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Abstract

We propose to test Bell’s inequality through homodyne tomography. The experimental
apparatus is mainly composed of a nondegenerate optical parametric amplifier and four
photodiodes. The experimental data are gathered through a self–homodyne scheme and
are processed by quantum tomography. Our procedure does not introduce supplemen-
tary hypotheses (fair sampling assumption), since we do not need to collect auxiliary
data to normalize probabilities. Moreover in the proposed experiment, the minimum
value of detector quantum efficiency η is virtually reduced down to η = .5 (in practice
to η ∼ 65÷70%). The feasibility of the experiment is shown by some numerical results
based on Monte–Carlo simulations.

INTRODUCTION

In a typical experiment to test Bell’s inequality that involve optical radiation
the source emits a pair of correlated photons and two detectors separately check the
presence of the two photons after polarizing filters at angles α and β, respectively.
Alternatively, one can use four photodetectors with polarizing beam splitters in front,
with the advantage of checking through coincidence counts that photons come in pairs.
Let pα,β be the joint probability of finding one photon at each detector with polarization
angle α and β, respectively. In terms of the correlation function

C(α, β) = pα,β + pᾱ,β̄ − pᾱ,β − pα,β̄ , (1)

Bell’s inequality 1 writes as follows

B(α, β, α′, β′) .
= |C(α, β)− C(α, β′)|+ |C(α′, β′) + C(α′, β)| ≤ 2 , (2)
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ᾱ and β̄ denoting the polarization angles orthogonal to α and β respectively. In this
paper we propose a new kind of test for Bell’s inequality based on quantum homodyne
tomography 2, 3 (for a review see Ref. 4). In our setup the photodetectors are replaced
by homodyne detectors, which allows measuring the joint probabilities pα,β through
the tomographic technique. The main advantage of the tomographic test is that linear
photodiodes with available quantum efficiency η higher than 90% 5 can be used. On
the other hand, the method works effectively even with η as low as 70%, without the
need of a “fair sampling” assumption,6, 7 since all data are collected in a single experi-
mental run. In the present case the customary homodyne technique would need many
additional beam splitters and local oscillators (LO) that are coherent each other. As we
will show, the setup is greatly simplified by using the recent self-homodyne technique.8

Another advantage of self-homodyning is the more efficient signal-LO mode-matching,
with improved overall quantum efficiency.
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Figure 1. Self-homodyne scheme for the tomographic test of Bell’s inequality. PBS and BS denote
‘polarizing beam splitter’ and ‘conventional beam splitter’ respectively. Input radiation modes al,
b↔, a↔ and bl are in the vacuum state, while modes cl, c↔, dl, d↔ (at laser frequency ω0) are in a
coherent state. At the output of the nondegenerate parametric amplifier (NOPA) the four
photocurrents Î at radiofrequency Ω are detected, yielding the value of the quadratures of the field
modes al, b↔, a↔ and bl. The outcome quadratures are then used to reconstruct the probabilities of
interest through quantum tomography.

THE EXPERIMENTAL SET-UP

The apparatus for generating the correlated beams is a nonlinear crystal, cut
for Type-II phase–matching, acting as a nondegenerate optical parametric amplifier
(NOPA). The NOPA is injected with excited coherent states (see Fig. 1) in modes
c↔, cl, d↔, dl all with equal intensities and at the same frequency ω0, c and d denoting
mode operators for the two different wave-vector directions, and l and ↔ representing
vertical and horizontal polarization, respectively. The NOPA is pumped at the second
harmonic 2ω0. At the output of the amplifier four photodetectors separately measure
the intensities Îal , Îb↔ , Îa↔ , Îbl of the mutual orthogonal polarization components of
the fields propagating at different wave vectors. The output photocurrent is narrow-
band filtered at radiofrequency Ω ¿ ω0. In the process of direct detection, the central
modes cl,↔ and dl,↔ beat with ω0 ± Ω sidebands, thus playing the role of the LO in

homodyne detectors. The four photocurrents Îal , Îb↔ , Îa↔ , Îbl yield the value of the
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quadratures of the four modes 8

sπ =
1√
2

(
sπ(+) + sπ(−)

)
, s = {a, b} π = {↔, l} , (3)

where aπ(±) and bπ(±) denote the sideband modes at frequency ω0 ± Ω, which are in
the vacuum state at the input of the NOPA. The quadrature is defined by the operator
x̂φ

.
= 1

2
(ae−iφ + a†eiφ), where φ is the relative phase between the signal and the LO.

The value of the quadratures is used as input data for the tomographic measurement of
the correlation function C(α, β). The direction of polarizers (α, β) in the experimental
setup does not need to be varied over different trials, because, as we will show in the
following, such direction can be changed tomographically.

Under condition of phase-matching and in the parametric approximation, the spon-
taneous down-conversion at the NOPA is described in terms of the field modes in Eq.
(3) by the unitary evolution operator

Û(ξ) = exp
[
ξ

(
a†lb

†
↔ + eiϕa†↔b

†
l
)
− h. c.

]
, (4)

where ξ = χγL/c is a rescaled interaction time evaluated by the nonlinear susceptibility
χ of the medium, the crystal length L, the pump amplitude γ and the speed c of
light in the medium, whereas ϕ represents the relative phase between the orthogonal
polarization components of the pump field. Correspondingly, the state at the output
of the NOPA writes as follows

|ψ〉 = (1− |Λ|2)
∞∑

n=0

∞∑

m=0

Λn+meiϕm|n, n,m,m〉 ≡ |ψ1,2〉 ⊗ |ψ3,4〉 , (5)

where Λ = ξ tanh |ξ|/|ξ| and |i, l,m, n〉 denotes the common eigenvector of the number
operators of modes al, b↔, a↔, bl, with eigenvalues i, l,m and n, respectively. The
average photon number per mode is given by N = |Λ|2/(1−|Λ|2). The four-mode state
vector in Eq. (5) factorizes into a couple of twin beams |ψ1,2〉 and |ψ3,4〉, each one
entangling a couple of spatially divergent modes (al, b↔ and a↔, bl, respectively).

HOMODYNING BELL’S INEQUALITY

The conventional experiments that involve a two-photon polarization-entangled
state generated by spontaneous down-conversion, consider the four-mode entangled
state which can be obtained by keeping only the first-order terms of the sums in Eq.
(5), and by ignoring the vacuum component, as usually only intensity correlations
are measured. Here, on the contrary, we measure the joint probabilities on the state
(5) to test Bell’s inequality through homodyne tomography, which yields the value of
B(α, β, α′, β′) in Eq. (2). The tomographic technique is a kind of universal detector,
which can measure any observable Ô of the field, by averaging a suitable “pattern”
function R[Ô](x, φ) over homodyne data x at random phase φ. The “pattern” function
is obtained through the trace relation 9

R[Ô](x, φ) = Tr
[
ÔKη(x− x̂φ)

]
, (6)

where Kη(x) is a distribution given in Ref. 10. For factorized many-mode operators

Ô = Ô1⊗ Ô2⊗ ...⊗ Ôn the pattern function is just the product of those corresponding
to each single-mode operator Ô1, ..., Ôn labelled by variables (x1, φ1), ..., (xn, φn). By
linearity the pattern function is extended to generic many-mode operators.
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Now we consider the observables that are involved in testing Bell’s inequality (2).
Let us denote by pα,β(i, l,m, n) the probability of having i, l,m, n photons in modes
al, b↔, a↔, bl for the “rotated” state

|ψ〉α,β ≡ Û1,3(α)Û2,4(β)|ψ〉 , (7)

Û1,3(α) and Û2,4(β) being the unitary operators

Û1,3(α) = exp
[
α

(
a†la↔ − ala

†
↔

)]
, (8)

Û2,4(β) = exp
[
β

(
b†lb↔ − blb

†
↔

)]
. (9)

The probabilities in Eq. (1) can be written as pα,β =pα,β(1, 1), pᾱ,β̄ =pα,β(0, 0), pᾱ,β =
pα,β(0, 1), and pα,β̄ =pα,β(1, 0), with

pα,β(n,m) =
pα,β(n, 1−m, 1− n,m)

P (1, 1)
, {n,m = 0, 1} . (10)

The denominator P (1, 1) in Eq. (10) represents the absolute probability of having at
the output of the NOPA one photon in modes al, a↔ and one photon in modes bl, b↔,
independently on the polarization, namely

P (1, 1) =
∑

n=0,1

∑

m=0,1

pα,β(n, 1−m, 1− n,m) . (11)

In our procedure both the numerator and the denominator of Eq. (10) are measured
in only one run, hence we do not need a fair sampling assumption, namely we do not
have to collect auxiliary data to normalize probabilities. Moreover, since we can exploit
quantum efficiencies as high as η = 90% and the tomographic pattern functions in Eq.
(6) already take into account η, we do not need supplementary hypothesis for it.7

The observables that correspond to probabilities pα,β(i, l,m, n) in Eqs. (10) and
(11) are the projectors

| i, l,m, n〉α,β α,β〈 i, l,m, n| = Û †1,3(α) Û †2,4(β) | i, l,m, n〉〈 i, l,m, n| Û2,4(β) Û1,3(α) .(12)

¿From Eqs. (6) and (10,11,12), one finds that P (1, 1) is measured through the following
average AV of homodyne data

P (1, 1) = AV
{(
K1

1 K
3
0 +K1

0 K
3
1

) (
K2

1 K
4
0 +K2

0 K
4
1

)}
, (13)

where Kj
n denotes the diagonal tomographic kernel function for mode j, namely

Kj
n ≡ 〈n|Kη(x− x̂φj

)|n〉 . (14)

The kernel function for the numerator of Eq. (10) involves both the diagonal terms
(14) and the following off-diagonal terms

Kj
+ ≡ 〈0|Kη(x− x̂φj

)|1〉 , Kj
− = (Kj

+)∗ . (15)

Finally, the expression for C(α, β) in Eq. (1) is given by

C(α, β) = AV
{
[ cos (2α)

(
K1

1 K
3
0 −K1

0 K
3
1

)
+ sin(2α)

(
K1

+K
3
− +K1

−K
3
+

)
] (16)

×[ cos (2β)
(
K2

0 K
4
1 −K2

1 K
4
0

)
+ sin(2β)

(
K2

+K
4
− +K2

−K
4
+

)
]
}
/P (1, 1) .

The statistical error for B(α, β, α′, β′) in Eq. (2) can be obtained from the variance
calculated upon dividing the set of data into large statistical blocks. However, C(α, β)—
and thus B(α, β, α′, β′)— are non linear averages (they are ratios of averages). Hence,
since the nonlinearity of B introduces a systematical error which is vanishingly small
for increasingly larger sets of data, the estimated mean value of B is obtained from the
full set of data, instead of averaging the mean value of the blocks.
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SOME NUMERICAL RESULTS

We now present some numerical results obtained from Monte–Carlo simulations of
the proposed experiment. For the simulation we use the theoretical homodyne proba-
bility pertaining to the state |ψ〉 in Eq. (5).

(a) (b)

Figure 2. Plot of B(α, β, α′, β′) vs the phase ϕ in the state of Eq. (5) with N = 0.5 average photon
number per mode. The dot-dashed line and the full line represent the classical bound and the
quantum theoretical value for B, respectively. The parameters of the simulation are:
α = 0; β = 3

8π; α′ = π
4 ; β′ = π

8 . For (a) The quantum efficiency and the number of simulated
homodyne data are η = 85% and n = 107 in (a), and η = 75% and n = 108 in (b).

In Fig. 2 we present the simulation results for B in Eq. (2) vs the phase ϕ in the state
of Eq. (5). The full line represents the value of B evaluated through the quantum
theoretical value C(α, β) given by

C(α, β) = cosϕ sin 2α sin 2β − cos 2α cos 2β . (17)

Quantum efficiency η = 85% has been used in Fig. 2(a), nonetheless notice that for
ϕ = π (corresponding to a maximum violation with respect to the classical bound 2),
the obtained value is over 10 σ distant from the bound. By increasing the number of
homodyne data, it is possible to obtain good results also for lower quantum efficiency
[see Fig. 2(b), wherein η = 75%]. By increasing the number of data to 8 × 108, the
value of B(0, 3

8
π, π

4
, π

8
) = 2.834 ± 0.268 has been obtained for ϕ = π, N = 0.5 average

photon number per mode and η as low as 65%. This result is to be compared with the
quantum theoretical value of 2

√
2. Fig. 3 shows the results of B vs different values

of the mean photon number per mode N for the state in Eq. (5). Notice that the
statistical errors are nearly independent on N .

For an order of magnitude of the data acquisition rate in a real experiment, one
can consider that in a typical setup with a NOPA pumped by a 2nd harmonic of a Q-
switched mode-locked Nd:YAG the pulse repetition rate is 80 MHz, with a 7 ps pulse
duration, the effective number of data depending on the speed of the boxcar integrator.

In conclusion we have proposed a test of Bell’s inequality, based on self–homodyne
tomography. The rather simple experimental apparatus is mainly composed of a NOPA
crystal and four photodiodes. The experimental data are collected through a self–
homodyne scheme and processed by quantum tomography.
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Figure 3. Plot of B(α, β, α′, β′) with α = 0; β = 3
8π; α′ = π

4 ; β′ = π
8 vs different values of the mean

photon number per mode N in the state of Eq. (5). For each simulated experiment, the number of
homodyne data is n = 107 and the quantum efficiency is η = 85%. The dotted line represents the
quantum theoretical value 2

√
2.

No supplementary hypotheses are introduced, a quantum efficiency η as high as 90% is
currently available, and, anyway, η as low as 70% is tolerated for 107÷108 experimental
data. We have presented some numerical results based on Monte–Carlo simulations that
confirm the feasibility of the experiment, showing violations of Bell’s inequality for over
10 σ with detector quantum efficiency η = 85%.
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