÛ explicitly, we
start from the Kraus form TÛ (ρ) = KÛρK

†
Û

, where the Kraus
operator KÛ is given by

KÛ = (I3 ⊗ 〈ηÛ |3′,2′,1′,0′ )V [2]

= (I3 ⊗ 〈χ∗
Û
|3′,2′,1′,0′ )

(
I3 ⊗ I3′,2′ ⊗ R

(1)∗
1′,0′

)− 1
2

× (|I 〉〉3,3′ ⊗ T2′←2 ⊗ I1′,0′ ),

having used Eqs. (38) and (39). Now, from Eq. (30), we have
〈χ∗

Û
|3′,2′,1′,0′ = 〈χ |3′,2′,1′,0′ (Û T

3′ ⊗ Û
†
2′ ⊗ I1′,0′ ) and, therefore,

KÛ = (I3 ⊗ 〈χ |3′,2′,1′,0′ )
(
I3 ⊗ I3′,2′ ⊗ R

(1)∗
1′,0′

)− 1
2

× (|Û〉〉3,3′ ⊗ Û
†
2′T2′←2 ⊗ I1′,0′ ).

Finally, inserting Eqs. (29) and (37) in the above expression,
we obtain

KÛ =
√

d(〈〈Û |2,1′ ⊗ Û3T3←0′ ),

which implies that the instrument {TÛ } is given by

TÛ (ρ) = Û3T3←0′ (d〈〈Û |2,1′ρ|Û 〉〉2,1′ )T0′→3Û
†
3 , (40)

where we introduced the redundant notation T0′→3 := T
†

3←0′ =∑d
n=1 |n〉0′ 〈n|3 ≡ T0′←3 to make the expression clearer.
The interpretation of Eq. (40) is straightforward. To

implement the instrument {TÛ } we only have to perform on
system 2 and on the ancila 1′ the Bell measurement {BÛ } with
POVM BÛ = d|Û 〉〉〈〈Û | and, depending on the outcome, to
perform the unitary Û on output system 3, which is obtained
from the ancilla 0′ just by relabeling (represented here by the
teleportation operator T3←0′ ). In other words, the instrument
{TÛ } is just obtained by a Bell measurement followed by
unitary feed-forward. Remarkably, {TÛ } is independent of the

0 2 3

1′

0′

1

V [1]

U

Û

Û

FIG. 4. Optimal quantum network for the information-
disturbance tradeoff. The input state |ψ〉 enters from the wire 0.
Then, the isometry V [1] prepares a coherent superposition

1√
d

(y|ψ〉1|I 〉〉1′,0′ + x|I 〉〉1,1′ |ψ〉0′ ), which is tuned by the parameters

x = √
D and y = √

1 − I , whose values depend on the information-
disturbance rate. After that, the unknown unitary U is applied between
nodes 1 and 2 of the network. Finally, a Bell measurement is
performed and, depending on the result, the unitary transformation
Û is performed on output system 3.

tradeoff parameters x,y; this means that, after we perform
the isometry V [1], the remaining part of the optimal network
is independent of the particular value of the information-
disturbance rate. The reason for this is that the combination of
Bell measurement and feed-forward realized by the instrument
{TÛ } can work both as a teleportation protocol (in the case of
no disturbance) and as an estimate-and-reprepare strategy (in
the case of maximal information extraction).

To summarize the results of this section, we give the step-
by-step evolution of a pure state |ψ〉0 in the optimal quantum
network:

|ψ〉0
V [1]−→ 1√

d
(y|ψ〉1|I 〉〉1′,0′ + x|I 〉〉1,1′ |ψ〉0′ )

U−→ 1√
d

(yU |ψ〉2|I 〉〉1′,0′ + x|U 〉〉2,1′ |ψ〉0′)

√
d〈〈Û |−−−→ yÛ †U |ψ〉3 + xTr[ÛU †]|ψ〉3

Û−→ yU |ψ〉3 + xTr[ÛU †]Û |ψ〉3.

The action of the whole network is depicted in Fig. 4.

V. CONCLUSIONS

In this work we addressed the fundamental problem of
the information-disturbance tradeoff in the estimation of an
unknown quantum transformation. In particular, we com-
pletely solved the problem in the case of a unitary transforma-
tion, randomly distributed according to the Haar measure.

Interestingly, the analytical expression of the optimal
tradeoff curve given in Eq. (34) happens to coincide with
the tradeoff curve for the estimation of a maximally entangled
state [11]. Note, however, that this is not a trivial consequence
of the Choi isomorphism U → 1√

d
|U 〉: while this mathe-

matical correspondence is one-to-one, operationally it cannot
be inverted with unit probability. In other words, once the
transformation U has been applied to the maximally entangled
state 1√

d
|I 〉〉, it is irreversibly degraded and can be retrieved

only probabilistically. For this reason, there is no operational
relation between the information-disturbance tradeoff for uni-
tary transformations and that for maximally entangled states
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(none of them is a primitive for the other). Indeed, the optimal
quantum network for unitary transformations depicted in Fig. 4
is quite different from the optimal network for maximally
entangled states. In our case the optimal network consists of
(i) a first interaction that produces a quantum superposi-
tion with amplitudes depending on the desired information-
disturbance rate and (ii) a Bell measurement followed by
unitary feed-forward.

Besides its fundamental relevance, the information-
disturbance tradeoff for transformations is also interesting
as a possible eavesdropping strategy in cryptographic pro-
tocols where the secret key is encoded in a set of unitary
transformations, as it happens in the two-way protocols of
Refs. [17–20]. Notice, however, that for protocols where the
secret key is encoded in a set of orthogonal unitaries, like
those of Refs. [17,18,20], the security of the protocol is
not based on the information-disturbance tradeoff studied in
this paper. Indeed, since the unitaries are orthogonal, they
can be estimated and re-prepared without introducing any
disturbance (or just introducing a vanishing disturbance, in the
infinite-dimensional case). This is the reason why the protocols
of Refs. [17,18,20] necessarily require random switching
between a communication mode and a control mode. The
present analysis is instead relevant for the analysis of the two-

way protocol of Ref. [19], which uses two mutually unbiased
bases of orthogonal qubit unitaries, given by B1 = {σµ}3

µ=0

and B2 = {Uσµ}3
µ=0, where σ0 = I , {σk}3

k=1 are the three

Pauli matrices, and U = (I + i
∑3

k=1 σk)/2 is the rotation of
2π/3 around the axis n = 1/

√
3(1,1,1). In this case, using

the optimal network is a nontrivial eavesdropping attack. Of
course, since the protocol does not involve all possible qubit
unitaries, the optimal tradeoff curve for the restricted set B1 ∪
B2 could possibly be more favorable to the eavesdropper than
the universal tradeoff curve derived in this paper. The analysis
of the tradeoff for nonuniversal sets of unitary transformations
and the study of the relations between information-disturbance
tradeoff and quantum cloning for unitary transformations [19]
are interesting directions of future research.
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