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Latest developments in quantum tomography are presented. The method for
measuring the state of radiation is derived in a simple group-theoretical frame-
work that allows generalization to arbitrary quantum systems. Some recently
developed topics are synthetically reviewed, including tomography of many ra-
diation modes using only one local oscillator, generalization to N-level systems,
and new “adaptive” techniques for noise reduction. A set of newly proposed
experiments is presented, based on a conditioned tomographic technique.

INTRODUCTION

Optical homodyne tomography is now a well assessed method to measure the
quantum state of radiation (for a review see Ref. 1). The density operator p can
be measured in a given representation by averaging a set of special functions over
homodyne data. The method has been extended to estimate the expectation value ()
arbitrary operator (), making homodyne tomography the first universal detector
¢ radiation.

In this paper I will present some recent progress in quantum tomography, with the
method extended to any quantum system, as any number of radiation modes or N-level
systems. The method is based on the possibility of measuring a set of observables—

iquai'led quorwm—which are irreducible for the unitary represen tation of the dynamical
gwup of the system. For a set of radiation modes the quorum is given by all linear
combinations of the creation and annihilation operators of the modes. For a set of N-
level systems it is the set of all linear combinations of the angular momentum operators
ach system. The symmetries of the quorum can be exploited to reduce the statistical
errors of the method, and this is the basis of recently discovered “adaptive” techniques.
In the first section, devoted to homodyne tomography, [ will present a synthetic
derivation of the method in a simple group-theoretical framework that allows seneral-
[ization to arbitrary quantum system. In the same section [ will also illustrate: 7) the
}-gpaengence of bounds for quantum efficiency (on the basis of a simple example); if) the
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equivalence classes of estimators, and the generating function ot all s-ordered monomi-
als in the field operator; #ii) the new adaptive method for reducing statistical errors;
i) the generalization to many modes of radiation using only one local oscillator. In the
subsequent section I will outline the generalization to other dyn amical systems, treating
spin tomography as an example. Finally, in the last section I will shortly outline a set
of new experiments which are now feasible with the homodyne tomographic method,
including the possibility of detecting small Schrédinger cats of radiation, checking Bell
inequalities, observing the Greenberger-Horne-Zeilinger state, and finally checking the
quantum state-reduction ru le.

HOMODYNE TOMOGRAPHY

The method allows to estimate the ensemble average (O) of a given (generally
complex and unbounded) operator O of the radiation field in a unknown state p. In
this section 1 focus attention on a single mode deseribed by boson operators a and al,
with [a, a!] = 1; the generalization to many modes will be given in the following section.

In homodyne tomography the problem is to estimate the ensemble average (0)
from homodyne measurement of quadrature operators Xy = 3 ale™ +ae™) at different
phases ¢ with respect to the local oscillator (LO). L assume that the homodyne detector
is properly used in the strong LO limit: this is the only assumption of the method,
which works also for nonunit quantum efficiency 1 of the homodyne detector (the overall
quantum efficiency 7 including also the effect of any source of Gaussian noise’). The
problem is to estimate the expectation (() of a given operator O for an unknown state p
by averaging a suitable function over homodyne data. The Irmtl'md provides a rule that
to every operator O assigns an unbiased estimator &,[O](x; ¢), such that for arbitrary
state one has
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py(; ¢) denoting the probability distribution of the outcomes z for the quadrature X
detected with quantum efficiency #. Notice that, due to the symmetry Xy, = —Xg,
the phase averaging can be restricted to the window ¢ € [0,7]. According to thec entral-
limit theorem, the mathematical expectation (1) can be estimated by averaging the
estimator £,[O](z; ¢) over experimental data only if £,[0](z; ¢) has moments bounded
up to the third order. As in the strong LO approximation the probability Pyl @)
must decay as a Gaussian for large @, it follows that the integral in Eq. (1) can be
experimentally sampled for any a priori unknown probability distribution p, (x; ¢) only

if £,[0](x; ¢) increases slower than exp(ka®) for large = and is bounded for |z| < +ee.
In this case one is guaranteed that the integral in Eq. (1) can be statistically sampled
over a sufficiently large set of data, and the mean values for different experiments will
be Gaussian distributed around the mathematical expectation (1), allowing estimation
of confidence intervals. On the contrary, if the kernel £,[O](x; ¢) is unbounded at some
(x; ®), then the ensemble average (O) cannot be measured using homodyne tomography.

The analytic form for the estimator &,[0](z; ¢) is given by!
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where D(a) = exp(cal — a*a) denotes the displacement operator. Changing to polar
variables o = %ke“f‘, and using the relation between moment generating functions
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Eq. (5) can be rewritten as the expectation of an estimator if the integrals over k and
4 can be exchanged, namely
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and using the symmetry pla; ¢+ ) = p(—w; @) one obtains Eqs. (1) and (2).
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The route for generalization to arbitrary quantum systems

In this subsection I brieflv analyze the derivation of the starting identity (3),
which is the core of the method, and which will be exploited later for generalization
to arbitrary quanturn system other than the bosonic field. The basic definition of the
quantum tomographic method is to measure a guorum of observables from which the
ensemble average of any operator can be obtained for any state of the system. In
the case of homodyne tomography the quantum system is a harmonic oscillator, and
the quorum is given by the set of all linear combinations of creation and annihilation
operators o' and a; such set, apart from a trivial multiplication constant, corresponds
to the set. of all quadratures X, for ¢ € [0,#]. In order to obtain a trace identity of the
form (3) one can exploit a unitary irreducible representation of a Lie group generated
by the quornm.? In the present case the group is given by the central extension of
the abelian group of displacements over the complex plane, with unitary irreducible
representation given by the displacement operators D(«), and with composition law
D(a)D(#) = D(a + () exp[2lm(e5*)]. Since the representation is irreducible (there
is no Hilbert subspace which is left invariant by the group) according to the Shur’s
lemma only the identity commutes with the whole group representation. Now it is easy
to show that the integral [ d*a D(a)OD!(¢v) commutes with all displaceinent operators
(by multiplying the integral by a fixed D(z), using the composition law and shifting
the integration variable), which means that the integral is a multiple of the identity.
The value of the integral can be obtained by taking its vacuum expectation, and using
completeness of coherent states o) = D(a)|0). In this way one is lead to the identity

S i ['IZO:' ] et
[r{0) = / —D{a)O D) . (7)
J 7
Using identity (7) to evaluate the trace under the integral in Eq. (3) one obtains
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which proves identity (3).
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An example of unbiased estimator, and the emergence of bounds for #

Eq. (2) can be used for estimating the matrix element p,4 ., of the density operator
of the nuknown state. Here the operator O is given by O = |n)(n +1|. By taking the
normal ordering in Eq. (2) one obtains
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[l (z) denoting the customary generalized Laguerre polynomials. From Eq. (9) we see
that Eq[|n){ml](x;¢) is bounded only if n > £, which means that the matrix element
can be experimentally estimated only for quantum efficiency # above the bound i, = %
This example shows a typical feature of the tomographic method when applied to
infinite dimensional Hilbert space, namely that for every operator O generally there is
a bound 7,|O] > 0 below which the ensemble average (O) cannot be estimated. This is
not an artifact of the method, but is due to the perfect unbiasedness of the estimator,
which works without any @ priori knowledge of the state. For n approaching the hound
m[O] the statistical error in the estimation of (O) becomes unbounded (in Ref. 5 an
asymptotic evaluation of errors for the diagonal matrix elements p,, is derived for
large n). Finally, it is worth noticing that for estimating the matrix elements p, 1,
an algorithm numerically more efficient than Eq. (9) is used, based on a factorization
formula for the estimator that holds for n = 1, and exploiting the inversion of the
Bernoulli convolution for é <ne ik
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Table 1. Estimators for various field operators and relative bounds for quantum
efficiency 5 > . Legenda: ®(«o; f; 2) confluent hypergeometric function,
sp=5—1+4 k= 2n/(2n — 1), Wy = L(Be + te™9).

Equivalence classes of unbiased estimators

A remarkable consequence of the inversion symmetry for the quadrature operator
pylz; p+7) = p,(—x; ¢) is that there are “null estimators™, which have zero expectation
for arbitrary probability p,(x;¢), 1. e for arbitrary state p. Null estimators are
obtained as linear combinations of the following functions®

Nyl ¢) = ok ik 2-H2n) 0 kn>0. (10)



The functions A, (a;¢) have zero expectation for arbitrary probability as a conse-
quence of the Wilcox formula
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along with the identity [[ dope'?® = 0 for ¢ # 0 even, [[x]] denoting the mteger part
of 2. Hence, for every operator O one actually has an equivalence class of infinitely
many unbiased estimators, which differ by a linear combination of functions N Heze
[ denote the equivalence relation by the symbol =~ i. e. Ny = DAder kn 2 0,
Non trivial examples of equivalence are:® §) gF2(nt1ie fze™*®) =~ 0, with f(z) analytic
function of z; the relations involving the Dirac comb over [0, 7| 4) 6 (¢) = ,lr and i)
F(2?)0r() = 2Re [f («2e¥®) / (1 - e~2) — Lf(2*)] with f(z) analytic.

Using thc above equivalences it is straightforward to evaluate the generating func-
tion of all s-ordered monomials. One has®
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where s; = s— 147 “Land H" . el 2032 denotes the “truncated” Her-
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mite polynomial. Notice the equivalence ¢!~ ”J"’H::::'J:* el BT ) R
between truncated and customary Hermite polynomials, hence the agreement with the
previous result by Richter” for the normal ordered case s = 1.

A list of estimators with their quantum efficiency bounds i, is given in Table
1. For polynomials in the field operators there is no bound. For the Wigner funetion
Wl o) = (D (a)W,D(a)) (the operator Wy is defined in table 1) the bound depends
on thP ordering parameter s. For coher 'Pnt—qt'at{' and number matrix elements one has
= z* for squeezed representations 7, > 1: finally, for the quadrature representation
m = 1. Essentially, the bound is related to th(‘ “flzziness” of the state representation’,
and at present no analytical state representation is known having bound 7, < L (see

2
also Ref. 5).

Adaptive method

The estimator can be chosen within the equivalence class in order to minimize the
statistical error. This is the basis of the recently discovered “adaptive tomography”
of Refs. 7. 10. For arbitrary operator O a particular representative &, |O](; ¢b) of
the equivalence class of estimators is given in Eq. (2). However, one can add a linear
combination of null estimators A, (; ¢) given in Eq. (10), leading to the new estimator

T0Vw; 6) = E,[O0)(; ¢) + - Flas ) + v F(z;8) 2 £[0)(z:6),  (14)

where F(x; ¢) and F*(; ¢) denote the vectors of null estimators F(; ¢) = {Niwla; )},
and p and v are vectors of coefficients to be determined. Minimization of the variance
AT leads to the linear set of equations for p and p

Apn=">b, Ag=e, (15)



where
A=FF, b=-50F, c=-§0]F, (16)

the overbar denoting the experimental average F = limy_ o N SN Flan; da) over
homodyne outcomes &, at (random) phases ¢n. Solving the linear system (15) one can
show that the variance is reduced by the amount

W i _/_\.'8_?? =-b- A" —c-A7'c". (17)

The method works as follows. One first obtains the matrix A and vectors b and
¢ by averaging over homodyne outcomes according to Egs. (16). Then the linear
system (15) is solved, and the optimized estimator in Iq. (14) 1s obtained. Finally,
the ensemble average (O) is recovered by averaging the optimized estimator. In this
way, the estimator is “adapted” to data and the method becomes nonlinear. For simple
aperators the optimized estimator can be derived analytically for some classes of states.

For example, for the number operator O = ala one can prove’ that for coherent states,
squeezed vacuum, and Schrédinger-cat states only the null function F = exp(2ig)

contributes to the optimization, and the optimized estimator is given by™ '
Jyla'a)(z; ¢) = 22* — é + 2Rep exp(2ig)] , = —2a2 exp(2ig) = — E)((I“}
with variance
mnﬂ_ﬂ] = (A(ala)®) + é[(ﬁ.wni} - (rti"?) (a®) + 2(&*&) + 1] . (19)

Notice that the leading noise term {(a'2a?) is canceled by the nonlinear term {a'?){a?).
Analogous cancellations are found for other operators, as for the quadrature X, and
the field operator a,™ ', where, remarkably, the ideal heterodyne noise is achieved for
coherent states. Another noticeable feature is that, differently from the representative
(2), the optimized estimator is peaked and symmetrically distributed around the mean
value.’® In Ref. 10 the method has been numerically implemented for estimating the
matrix elements py, ., in the number representation, proving that a noise reduction up
to 60% can be achieved, especially for low n and m. However, it is likely that a much
better noise reduction can be achieved by a suitable choice of the basis of null functions.

Multimode homodyne tomography with one local oscillator

For M + 1 radiation modes the method is easily generalized by using estimators for
tensor product operators which are just the products of their relative estimators, i. e.
E[@M 40 ({xn}; {60 }) = TTML0 £4[Ou] (w0 én). The case of a general operator is then
obtained by linearity. However, this method needs a separate measurement—whence a
separate LO—for each mode. In Ref. 11 it is shown that it is possible to estimate the
expectation value of any multimode observable using a single LO, scanning all possible
linear combinations of modes on it. Here I don’t give the derivation of the method, but
just present the final results. The estimator is given by

J'IJ -1 e gl

T df e~ tH2VEE ML O exp] - 2iV/REX (0, 9)):} . (20)

£,[0)(w; 0,%) =

where :...: denotes normal ordering, x = —’!, and the quadrature operator X (6, 1)
is the following linear combination of single- mmlo quadratures

M

~ (A0, )+ AB, )] . AW =Y e w(@)ar (21)

{=l

bl =

X(0,9) =

142



a; and u, (l = 0,...,M) being the annihilation and creation operators of the M +1
independent modes with [u;,fa!,] = Oy, 0 = (g, ...,0n) and ¢ = (g,..+,Pu) denot-
ing hyper-polar angles with ranges #; € EJ ‘3‘"] and 0; € [0,7/2], whereas w(f) are
hyperspherical coordinates, such that S ut(0) = 1, with ug(f) = cosfy, uy(0) =
sinfy cos s, us(f) = sinf sinfycosly, .. .. um_i(()} = sin@; sindy .. .sinfy_ costyy,
() = sin ) sinf . . . sin Oy sin Oy, The ensemble average () is obtained by aver-
aging the estimator (20) as follows

(O) = /(-l;.a[t,-_‘:] /.('].H.Wlir)l::iﬁ,f.r','i;".-‘} En|O)(;0,4) (22)

where [ du[¥] = [T Um (1,'?':‘. and [ dp[f] = 2" M! i n"f Ay sin®M-D+1 g, cos 0.

In particular, one can estimate the matrix PIE‘I!H nt {{n}|R|{my}) of the joint
density matrix of modes. This will be obtained by averaging the following estimator
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where = max(my,ny), and » = min(my,ny). Using simple identities for Laguerre
polynomials one can easily derive the estimator for the probability distribution of the

total number of photons N = :.U”u;ra,-
th?'-l-l a8 % o )
E ) (n])(z; 0, ¢) = i dt e tr2ven ¢! LA ] (24)
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where [n) denotes the eigenvector of N for eigenvalue n. Notice that the estimator in
Eq. (24) does not depend on phases ¢ and angles 6, and thus their knowledge is not
needed in this measurement. Other examples of two-mode estimators are

E i 5
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where @ and b denote the annihilator operators of the two modes, and ®(a; g; 2) de-
notes the customary confluent hypergeometric function. For the first two moments one
obtains the simple expressions

. L ;
Elata+ b'0)(x;0,4p) = 4a* + = — 2, (26)
K
. 24 ; ¥ 10 E
Ela’a + DOV (2 0,40) = 8a + (-—— = 2{}) 52 % — —+4. (27)
K K K

It is worth noticing that analogous estimators for the difference of photon numbers are
singular, and in order to recover the correlation between modes a cutofl procedure is
needed, analogous to the one used in Rel. 12

GENERALIZATION TO SPINS AND OTHER DYNAMICAL SYSTEMS

The tomographic method can be easily generalized to other dynamical systems,
looking for a quorum of observables that allow the estimation of any ensemble average.



The starting point is to generalize the identity (3) exploiting a unitary irreducible rep-
resentation of a Lie group generated by the quorum,”® Here, for the sake of simplicity,
I consider only the case of a semisimple compaet, Lie group G = {g}, with irreducible
unitary representation R of dimension d < oc. However, with some technicalities, the:
method can be extended to the cases of infinite dimensional representations, noncom-
pact groups, and reducible groups with central extension.

The equivalent of Eq. (7) can be obtained by noticing that the integral over
G [dplg)RN(g)OR(g) commutes with all unitary operators R(h), h € G (this can
be checked by group composition R(h)E(g) = R(hg), and by shifting the integration
variable g using invariance of the Haar’s measure du(g)). As the representation is
irreducible, according to the Shur's lemma the integral is a multiple of the identity:
this constant can then be obtained by evaluating the trace of the integral, using the
trace invariance under cyclic permutation, and normalization of the Haar’s measure
over G. In this way one obtains the identity

5 LA ORAHOR ) = l;—;ir\\i_‘fj ; (28)

Similarly, using orthogonality of characters, one can show that [ dplg) Tr[R{g)| Rl (g) =
d=', and through the following steps

/I dy(g) Te[ORY(g)|R(g) = d / | dpe(g) / dp(h) RN WORY g)R(R)R(g)

; : it L
= / dp(h) RI(h)O Tx[R(h)] = —j-(.) : (29)
: il
one proves the general tomographie identity
/ dp(g) TH{O R (g)| R(g) = —_?() , (30)
" il

which is the equivalent of Eq. (3). Identity (30) is used to obtain the estimator for (),
by taking the ensemble average of both sides of the identity. As an example, here [
report the estimator for the measurcment of the matrix element of the density operator
of a spin J. Upon denoting by [m) the eigenvector of .I. with eigenvalue m € [—J, J),
one has'?

E[|O G| (m i) = (2] + 1) ()\i‘m,\}_‘_‘m -

A-a ] '}‘*?'p LT /\i m- /\'*?i’l--
ekl L_r._|2 1 ! F‘_J) 1 (31\‘
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X Z (J— 1 - +m— )y +1—m)u!’

(32)

it being a unit vector with polar angles @ and ¢, and the average being performed
over all possible measurement results m and over all possible spin rotations around i
according to the formula

J ey
(= Z / l_%; plmy i) E[O](rm: i) | (33)
t=—J"

p(m; i) denoting the probability of outcome m for the measurement of J - 7i. One can
casily recognize the correspondence with conventional optical quantum tomography:
@ ¢ m, ¢ ¢+ i, On the basis of Eq. (33) an experimental setup can be devised for
tomography of spin observables, which is a simple modification of the Stern-Gerlach
experiment. 3
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NEW EXPERIMENTS

The quantum tomographic technique opens the possibility of a new type of ex-
periments and tests of quantum mechanics. In Ref. 14 a test of Bell’s inequality is
proposed that is based on two-mode homodyne tomography, with the possibility of
achieving very good detection guantum efficiencies. Using three-mode homodyne to-
mography, in principle it is now possible to make a complete test of the preparation of
a Greenberger-Horne-Zeilinger state,'® which eannot be checked by simple coincidence
measurements. Finally, it is now possible a direct test of nonclassicality on various one-
mode and two-modes states, by tomographically measuring some special observables of
the field.'
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- RS W

I
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W B 3

Figure 1. Two examples of condifttoned tomography. The general scheme involves a nondegenerate
optical parametric amplifier (NOPA) that produces a couple of correlated twin beams. A quantum
measurement is performed on one beam, and a tomographic reconstruction is made on the second
heam, conditioned on the vesult of the first measuremnent, Figure A: Fxperimental scheme for
generation and tomographic detection of Schradinger cats (see text).'® Scheme for testing the state
reduction for heterodyne detection.'. After heterodyning the beam 1 of the twin couple, the
rediced state of beam 2 is tomographically reconstructed conditioned by the heterodyne onteome. In
place of the heterodvne detector one can pul any other kind of detector for testing the state
reduction on different observables.

Using parametric downconversion, a new set of experiment is now possible, which
we can categorize as conditioned tomography. The general scheme is the following. A
nondegenerate optical parametric amplifier (NOPA) produces a couple of correlated
fwin beams 1 and 2 from vacuum downconversion. A quantum measurement is per-
formed on beam 1, and a tomographic reconstruction is made on beam 2, conditioned
on the result A of the first measurement, namely using an estimator £,[Q](#; ¢; A) which
depends on the outcome A of the measurement on beam 1.

An example of conditioned tomographic measurement scheme is depicted in Fig.
1A, which represents a tomographic improvement of a scheme proposed in Ref, 17 in
order to generate and detect Schrédinger-cat states, The experiment consists in feeding
the twin beams—here two orthogonally polarized modes of radiation, the signal and
the readout—into a hall-wave plate (HWP) which rotates the polarization direction.
The rotation angle and the gain of the NOPA are related by the back-action-evading
condifion. When a number of photons is detected at the readout mode, a Schrédinger-
cat appears on the signal mode (an additional squeezer (DOPA) is inserted on the signal
mode to “stretch” the cat). In Ref. 18 it is shown that the tomographic technique
tolerates very realistic values for quantum efliciency at the readout photodetector, and

a precise reconstruction of the cat at the signal mode is possible, recovering the visibility
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of the homodyne probability oscillation, which otherwise would have been completely
washed out. by the low quantum efficiency at the readout detector.

Another new experiment based on the conditioned tomographic scheme is the
proposal of Ref. 19 for a test of state reduction. The scheme of the experiment is
depicted in Fig. 1B. Again a couple of twin beams is generated by a NOPA. After
heterodyning beam 1, the reduced state of beam 2 is tomographically reconstructed
conditioned by the heterodyne outcome. In place of the heterodyne detector one can
put any other kind of detector for testing the state reduction on different observables:
for heterodyne detection the reduced state is a coherent state, whereas, for example, for
photodetection it is a number eigenstate. The state reduction can be tested by a direct
measurement of the fidelity between the theoretically expected reduced state and the
experimental state, using a suitable conditioned estimator that takes into account also
state distortion due to finite NOPA gain and nonunit guantum efficiencies at defectors.
Monte Carlo simulated experiments!” show that a decisive test can be performed even
with only a few thousand measurements, with low gains at the NOPA and low quantum
efficiencies at the readout photodetector.
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