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Tomographic test of Bell’s inequality
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Abstract. We present a homodyne detection scheme to verify Bell’s inequality on correlated
optical beams at the output of a nondegenerate parametric amplifier. Our approach is based
on tomographic measurement of the joint detection probabilities, which allows high quantum
efficiency at detectors. A self-homodyne scheme is suggested to simplify the experimental
set-up.
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1. Introduction

In 1935 Einsteinet al [1] proved the incompatibility of three
hypotheses: (1) quantum mechanics is correct; (2) quantum
mechanics is complete; (3) the following criterion of local
reality holds: ‘If, without in any way disturbing a system,
we can predict with certainty [. . . ] the value of a physical
quantity, then there exists an element of physical reality
corresponding to this quantity.’ The paper opened a long
and as yet unsettled debate about which one of the three
hypotheses should be discarded. While Einstein suggested
abandoning the completeness of quantum mechanics, Bohr
[2] rejected the criterion of reality. The most important step
forward in this debate was Bell’s theorem of 1964 [3], which
proved that there is an intrinsic incompatibility between
assumptions (1) and (3), namely the correctness of quantum
mechanics and Einstein’s ‘criterion of reality’. In Bell’s
approach, a source produces a pair of correlated particles,
which travel along opposite directions and impinge into
two detectors. The two detectors measure two dichotomic
observablesA(α) andB(β) respectively,α andβ denoting
experimental parameters which can be varied over different
trials, typically the polarization/spin angle of detection at
each apparatus. Assuming that each measurement outcome
is determined by the experimental parametersα and β
and by an ‘element of reality’ or ‘hidden variable’λ,
Bell proved an inequality which holds for any theory that
satisfies Einstein’s ‘criterion of reality’, while it is violated by
quantum mechanics. Such a fundamental inequality, which
allows an experimental discrimination between local hidden-
variable theories and quantum mechanics, has been the focus
of interest in a number of experimental works [4].

Unfortunately, Bell’s proof is based on two conditions
which are difficult to achieve experimentally. The first is the
feasibility of an experimental configuration yielding perfect
correlation; the second is the possibility of approaching an
ideal measurement, which itself does not add randomness to
the outcome. Since 1969, attention has focused on improving
the correlation of the source on the one hand and, on the other,

on deriving more general inequalities that take into account
detection quantum efficiency or circumvent the problem—
however, at the cost of introducing supplementary hypotheses
(see [5]), such as the well known ‘fair sampling’ assumption.
It was clear to the authors of [5] that these assumptions were
questionable, and, as a matter of fact, it was proved [6]
that in all performed experimental checks the results can be
reproduced in the context of Einstein’s assumptions if the
quantum efficiency of detectors is less than 82.3%. However,
no experiment has yet succeeded in realizing such a high
value of quantum efficiency.

In a typical experiment the source emits a pair of
correlated photons and two detectors separately check the
presence of the two photons after polarizing filters at angles
α and β, respectively. Alternatively, one can use four
photodetectors with polarizing beam splitters in front, with
the advantage of checking through coincidence counts that
photons come in pairs. Let us denote bypα,β the joint
probability of finding one photon at each detector with
polarization angleα and β, respectively. In terms of the
correlation function

C(α, β) = pα,β + pᾱ,β̄ − pᾱ,β − pα,β̄ , (1)

Bell’s inequality [3] is expressed as

B(α, β, α′, β ′) .= |C(α, β)− C(α, β ′)|
+ |C(α′, β ′) +C(α′, β)| 6 2, (2)

ᾱ andβ̄ being the polarization angles orthogonal toα andβ,
respectively. In this paper we propose a new kind of test for
Bell’s inequality based on homodyne tomography [7,8] (for a
review, see [9]). In our set-up the photodetectors are replaced
by homodyne detectors, which along with the tomographic
technique can be regarded as a black box for measuring
the joint probabilitiespα,β . The main advantage of the
tomographic test is that it allows the use of linear photodiodes
with quantum efficiencyη higher than 90% [10]. On the
other hand, the method works effectively even withη as low
as 70%, without the need of a ‘fair sampling’ assumption,
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Figure 1. Experimental set-up for the tomographic test of Bell’s
inequality. PBS and BS denote ‘polarizing beam splitter’ and
‘conventional beam splitter’, respectively. Input radiation modes
al, b↔, a↔ andbl are in the vacuum state, while modescl, c↔,
dl, d↔ (at laser frequencyω0) are in a coherent state. At the output
of the nondegenerate parametric amplifier (NOPA) the four
photocurrentŝI at radiofrequency� are measured, yielding the
value of quadratures of the field modesal, b↔, a↔ andbl. The
outcome quadratures are then used to reconstruct the probabilities
of interest through quantum tomography.

since all data are collected in a single experimental run.
With respect to the customary homodyne technique, which
in the present case would need many beam splitters and
local oscillators (LO) that are coherent each other, the set-
up is greatly simplified by using the recent self-homodyne
technique [11]. Another advantage of self-homodyning is
the more efficient signal–LO mode-matching, with improved
overall quantum efficiency.

2. The experimental set-up

The apparatus for generating the correlated beams is aχ(2)

nonlinear crystal, cut for type-II phase-matching, acting as
a nondegenerate optical parametric amplifier (NOPA). The
NOPA is injected with excited coherent states (see figure 1)
in modesc↔, cl, d↔, dl all with equal intensities and at
the same frequencyω0; c and d denote mode operators
for the two different wavevector directions; andl and↔
represent vertical and horizontal polarization, respectively.
The NOPA is pumped at the second harmonic 2ω0. At
the output of the amplifier four photodetectors separately
measure the intensitieŝIal , Îb↔ , Îa↔ , Îbl of the mutual
orthogonal polarization components of the fields propagating
at different wavevectors. A narrow band of the photocurrent
is selected, centred around frequency� � ω0 (typically ω0

is optical/infrared, whereas� is a radio frequency). In the
process of direct detection, the central modescl,↔ anddl,↔
beat withω0±� sidebands, thus playing the role of the LO
of homodyne detectors. The four photocurrentsÎal , Îb↔ , Îa↔ ,

Îbl yield the value of the quadratures of the four modes [11]

sπ = 1√
2
(aπ(+) + aπ(−))

s = {a, b}, π = {↔,l},
(3)

where aπ(±) and bπ(±) denote the sideband modes at
frequencyω0 ± �, which are in the vacuum state at the
input of the NOPA. The quadrature is defined by the operator

x̂φ
.= 1

2(ae−iφ +a†eiφ), whereφ is the relative phase between
the signal and the LO. The value of the quadratures is
used as input data for the tomographic measurement of the
correlation functionC(α, β). The direction of polarizers
(α, β) in the experimental set-up does not need to be
varied over different trials, because, as we will show in the
following, such direction can be changed tomographically.

We will now enter into details on the state at the output of
the NOPA and on the tomographic detection. In terms of the
field modes in equation (3) the spontaneous down-conversion
at the NOPA is described by the unitary evolution operator

Û (ξ) = exp[ξ(a†
lb

†
↔ + eiϕa†

↔b
†
l)− h.c.], (4)

whereξ = χ(2)γL/c is a rescaled interaction time written
in terms of the nonlinear susceptibilityχ(2) of the medium,
the crystal lengthL, the pump amplitudeγ and the speedc
of light in the medium, whereasϕ represents a tunable phase
that can be varied by rotating the crystal around the optical
axis [12]. The state at the output of the NOPA is expressed
as

|ψ〉 = (1− |3|2)
∞∑
n=0

∞∑
m=0

3n+meiϕm|n, n,m,m〉

≡ |ψ1,2〉 ⊗ |ψ3,4〉, (5)

where3 = ξ/|ξ | tanh|ξ | and |i, l, m, n〉 represents the
common eigenvector of the number operators of modes
al, b↔, a↔, bl, with eigenvaluesi, l, m andn, respectively.
The average photon numberper mode is given byN =
|3|2/(1− |3|2). The four-mode state vector in equation (5)
factorizes into a couple of twin beams|ψ1,2〉 and|ψ3,4〉, each
one entangling a couple of spatially divergent modes (al, b↔
anda↔, bl, respectively).

Notice that conventional experiments, concerning
a two-photon polarization-entangled state generated by
spontaneous down-conversion, consider a four-mode
entangled state which corresponds to keeping only the first-
order terms of the sums in equation (5), and to ignoring
the vacuum component, as only intensity correlations are
usually measured. Here, in contrast, we measure the
joint probabilities on the state (5) to test Bell’s inequality
through homodyne tomography, which yields the value of
B(α, β, α′, β ′) in equation (2).

3. Tomographic test of Bell’s inequality

The tomographic technique is a kind of universal detector,
which can measure any observablêO of the field, by
averaging a suitable ‘pattern’ functionR[Ô](x, φ) over
homodyne datax at random phaseφ. The ‘pattern’ function
is obtained through the trace rule [13]:

R[Ô](x, φ) = Tr[ÔKη(x − x̂φ)], (6)

whereKη(x) is a distribution given in [14]. For factorized
many-mode operatorŝO = Ô1 ⊗ Ô2 ⊗ · · · ⊗ Ôn the
pattern function is just the product of those corresponding to
each single-mode operatorÔ1, . . . , Ôn labelled by variables
(x1, φ1), . . . , (xn, φn). By linearity the pattern function is
extended to generic many-mode operators.
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Now we consider which observables are involved in
testing Bell’s inequality (2). Let us denote byqα,β(i, l, m, n)
the probability of having i, l, m, n photons in modes
al, b↔, a↔, bl for the ‘rotated’ state

|ψ〉α,β ≡ Û1,3(α)Û2,4(β)|ψ〉, (7)

Û1,3(α) andÛ2,4(β) being the unitary operators

Û1,3(α) = exp[α(a†
la↔ − ala†

↔)], (8)

Û2,4(β) = exp[β(b†
lb↔ − blb†

↔)]. (9)

The probabilities in equation (1) can be written aspα,β =
pα,β(1, 1), pᾱ,β̄ = pα,β(0, 0), pᾱ,β = pα,β(0, 1), and
pα,β̄ = pα,β(1, 0), with

pα,β(n,m) = qα,β(n, 1−m, 1− n,m)
P (1, 1)

, (10)

and{n,m = 0, 1}. The denominatorP(1, 1) in equation (10)
represents the absolute probability of having at the output of
the NOPA one photon in modesal, a↔ and one photon in
modesbl, b↔, independently on the polarization, namely

P(1, 1) =
∑
n=0,1

∑
m=0,1

qα,β(n, 1−m, 1− n,m). (11)

Notice that our procedure does not need a fair sampling
assumption since we measure in only one run both the
numerator and the denominator of equation (10): namely
we do not have to collect auxiliary data to normalize
probabilities. On the other hand, since we can exploit
quantum efficiencies as high asη = 90% or more, and the
tomographic pattern functions already take into accountη,
we do not need a supplementary hypothesis for it.

The observables that correspond to probabilities
qα,β(i, l, m, n) in equations (10) and (11) are

|i, l, m, n〉α,β α,β〈i, l, m, n|
= Û†

1,3(α)Û
†
2,4(β)|i, l, m, n〉〈i, l, m, n|Û2,4(β)Û1,3(α).

(12)

After a straightforward calculation using equations (10)–
(12), one obtains thatP(1, 1) is measured through the
following averageAV of homodyne data:

P(1, 1) = AV{(K1
1K

3
0 +K1

0K
3
1)(K

2
1K

4
0 +K2

0K
4
1)}, (13)

whereKj
n denotes the diagonal(n = 0, 1) tomographic

kernel function for modej , namely

Kj
n ≡ 〈n|Kη(x − x̂φj )|n〉. (14)

The probabilities in the numerator of equation (10) are given
by the average of a lengthy expression, which depends on
both the diagonal terms (14) and the following off-diagonal
terms:

K
j
+ ≡ 〈0|Kη(x − x̂φj )|1〉,

K
j
− ≡ 〈1|Kη(x − x̂φj )|0〉 = (Kj

+)
∗.

(15)

Figure 2. Plot ofB(α, β, α′, β ′) versus the phaseϕ in the state of
equation (5) for a simulated experiment. The shaded area
represents the classical region forB. The parameters of the
simulation are:α = 0; β = 3

8π ; α′ = π

4 ; β ′ = π

8 ; quantum
efficiencyη = 85%; average photon numberper modeN = 0.5.
A total number of 106 homodyne data (divided into 20 statistical
blocks) has been used.

Here we report the final expression forC(α, β) of
equation (1):

C(α, β) = 1

P(1, 1)
AV{[cos(2α)(K1

1K
3
0 −K1

0K
3
1)

+ sin(2α)(K1
+K

3
− +K1

−K
3
+)]

× [cos(2β)(K2
0K

4
1 −K2

1K
4
0)

+ sin(2β)(K2
+K

4
− +K2

−K
4
+)]}. (16)

Caution must be taken in the estimation of the
statistical error, becauseC(α, β)—and thusB(α, β, α′, β ′)
in equation (2)—are nonlinear averages (they are ratios
of averages). The error is obtained from the variance
calculated upon dividing the set of data into large statistical
blocks. However, since the nonlinearity ofB introduces a
systematical error which is vanishingly small for increasingly
large sets of data, the estimated mean value ofB is obtained
from the full set of data, instead of averaging the mean value
of blocks.

4. Numerical results

We now present some numerical results obtained from Monte
Carlo simulations of the proposed experiment. For the
simulation we use the theoretical homodyne probability
pertaining to the state|ψ〉 in equation (5) which, for each
factor|ψi,j 〉, is given by

pη(xi, xj ;φi, φj ) =
2 exp

[
− (xi+xj )2

d2
zij

+412
η
− (xi−xj )2

d2−zij +412
η

]
π
√
(d2
zij

+ 412
η)(d

2−zij + 412
η)
, (17)
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Figure 3. Plot ofB(α, β, α′, β ′) versus the quantum efficiency of
the detectors for a series of simulated experiments. The shaded
area represents the classical region forB. The parameters of the
simulations are:α = 0; β = 3

8π ; α′ = π

4 ; β ′ = π

8 ; ϕ = π ;
N = 0.5. A total number of 6× 107 homodyne data (in 20
statistical blocks) has been used for each simulation.

wherexi (i = 1, 2, 3, 4) is the outcome of the homodyne
measurement for quadrature of theith mode at phaseφi , and

zij = e−i(φi+φj )3, d2
±zij =

|1± zij |2
1− |zij |2 ,

12
η =

1− η
4η

.

(18)

In figure 2 we present the simulation results forB in
equation (2) versus the phaseϕ in the state of equation (5).
The full line represents the value ofB in equation (2) with
the quantum theoretical valueC(α, β) given by

C(α, β) = cosϕ sin 2α sin 2β − cos 2α cos 2β. (19)

Quantum efficiencyη = 85% has been used; nonetheless,
notice that forϕ = π (corresponding to a maximum violation
with respect to the classical bound 2), the obtained value is
over 10σ distant from the bound. By increasing the number
of homodyne data, it is possible to also obtain good results for
lower quantum efficiency. In fact, by increasing the number
of data to 8×108, a value ofB(0, 3

8π,
π
4 ,

π
8 ) = 2.834±0.268

has been obtained for3 = 0.5,ϕ = π , andη as low as 65%.
This result is to be compared with the quantum theoretical
value of 2

√
2. In figure 3 the results of the measurement ofB,

for different simulated experiments using the same number
of data, are presented for different detector efficienciesη.
Notice how the error bars decreaseversusη.

For an order of magnitude of the data acquisition rate
in a real experiment, one can consider that in a typical self-
homodyne set-up with a NOPA pumped by a second harmonic
of a Q-switched mode-locked Nd:YAG laser, the Q-switch
and the mode-locker repetition rates are 10 kHz and 100 MHz,
respectively. Typical time of the boxcar integration is 10 ns,
so that one sample per pulse can be collected. In summary,
107 data samples can be obtained in 103 s. In such an
experimental arrangement, for a Q-switch envelope of 200 ns,
the shot noise can be reached by the peak amplitude of the

5 MHz low-pass-filtered photocurrent. For more detailed
experimental parameters, the reader is referred to [15].

5. Conclusions

In conclusion, we have proposed a test of Bell’s inequality,
based on self-homodyne tomography. The rather simple
experimental apparatus is mainly composed of a NOPA
crystal and four photodiodes. The experimental data are
collected through a self-homodyne scheme and processed by
the tomographic technique. No supplementary hypotheses
are introduced, a quantum efficiencyη as high as 90% is
currently available; in any case,η as low as 70% is tolerated
for 106–107 experimental data. We have presented some
numerical results based on Monte Carlo simulations that
confirm the feasibility of the experiment, showing violations
of Bell’s inequality for over 10σ with detector quantum
efficiencyη = 85%.
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