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RECONSTRUCTION OF THE DENSITY MATRIX AS A CONSTRAINED
OPTIMIZATION PROBLEM
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Dipartimento di Fisica ’A. Volta’ dell’Università di Pavia

via Bassi 6 – I-27100 Pavia, Italy

Received 29 April 1999, accepted 10 May 1999

We present a numerical algorithm for the maximum-likelihood estimation of the density
matrix, and apply it to the homodyne tomography of a single-mode radiation field. The
algorithm is based on a specific form of the Gauss decomposition for positive definite Her-
mitian matrices. Results from Monte Carlo simulated experiments are presented.
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Over past several years a great deal of interest has been paid to the reconstruction of the
complete quantum state from experimental data [1]. Theoretical research in this field, apart
from designing new measurement schemes, explores also the problem of extracting the opti-
mal amount of information from data available in a realistic experimental setup. In this com-
munication, we present a numerical algorithm for reconstructing the density matrix using the
maximum-likelihood method [2, 3]. We discuss this algorithm in the context of quantum ho-
modyne tomography [4, 5], which is actually the most successful method for quantum state
reconstruction, and, in fact, the unique technique that has been so far experimentally imple-
mented to measure nonclassical states of light [4, 6].

The realistic homodyne measurement of the quadrature
������	� �
����� ��� �
������ ������� � is de-

scribed by the positive operator-valued measure�� ��� �"! � � #$ % � #'&)( �+*-,/.10 & �2� & � ( �� � �"3#'&)( 465 (1)

where ( is the detector efficiency. After repeating the measurement 7 times, we obtain a set
of pairs ��� � �"! � � consisting of the outcome � � and the local oscillator phase ! � for the 8 th run,
where 8 � # 5:9�9:9:5 7 .;
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In the maximum-likelihood approach, these data are used to construct the likelihood func-
tional [2]� � �� � � ����� � Tr � �� �� �2� � �"! � ��� (2)

defined on the manifold of density matrices. The maximum-likelihood estimate of the quantum
state is then defined as the density matrix

��
	�� that maximizes the likelihood functional.
Quantum state estimation using the maximum-likelihood method, despite its elegant for-

mulation, presents in general a highly nontrivial constrained optimization problem. The central
difficulty lies in the appropriate parameterization of the manifold of density matrices. The pa-
rameter space should be of the lowest possible dimension in order to preserve the maximum of
the likelihood functional as a single isolated point. Moreover, the expression of quantum expec-
tation values in terms of this parameterization should enable fast evaluation of the likelihood
functional, as this step is performed many times in the course of numerical maximization.

Here, we introduce a parameterization of the manifold of density matrices which provides
an efficient algorithm for maximizing the likelihood functional. We shall represent the density
matrix

�� in the form�� � � � � (3)

which automatically guarantees that
�� is positive definite and Hermitian. The remaining condi-

tion of unit trace Tr
�� � # will be taken into account in the maximization procedure using the

method of Lagrange multipliers.
To achieve the minimal parameterization, we shall assume that

�
is a lower-triangular ma-

trix with real elements on the diagonal and complex ones below. This form of
�

is motivated
by the Cholesky decomposition known in numerical analysis [7], and exists for an arbitrary
positive definite Hermitian matrix. For the � -dimensional Hilbert space, the number of free
real parameters in the matrix

�
is � � � � � � & # ��� � � � 3

, which equals the number of
independent real parameters for a Hermitian matrix. This confirms that our parameterization is
minimal.

The above parameterization of the manifold of density matrices allows one to apply read-
ily one of the standard maximization procedures. In practice, instead of using the likelihood
function

� � �� � , it is convenient to evaluate its logarithm. Thus the function subjected to maxi-
mization is given by

� � � � � �� ��� ������� Tr � � � � �� ��� � � ! � ��� &�� Tr � � � � � (4)

where � is a Lagrange multiplier. It can be easily shown that � equals the total number of
measurements 7 [8]. Of course, for a light mode it is necessary to truncate the Hilbert space to
a finite dimensional basis.

We have applied the present approach to a set of Monte Carlo experiments. We have sim-
ulated a homodyne detection for some quantum states, and applied the maximum-likelihood
algorithm to reconstruct the density matrix in the Fock basis, truncated upon defining the max-
imum number of photons. We have used the downhill simplex method [9] to find the maximum
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of the function
� � � � . Results of the reconstruction for a coherent state and a squeezed vacuum

are presented in Fig. 1.

Fig. 1. Monte Carlo simulation of the tomographic reconstruction of the density matrix using the maxi-
mum likelihood technique. On the left the density matrix for a coherent with ���������	��
 average photon,
and on the right for a squeezed vacuum with �������������� � photons. In both simulated experiments��� ��
���� phases with

��� ��������� data each have been used. The truncation of the Hilbert space has
been set to

��� ��� , and we considered a quantum efficiency � ���!� " at the photodetectors.

In numerical calculations, it is convenient to use an expression for the quantum expecta-
tion value Tr � � � � �� �2� � �"! � ��� which is explicitly positive definite. This protects the algorithm
against occurrence of a negative number as an argument of the logarithm function, which may
in principle happen when Tr � � � � �� �2� � �"! � ��� is very close to zero. A simple calculation yields
the expression:

Tr � � � � �� ��� � � ! � ��� � #  ��$ �&%
$�' �&%
(((((
$  '�
) �&%

* 0,+ �.-+ 4 ( ) � #'&)( � '�/1032 � 2 + �4-65 / + 2 � � 5 � � ) �7
(((((
3

(5)

where

/ + 2 � 5 � #% �98;: � =<>�? >A@ ) �2� �� +CB � )
are eigenstates of the harmonic oscillator in the position representation ( @ ) ��� � being the + -th
Hermite polynomial). This formula has another advantage from the point of view of numerical
calculations: the argument of the most inner sum involves a product of terms dependent only
on ( , � , or ! . After discretization of � and ! , each of these three terms can be evaluated once
and efficiently stored as a two-dimensional array without extensive memory usage.
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In conclusion, we have presented an effective implementation of the maximum likelihood
method to the tomographic reconstruction of the density matrix of a light mode. Our approach
is based on a suitable parameterization for the density matrix, which allows to use a minimal set
of parameters and avoids negative values in the evaluation of the log-likelihood function. Our
method can be readily generalized [8] to the reconstruction of quantum states of other systems
like spins or trapped ions.
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