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A bipartite quantum channel represents the interaction between systems, generally allowing for the

exchange of information. A special class of bipartite channels is the no-signaling ones, which do not allow

for communication. Piani et al. [Phys. Rev. A 74, 012305 (2006)] conjectured that all no-signaling

channels are mixtures of entanglement breaking and localizable channels, which require only local

operations and entanglement. Here we provide the general realization scheme, and give a counterexample

to the conjecture, achieving no-signaling superquantum correlations while preserving entanglement.
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Causality is the basic assumption of science, the build-
ing block of any mechanism, and any prediction scheme
[1]. It is the gray eminence of physical theories, taking
apparently different forms, such as retarded potentials in
classical physics, Minkowskian causality in relativity, and
(anti)commutation relations in quantum field theory. The
modern paradigm of causality is communication, where we
identify the causal relation with information exchange.
Causality should not be confused with determinism:
indeed, any communication scheme from Alice to Bob
corresponds to a dependence of the outcome probability
distributions at Bob’s location on Alice’s choice. It is easy
to recognize that such schemes encompass all customary
definitions of causality, including determinism as a very
special case. In synthesis, we define causality as the
dependence of a probability distribution on a choice.

In the past, quantum entanglement has been claimed as a
resource for communication [2], regarding Alice’s choice
of local measurement as a way of changing Bob’s proba-
bilities—the spooky action at a distance of Einstein [3].
The impossibility of communicating by local operations—
today commonly referred to as no signaling—is instead an
immediate consequence of causality of the theory, as
proved in Ref. [4].

In order to have a causal relation between two systems A
(Alice) and B (Bob) one needs an interaction between
them. In quantum theory such interaction is represented
by a bipartite channel for A and B, with communication
from A to B corresponding to the dependence of the local
output state of system B on the choice of the input state of
system A. Indeed, one can generalize the scheme to the
case of A and B at the input being different from A0 and B0
at the output, considering the causal relation, e.g., from A
to B0. More generally we can include the case of one-
dimensional systems, thus recovering also the situation of
monopartite channels (the case of both inputs and/or both
outputs one dimensional is uninteresting, since there is no
input and/or no output then). While monopartite channels
have trivial causality properties—the only no-signaling
monopartite channels being those that prepare a fixed state

irrespectively of the input state—bipartite channels pro-
vide the minimal nontrivial interaction scenario. For sim-
plicity we will restrict to finite dimensions, and use the
same capital Roman letter to denote the system and the
corresponding Hilbert space, writing LðAÞ for the space
of operators on A. The graphical representation of the
bipartite quantum channel C:LðA � BÞ ! LðA0 � B0Þ is
the following:

The natural question is now which interactions do not
allow for communication between input and output. For
example, one cannot achieve signaling by local operations
using entanglement—such bipartite channels are called
localizable. However, as shown in Ref. [5], not every no-
signaling channel is localizable (see also Definition 1), and
the problem is how to generate ‘‘superquantum’’ correla-
tions—i.e., stronger than those arising from entangle-
ment—without signaling, as for PR boxes [6]. In the
same reference it has been conjectured that all semicausal
channels (namely, no signaling from B to A0, but not
necessarily from A to B0) are also semilocalizable, namely,
they are of the form

for some system E0 and suitable quantum channelsV 1 and
V 2. Such conjecture has later been proved in Ref. [7]. An
alternative proof was given in Ref. [8], where the authors
also proposed the following:
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Conjecture 1.—All no-signaling channels are mixtures
of entanglement-breaking and localizable channels.

The conjecture was based on the only known quantum
realization of a PR box, which was made with an
entanglement-breaking channel, i.e., a channel which de-
stroys the entanglement between its input system and any
other system. Such conjecture, however, implicitly forbids
truly coherent superquantum correlations. This corre-
sponds to perfect monogamy of correlations, in the sense
that when the channel violates the Cirel’son bound [9] the
entanglement of the input systems with other ones is
broken. We will show that Conjecture 1 is false, allowing
for more flexibility, with a trade-off between generated
correlations and preserved entanglement, and with a vio-
lation of the Cirel’son bound achieved coherently, in the
full range between the quantum bound and the maximum
possible correlation. We will also provide the general
realization scheme for the no-signaling bipartite channel,
along with a concrete counterexample to Conjecture 1.

We will stick on the graphical representation of a bipar-
tite quantum channel in Eq. (1). By ‘‘quantum channel’’ we
mean a completely positive, trace-preserving map between
the density-matrix space of the input systems and that of
the output systems. The preparation of a state � and
measurement of a POVM fPxg on system A are special
classes of channels, with one-dimensional input and output
space, respectively, graphically represented as

We will use the bijection between states and operators A ¼P
mnAmnjmihnj $ jAii ¼ P

mnAmnjmijni summarized by
the identity jAii ¼ ðA � IÞjIii, where jIii ¼ P

njnijni is
the (unnormalized) maximally entangled state. It will also
be useful to introduce the Choi-Jamiołkowski isomorphism
between channels C:LðAÞ ! LðBÞ and positive operators
on B � A: RC :¼ C � IAðjIiihhIjÞ, Cð�Þ ¼ TrA½ðI �
�TÞRC�, where �T denotes the transposition of the operator
� with respect to the orthonormal basis jni.

We are now in position to make the above-mentioned
concepts more precise:

Definition 1.—The channel C:LðAÞ �LðBÞ ! LðA0Þ �
LðB0Þ is ‘‘localizable’’ if it can be realized by local opera-
tions on A � EA and B � EB with a shared (possibly en-
tangled) ancilla EA � EB in a state � without
communication:

Definition 2.—A bipartite quantum channel C:LðAÞ �
LðBÞ ! LðA0Þ �LðB0Þ is ‘‘A =! B0 no signaling’’ if there
exists SBB0 such that TrA0 ½RC� ¼ IA � SBB0 . We say that C is

‘‘no signaling’’ if it is both A =! B0 no signaling and
B =! A0 no signaling.
The following theorem holds:
Theorem 1.—The following are equivalent: 1. The chan-

nel C:LðA � BÞ ! LðA0 � B0Þ is no signaling. 2. There are
two equivalent d-dimensional quantum systems EA, EB, a

bipartite state � of EA � EB, instruments fCðxÞA gx2X and

fDðxÞ
B gx2X with outcome space X, and channels CðxÞB , DðxÞ

A

for each x 2 X with

C ðxÞ
A :LðA � EAÞ ! LðA0Þ; CðxÞB :LðB � EBÞ ! LðB0Þ

DðxÞ
B :LðB � EBÞ ! LðB0Þ; DðxÞ

A :LðA � EAÞ ! LðA0Þ
such that

C ¼ X
x2X

CðxÞB � CðxÞA ð�EAEB
Þ ¼ X

x2X

DðxÞ
A �DðxÞ

B ð�EAEB
Þ;

(5)

namely, C has the two equivalent circuit realizations

Proof.—Proof of ð1Þ ) ð2Þ. C is B =! A0 no signaling,
therefore it can be realized as in Eq. (2), where E0 is a
d0-dimensional system. This system can be teleported us-
ing the entangled state 1ffiffiffi

d0
p jIii of system E0

A � E0
B, the Bell

measurement jBxii on systems E0 and E0
A, and classical

communication of the outcome x followed by a controlled
unitary Ux on system E0

B, corresponding to the circuit

(the double wire represents the classical communication of
the outcome x of the measurement).

The quantum operation CðxÞA and the channel CðxÞB are the
grouped circuital elements in Eq. (8), and are
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CðxÞA ð�Þ :¼ hhBxjðV 1 � IE0
A
Þð�ÞjBxii

CðxÞB ð�Þ :¼ V 2ððUðxÞ � IBÞ�ðUðxÞ � IBÞyÞ: (9)

The final circuit is thus

Since the channel C is also A =! B0 no signaling, the
same argument gives:

with DðxÞ
A and DðxÞ

B given by

DðxÞ
B ð�Þ :¼ hhBxjðW 1 � IE00

B
Þð�ÞjBxii

DðxÞ
A ð�Þ :¼ W 2ððUðxÞ � IAÞ�ðUðxÞ � IAÞyÞ: (11)

We obtain the statement by defining EA and EB as
d-dimensional systems, where d :¼ maxfd0; d00g, and
embedding E0

J and E00
J in EJ, for J ¼ A, B.

Proof of ð2Þ ) ð1Þ.—Suppose that C admits the realiza-
tion in Eq. (6). We can group EB and X in the composite
system E0. Then C is also of the form of Eq. (2), thus being
B =! A0 no signaling, as proved in Refs. [7,10]. In the same
way, exploiting the second scheme in Eq. (7), one can
prove that C is also A =! B0 no signaling. j

Theorem 1 shows that the most general no-signaling
channel differs from a localizable channel because it also
admits a single round of classical communication, with the
constraint that it must be possible to implement the channel
exploiting communication in either direction.

We now provide a counterexample to Conjecture 1, in
terms of a no-signaling channel that is atomic (i.e., it
cannot be written as a convex combination of different
channels whence also of no-signaling channels) and that
is neither entanglement breaking nor localizable. Let A, B,
XA, XB, WA, WB be qubits. We define the channel R�

depending on �, 0 � � � 1:

where E is the swap operator, j��ii :¼
ffiffiffiffi
�

p j0ij0i þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p j1ij1i, the two-qubit gate in the dashed box is a
controlled-�x given by �AWA

:¼ j1ih1jWA
� ð�xÞA þ j0i�

h0jWA
� IA classically controlled by the outcomes of the

measurements on the computational basis (represented by

the circuital element ). Notice that the classical

control works as a logical AND, implying that the box�AWA

is performed if and only if both outcomes of the measure-

ments are equal to 1.

We notice that circuit R� in Eq. (12) is implemented
using local operations, entanglement, and one round of
classical communication from Bob to Alice, thus being
of the form of Eq. (7). One can verify that R� can be
equivalently realized applying the controlled �x on
systems B and WB as follows:

Consequently R� also admits a realization of the form
given in Eq. (6). By Theorem 1, we can conclude that this
is a no-signaling channel. The Choi-Jamiołkowski operator
of R� is

R� ¼ X1
m;n¼0

jK�
mniihhK�

mnj;

jK�
mnii ¼ ½ð�AWA

Þmn � hmjXA
hnjXB

�j��ii;

j��ii ¼ ðE � IABÞ
�
jIiiAB;AB � 1ffiffiffi

2
p jIiiXAXB

� j��ii
�
;

(14)

E denoting the tensor product of the two C swaps.
Using MATHEMATICA, we prove that R~� with ~� :¼ 1=6

is a counterexample by showing that it satisfies the
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following properties: (i) it is not entanglement breaking,
(ii) it is not localizable, and (iii) it is atomic.

Proof of (1).—(R~� is not entanglement breaking.) A
channel is entanglement breaking if and only if the corre-
sponding Choi-Jamiołkowski operator is separable. Thus,
we can prove that R~� is not entanglement breaking by
showing that R~� violates the Peres-Horodecki criterion for
separability [11,12]. According to the criterion, if a state is
separable it has a positive definite partial transpose.
Numerically, one can check that R~� has a partial transpose
with negative eigenvalues, whence we conclude that it is
entangled and R~� is not entanglement breaking.

Proof of (2).—(R~� is not localizable.) If R� were
localizable [see Eq. (4)], the following observables An, Bm

( is the measurement of �z) would verify the

Cirel’son bound [5]: c� :¼ jhA0B0i þ hA0B1i þ hA1B0i �
hA1B1ij � 2

ffiffiffi
2

p
. We have that hAnBmi ¼ Tr½ð�z

A � jni�
hnjA � �z

B � jmihmjB � IWAWB
ÞR�� whence [using expres-

sion in Eq. (14) for R�] one finds c� ¼ j4� 6�j. Since
c~� ¼ 3> 2

ffiffiffi
2

p
, the Cirel’son bound is violated and R~�

cannot be localizable.
Proof of (3).—(R~� is extremal.) One can check that the

matrices fK ~�y
mnK ~�

m0n0 g are linearly independent. By Choi’s

theorem [13] the channel R~� is extremal.
For a multipartite channel satisfying two different no-

signaling conditions, an analog of Theorem 1 holds. In
fact, let us consider a channel C with input systems labeled
by a set of indicesJ and output systems labeled by a setO.
Suppose that C satisfies

TrO0 ½RC� ¼ IJ 0 �S
O0[I0 ; TrO00 ½RC� ¼ IJ 00 �T

O00[I00 ; (16)

for certain subsets J 0, J 00 � J andO0,O00 � O, where �S
represents the set complement of S, and for suitable Choi-
Jamiołkowki operators S and T. Following the proof of
Theorem 1 we can show that two circuits realizing C are

In general the subsets J 0, J 00 are not a partition of J . In
this case we have that the circuits cannot be realized

partitioning the systems between the two local parties A

and B. In particular, the input systems in J 0 \ J 00 are
always assigned to the party which sends the classical
message, and input systems in J 0 \ J 00 are assigned to
the party which receives the classical message (and simi-
larly for output systems). One can also consider more
complex scenarios, i.e., channels with more than two no-
signaling conditions of the kind in Eq. (16), or channels
with nested conditions, for example, when the Choi-
Jamiołkowski operators S and T in Eq. (16) satisfy no-
signaling conditions on their own. However, the analysis of
these cases is complicated, and is left as on open problem.
In conclusion, we have provided the general realization

scheme of no-signaling channels, giving a counterexample
to the conjecture of Ref. [8], stating that such channels are
mixtures of entanglement-breaking and localizable chan-
nels. The general scheme allows for more flexibility of
entanglement monogamy, opening the new problem of
determining the trade-off between generated correlations
and preserved entanglement. The general realization
scheme looks counterintuitive, due to the presence of
classical communication. However, the nontrivial con-
straint is the fact that an equivalent scheme must exist,
with communication in the reverse direction, and remark-
ably this suffices to make the channel no signaling.
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