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We call a probabilistic theory “complete” if it cannot be further refined by no-signaling hidden-variable
models, and name a theory “spooky” if every equivalent hidden-variable model violates Shimony’s
Outcome Independence. We prove that a complete theory is spooky if and only if it admits a pure
steering state in the sense of Schrödinger. Finally we show that steering of complementary states leads
to a Schrödinger’s-cat-like paradox.
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1. Introduction

Since the early days physicists have been wondering whether
Quantum Theory (QT) can be considered complete [1,2], or more
refined theories compatible with quantum predictions could ex-
ist. These models, also known as Hidden Variable Theories (HVT),
reproduce QT thanks to a statistical definition of pure quantum
states, which are obtained as averages over the more fundamental
states of the HVT. In this approach, which reduces QT to a Sta-
tistical Mechanics, many results have been obtained, such as the
theorems by Kochen–Specker and Bell [3,4], and the results by
Conway–Kochen on the free will [5,6].

Recently, General Probabilistic Theories (GPT) have received
great attention as the appropriate framework to study foundational
aspects of physics [7–13]. Despite much work has been devoted to
the relations between probabilistic theories and HVTs, these results
are mostly a characterization of the probability measures, lacking a
conceptual physical characterization of the theory itself, for exam-
ple in terms of axioms. So far there exist examples of probability
measures that do not respect locality, signaling, non-contextuality,
determinism, completeness, etc., but none of these highlights the
physical properties that a GPT must fulfill in order to achieve such
violations.

The present Letter breaks the ground in the direction of pro-
viding a characterization theorem for complete “spooky” theories
(see definitions in the following). Roughly speaking, the spooki-
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ness of a complete theory is the apparent “action at a distance”
due to outcome correlations [14]. We show that spookiness for
complete theories is equivalent to Schrödinger’s steering property
[15,16]. We do not discuss the completeness assumption since an
exhaustive inquiry would require a much more complicate anal-
ysis, comparable to a generalized Bell theorem for GPTs. Finally,
we use the results about spookiness to prove that complementar-
ity and steering are necessary and sufficient conditions to raise a
Schrödinger’s-cat-like paradox.

2. Hidden variable theories for a GPT

The most important feature of a given probabilistic theory –
such as QT or more generally any GPT – is the probability rule
that links the various elements of the theory itself. More precisely,
given a state ρ , a group of observers for the theory (A, B, C, . . .)
and the measurements a,b, c, . . . that A, B, C, . . . perform, the
probability rule Pr[ai,b j, ck, . . . |a,b, c, . . .ρ] is defined for every
possible outcome ai,b j, ck, . . . over a suitable sample space Ω . In
the remainder of the Letter, we will drop the explicit dependence
of all probability rules on the state ρ . We can now define a hidden
variable description for the previous model as follows.

Definition 1 (Hidden variable theory). An equivalent HVT for a GPT
is given by a set Λ " λ, and a probability rule P̃r[·| · ] on Ω × Λ,
such that [17]

Pr[ai,b j, ck, . . . |a,b, c, . . .]
=

∑

λ

P̃r[ai,b j, ck, . . . |a,b, c, . . . ,λ]P̃r[λ|a,b, c, . . . ] (1)

for every state of the GPT.
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In the following we will restrict our attention to HVTs satisfying
two requirements: λ-independence, namely P̃r[λ|a,b, c, . . . ] = P̃r[λ],
i.e. λ is an objective parameter independent of the choice of mea-
surements2; and Parameter Independence, namely P̃r[ai |a,b, c, . . . ,
λ] = P̃r[ai |a,λ] and similarly for b, c, . . . , i.e. the HVT is no-
signaling. Clearly, given a GPT, without these two restrictions we
can always build an equivalent deterministic HVT which is signal-
ing, and denies observers’ free choice [17].

A GPT is complete if every equivalent HVT provides no further
descriptive detail. Besides classical probability theory, there is at
least a GPT that is complete in the present sense, which is in-
deed Quantum Theory, as proved recently by Colbeck and Renner
in Ref. [19].

It is now crucial to require that probabilities depend non-
trivially on the hidden variable.

Definition 2 (Descriptively significant HVT). A HVT is descriptively
significant for an equivalent GPT if it satisfies λ-independence and
Parameter Independence, and there exists a pure state and mea-
surements a,b, . . . ,ai,b j, . . . such that for some λ,λ′ ∈ Λ with
P̃r[ai,b j, . . . |a,b, . . . ,λ] &= 0, one has

P̃r[ai,b j, . . . |a,b, . . . ,λ] &= P̃r[ai,b j, . . . |a,b, . . . ,λ′]. (2)

Definition 3 (Complete GPT). A GPT is complete if every equivalent
HVT is not descriptively significant.

The reason why it is important to investigate only descriptively
significant HVTs is the following. Given a non-significant HVT for
a given GPT, for all pure states and all a,b, . . . ,ai,b j, . . . , we have
that, by Eq. (2) and Eq. (1)

Pr[ai,b j, . . . |a,b, . . .] = P̃r[ai,b j, . . . |a,b, . . . ,λi], (3)

for all λi ∈ Λ such that P̃r[ai,b j, . . . |a,b, . . . ,λi] &= 0. Therefore, we
conclude that P̃r[ai,b j, . . . |a,b, . . . ,λi] shares all the features of
Pr[ai,b j, . . . |a,b, . . .], e.g. non-locality or complementarity.

Given a GPT, among all HVTs equivalent to it and not descrip-
tively significant, there is one theory that enjoys the so-called
“single-valuedness property” [17].

Definition 4 (Single-valuedness). A HVT satisfies the single-valued-
ness property if |Λ| = 1.

For a HVT with single-valuedness there exists only one hid-
den variable value λ0, whence for every i and j, Pr[ai,b j |a,b] ≡
P̃r[ai,b j |a,b,λ0]. Given a GPT there is always an equivalent hidden
variable model which satisfies single-valuedness [17]: this fact re-
calls the intuition that QT can be regarded itself as a HVT, where
the hidden variable role is played by the quantum state. If we
want to study a complete probabilistic theory it is useful to re-
fer to the simplest non-descriptively significant equivalent hidden
variable model, that is the one which satisfies single-valuedness.

Thanks to J.P. Jarrett [20], it is known that the Bell locality [3]
is equivalent to the conjunction of two different properties: the
aforementioned Parameter Independence and the Shimony’s so-
called Outcome Independence [21]. Parameter Independence corre-
sponds to the property of “no-signaling without exchange of physical

2 Notice that a realistic theory where λ is correlated with the observers’ choices
could in principle be considered, however such a theory would be necessarily ad
hoc, and even more puzzling than its original GPT [18].

systems” in [9] for GPTs, while Outcome Independence can be
stated as the factorizability of joint probabilities, i.e.3

P̃r[ai,b j|a,b,λ] = P̃r[ai|a,b,λ] × P̃r[b j|a,b,λ]. (4)

Notice that the previous definition can be applied to a general GPT,
regarded as a single-valued HVT.

The EPR paradox can be rewritten in the following similar way
[22,17]: quantum predictions are not compatible with any equiv-
alent non-descriptively significant HVT which satisfies Outcome
Independence. For this reason, according to EPR, QT presents a
spooky action at a distance. We now want to extend the EPR re-
sult, namely: which are the GPTs that present this spooky flavor?
First we must define in what sense a theory can present spooky
features.

Definition 5 (Spooky theory). A GPT is spooky if it violates Outcome
Independence on a pure state and every equivalent descriptively
significant HVT does so.

From now on, we will focus on complete spooky GPTs, unless
told otherwise.

3. Review of general probabilistic theories

Before starting we need to introduce the usual notation for
GPTs. For a detailed discussion see [7]. The symbols ρA , |ρ)A and

denote the state ρ for system A, representing the infor-
mation about the system initialization, including the probability
that such preparation can occur. The set of the states of a given
system A is a (truncated) positive cone, and therefore given the
states {ρi}i∈η for A, every their convex combination belongs to the
cone of the states of A. The extremal rays of the cone – namely
the states which cannot be seen as a convex combination of other
ones – are the so-called pure states.

Similarly, ci A , (ci |A and mean the effect ci for system
A or, in more practical terms, the i-th outcome of the test (mea-
surement) c = {ci}i∈η on system A. Given a system A, its effects
are bounded linear positive functionals from the states of A to
[0,1] ⊂ R, and therefore they belong to the dual cone of the cone
of the states. The application of the effect ci on the state ρ is writ-
ten as (ci |ρ)A or and it means the probability that the
outcome of measure c performed on the state ρ of system A is ci ,
i.e. (ci |ρ)A := Pr[ci|c]. In the following we will not specify the sys-
tem when it is clear from the context or it is generic.

The symbol e A will denote a deterministic effect for system A,
namely a measurement with a single outcome. For any state σ ,
the symbol (e|σ ) denotes its preparation probability within a test
including a measurement {ci}i∈η such that e = ∑

i∈η ci . A state σ is
deterministic if we know with certainty that it has been prepared
in any test, whence (e|σ ) = 1 for every deterministic effect e.
An ensemble is a collection of (possibly non-deterministic) states
{αi}i∈η such that ρ := ∑

i∈η αi is deterministic. A GPT is causal (i.e.
it satisfies the no-signaling from the future axiom [7]) iff the deter-
ministic effect is unique. Thanks to this last feature, in a causal GPT

3 The usual definition of Outcome Independence in the literature is the follow-
ing. A probabilistic HVT satisfies the Outcome Independence property if and only if
∀a,b, c, . . . ,ai ,b j , ck, . . . ,λ on

Pr[ai |a,b, c, . . . ,b j, ck, . . . ,λ] = Pr[ai |a,b, c, . . . ,λ],

Pr[b j |a,b, c, . . . ,b j, ck, . . . ,λ] = Pr[b j |a,b, c, . . . ,λ],

Pr[ck|a,b, c, . . . ,b j, ck, . . . ,λ] = Pr[ck|a,b, c, . . . ,λ],
and so on. One can easily prove that this definition is equivalent to Eq. (4).
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the preparation probability for the state σ is well defined since it
is independent of the tests following the preparation. For this rea-
son, for every state ρ we can always consider the deterministic
state ρ̄ := (e|ρ)ρ , or, in other words, in a causal theory every state
is proportional to a deterministic one. In the following, we will
consider a general causal GPT.

4. Spookiness, steering and completeness

In this section we will show our main results. Let ρ be a joint
deterministic state for systems A and B . Let a0, a1 be two effects
for A forming a so-called complete test: namely, for every state σ
of A we have (a0|σ ) + (a1|σ ) = (e|σ ). Similarly, let the effects b0,
b1 form a complete test for B . Let us define the following useful
shorthand

pij := Pr[ai,b j|a,b] ≡ . (5)

The number pij represents the probability that Alice and Bob ob-
tain respectively the i-th and the j-th outcome while performing
measurements a and b on the state ρ .

Under these assumptions the following theorems hold.

Theorem 1. A complete GPT is spooky if and only if there exists a pure
state ρ of AB and tests {a0,a1} of A and {b0,b1} of B such that the
probabilities pi j of Eq. (5) satisfy the following constraint:

p00 p11 &= p01 p10. (6)

Proof. A complete GPT is spooky iff it has a test {a0,a1} for sys-
tem A, a test {b0,b1} for system B , and pure state ρ for AB such
that pij is not factorized. This is equivalent to the requirement
that the matrix pij has rank larger than one, namely for a 2 × 2
matrix the determinant of the matrix is non-vanishing, i.e. Eq. (6)
holds. !

The theorem states that if we describe by a pure state of a GPT
an experiment with probabilities given by Eq. (6), then we cannot
provide a local explanation for the observed physical phenomenon.

Notice that the previous result does not manifestly require any
choice by the observers, since it needs only one test for each
subsystem. Consequently, there are no explicit assumptions about
the observers’ free will, thus extending Brandenburger–Yanofsky’s
reformulation of the EPR paradox [17]. One may wonder how
such non-locality can be proved without observers’ choice between
“complementary” measurements. The answer resides in the com-
pleteness requirement. Clearly a GPT with only one measurement
for each observer always admits an equivalent HVT, which is the
deterministic one, since there is no requirement for Parameter In-
dependence and λ-independence.

Generally, requiring 0 ! pij ! 1 and
∑

pij = 1 implies that p00,
p01, p10 must lie in the tetrahedron outlined in Fig. 1 (p11 is
simply obtained by the normalization condition). The spookiness
condition, namely Eq. (6), defines a hyperbolic paraboloid, and all
spooky theories give rise to points of the tetrahedron that do not
lie on the surface of the paraboloid.

We now prove a theorem that along with Theorem 1 provides
the main result in this Letter. The following theorem pertains to
the property of steering [15,16] for a GPT, that we briefly recall
here.

Definition 6 (Steering state for an ensemble). The state ρ of the sys-
tem AB steers the ensemble {piαi}i∈η of states of the system A if
there exists a test {bi}i∈η of the system B such that

Fig. 1. The tetrahedron (outlined in thick black line) represents the set of possible
values of probabilities p00, p01, p10 satisfying the normalization condition. The hy-
perbolic paraboloid identifies the probabilities that satisfy Outcome Independence.

≡ (∀i ∈ η). (7)

Theorem 2. A GPT admits a steering state ρ for a non-trivial ensemble
of two different states if and only if the probabilities of ρ satisfy Eq. (6)
for some local test a,b.

Proof. Let us prove the two-way implication in two steps.

(⇒). The steering assumption implies the existence of a state ρ
for the composite system AB which steers the marginal ensem-
ble {p0α0, p1α1}, with 0 < p0, p1 < 1, p0 + p1 = 1 and αi deter-
ministic states for A, such that (a0|α0) &= (a0|α1) for some effect
a0. This last inequality implies that there exists 0 < |w| ! 1 such
that (a0|α0) = (a0|α1) + w (or equivalently (a1|α0) = (a1|α1) − w).
Therefore, using the substitutions of Eq. (5), the RHS of Eq. (6)
p01 p10 = p0 p1(a0|α1)(a1|α0) can be rewritten as

p0 p1
{
(a0|α0)(a1|α1) − w[(a0|α0) + (a1|α1)] + w2}

= p0 p1
{
(a0|α0)(a1|α1) − w

}
, (8)

where we used (a1|α1) = (a1|α0) + w and the normalization
(a0|α0) + (a1|α0) = 1. Since w &= 0 and 0 < p0, p1 < 1, we con-
clude that the RHS of Eq. (6) is not equal to p0 p1(a0|α0)(a1|α1) =
p00 p11, thus proving Eq. (6).

(⇐). Let us introduce for system A the (non-deterministic) states
α̃0, α̃1 defined as

:= (i = 0,1). (9)

Thanks to Eqs. (5,9), Eq. (6) can be rewritten as follows

(a0|α̃0)(a1|α̃1) = (a0|α̃1)(a1|α̃0) + w, (10)

where 0 < |w| ! 1. It is useful to define the deterministic states
α0, α1 for system A such that

α̃i = (e|α̃i)αi (i = 0,1). (11)

Since {a0,a1} is a complete test, (a0|α̃i) + (a1|α̃i) = (e|α̃i), for i =
0,1, and from Eq. (10) we conclude that (e|α̃0) and (e|α̃1) cannot
be zero (otherwise w would be zero, against the hypothesis). Thus
Eq. (10) can be divided by (e|α̃0)(e|α̃1), obtaining

(a0|α0)(a1|α1) = (a0|α1)(a1|α0) + w
(e|α̃0)(e|α̃1)

. (12)
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Using (a1|αi) = 1 − (a0|αi), one has

(a0|α0) = (a0|α1) + w
(e|α̃0)(e|α̃1)

. (13)

The last term of the RHS of the previous equation is not equal
to zero, since w &= 0, thus we conclude that (a0|α0) &= (a0|α1).
Since (e|α̃0), (e|α̃1) &= 0,1 the ensemble {(e|α̃0)α0, (e|α̃1)α1} is not
trivial. Finally, according to (9), and remembering that b0, b1 con-
stitute a complete test for system B , it can be easily seen that the
state ρ for the composite system AB steers the non-trivial ensem-
ble {(e|α̃0)α0, (e|α̃1)α1} thanks to effects b0, b1. !

As a natural consequence of Theorems 1 and 2, we have the
following corollary.

Corollary 1. For a complete GPT the conditions: (i) spookiness, (ii) ex-
istence of a pure steering state for a non-trivial ensemble, and (iii) exis-
tence of a pure state satisfying Eq. (6), are all equivalent.

Notice that completeness is always assumed in our argu-
ments (apart from Theorem 2). Indeed, since the hyperbolic
paraboloid of Fig. 1 includes the four vertices of the tetrahe-
dron, the probabilities of a single couple of tests a = {a0,a1}
for A and b = {b0,b1} for B can always be thought of as
a mixture of factorized probabilities, and consequently there
could be in principle a descriptively significant HVT compat-
ible with any such model. In order to state stronger no-go
theorems – like Bell’s inequality – one must consider incom-
patible tests, and the assumption of free will becomes cru-
cial.

5. Complementarity and Schrödinger’s cat

From the results in the previous section the following corollary
can be easily proved.

Corollary 2. A complete GPT with a pure steering state for a mixture of
two states α0,α1 with α1 conclusively discriminable from α0 is spooky.

Before proving the last corollary, we precisely define when two
states are probabilistically discriminable.

Definition 7 (Conclusively discriminable states). The state α1 is con-
clusively discriminable from the state α0 if there exists an effect a
such that (a|α0) = 0 and 0 < (a|α1) ! 1. If (a|α1) = 1 we say that
α0, α1 are perfectly discriminable.

Proof of the corollary. Two states α0,α1 with α1 conclusively dis-
criminable from α0 provide a particular case of different states.
Therefore we can apply Theorem 2 and conclude that the proba-
bilities for the GPT must reside in the tetrahedron and not on the
hyperbolic paraboloid. Hence, according to Theorem 1, the com-
plete GPT is spooky. !

We will now show that complementarity – along with steering
– implies all variants of the Schrödinger’s-cat paradox. The notion
of complementarity has been the main focus of Bohr’s philosophy
of QT, however, it has been often criticized for the lack of a pre-
cise mathematical formulation. A definition of complementarity is
provided in the framework of quantum logic (see e.g. [23] and ref-
erences therein), however, it has never been defined as a general
notion outside QT. This is due to the fact that complementarity re-
gards contexts that may seem unrelated, as wave-particle duality
and non-commutativity. Uncertainty and its quantitative relation
with non-locality was analyzed in Ref. [24]. Here we propose a

notion of complementarity that summarizes all the aspects that
emerge within QT, and allows for a precise mathematical formula-
tion within the broader context of GPTs. In order to do that, let us
define what is a proposition for a GPT.

Definition 8 (Proposition for a GPT). Given a GPT, let a := {a0,a1} be
a complete binary test. The test a is a proposition if there exist two
states α0 and α1 such that (ai |α j) = δi j .

We will call a state ρ sharp for a set of propositions {a(i)} if the
probabilities for all effects of such propositions are either zero or
one. We can now precisely formulate complementarity.

Definition 9 (GPT with complementarity). A GPT entails complemen-
tarity if there are two propositions a(0) and a(1) having no common
sharp state. These propositions will be called complementary.

One may think that a more general definition of complemen-
tarity involves a number N " 2 of propositions {a(i)}N

i=0 having
no common sharp state. However, this is just equivalent to Def-
inition 9, namely complementarity is an intrinsically dual no-
tion.4

By the above definition the complementary propositions can-
not jointly have a definite truth value. What is the paradox of
the famous Schrödinger’s-cat argument [25]? In its popularized
version the paradox lies in the fact that the cat pure state is
a superposition |Ψ ±〉 := 2− 1

2 (|dead〉 ± |alive〉) before the mea-
surement of its state of life, thus coming from complementar-
ity per se (the test {|Ψ +〉〈Ψ +|, |Ψ −〉〈Ψ −|} is complementary to
{|dead〉〈dead|, |alive〉〈alive|}. However, the original paradox is sub-
tler and relies on the ability to remotely prepare orthogonal
states for the cat. Let us imagine for example that the state
of life of the cat is entangled with the spin of an electron as
in the state 2− 1

2 (| ↑〉 ⊗ |alive〉 + | ↓〉 ⊗ |dead〉). After the mea-
surement of the spin of the electron along the z direction we
have prepared the cat in the states |dead〉 or |alive〉 each with
probability 1/2. The proposition corresponding to the life state
of the cat has a truth value that is conditioned by the out-
come of a measurement on the electron. This situation by it-
self would not be puzzling if the state were a mixture, as in
the Bell’s argument of Bertlmann’s socks. The paradox is the fact
that in a pure state a definite property – the cat is alive – is
neither true nor false. This version of the paradox stems from
pure state steering of an ensemble of perfectly discriminable
states.

We now provide a third version of the paradox, which re-
lies on the existence of a pure state that steers an ensemble of
sharp states for complementary propositions. This is the case e.g.
of the state 2− 1

2 (| ↑〉 ⊗ |alive〉 + | ↓〉 ⊗ |Ψ +〉). After the measure-
ment of the spin of the electron along the z direction we have
prepared the cat in the states |alive〉 or 2− 1

2 (|dead〉 + |alive〉)
each with probability 1/2. In this case the outcome of the

4 Indeed, by hypothesis there exist N + 1 tests {a(i)}N
i=0 such that (a(i)

j |ρ) = 1 2⇒
∃k, l 0 < (a(k)

l |ρ) < 1. Let us define the number k as the maximum number of the
propositions a(i) for which there exists a state ρ such that each proposition is de-
terministic, i.e.

Φ :=
{
φ ⊆ {0, . . . , N}|∃ρ, ∀ j ∈ φ ∃l:

(
a( j)

l ρ
)
= 1

}
, k := max

Φ
|φ|.

By hypothesis, the number k is strictly less than N + 1. Let us take a set φ ∈ Φ for
which |φ| = k, and let us define the effects a j := 1

k

∑
i∈φ a(i)

j and ã j := a(l)
j with an

arbitrary l /∈ φ. By construction, both tests a := {a j} and ã := {ã j} are propositions
and have no common sharp state. The converse is trivial.
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measurement does not simply decide the truth value of a proposi-
tion, but it even establishes which proposition has a definite truth
value. It is worth noticing that, according to Definition 9, the tests
{|alive〉〈alive|, |dead〉〈dead|} and {|Ψ +〉〈Ψ +|, |Ψ −〉〈Ψ −|} are com-
plementary. Complementarity and steering are thus the ingredients
for the third version of the paradox: given a GPT, suppose that
for a system A (the cat) there are two complementary proposi-
tions a, ã. By hypothesis there are two sets of states {αi}, {α̃i}
such that (ai |α j) = (ãi |α̃ j) = δi j , 0 < (ai |α̃ j), (ãi |α j) < 1. If the the-
ory has a pure steering state ρAB for the ensemble {p0α0, p1α̃0}
of the system A, thanks to our corollary we conclude that the GPT
is spooky, since α̃0 (“alive”) is conclusively discriminable from α0
(Ψ +) by test a. We notice that the first version of the paradox
involves only complementary, the second one involves only pure-
state steering, whereas the third one uses both. If the theory is
complete, the existence of a pure steering state for a perfectly dis-
criminable or complementary ensemble implies spookiness, which
is thus necessary for the second and third version of the para-
dox.

6. Conclusion

We have shown that for a complete GPT spookiness and pure
state steering of a non-trivial ensemble are equivalent. More-
over, we thoroughly introduced the notion of complementarity for
GPTs, and used it in order to discuss three different versions the
Schrödinger’s-cat paradox. A crucial ingredient for all our results is
completeness, namely the property of a GPT consisting in the im-
possibility of having descriptively significant HVTs. Classical prob-
ability theory is complete, and the same has been recently proved
also for QT [19]. In our knowledge QT is the only theory satis-
fying the hypotheses of our theorems. Nevertheless, our result is
relevant, due to its generality, and because it highlights the inter-
play between two main features of the theory – spookiness and
existence of a pure steering state – without recurring to the math-
ematical structure of Hilbert spaces, only relying on the conceptual
formalism of GPTs. The question whether the theorem applies to a
wider class of theories opens a decisive new problem, namely de-
termining what GPTs are complete, and – if other than Classical
and Quantum – what are the common features they enjoy.
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