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Dirac quantum cellular automaton in one dimension: Zitterbewegung and scattering from potential
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We study the dynamical behavior of a quantum cellular automaton which reproduces the Dirac dynamics in
the limit of small wave vectors and masses. We present analytical evaluations along with computer simulations,
showing that the automaton exhibits typical Dirac dynamical features, such as the Zitterbewegung and, considering
the scattering from potential, the so-called Klein paradox. The motivation is to show concretely how pure
processing of quantum information can lead to particle mechanics as an emergent feature, an issue that has been
the focus of solid-state, optical, and atomic-physics quantum simulators.
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I. INTRODUCTION

The idea of reproducing the evolution of a macroscopic
system starting from a simple rule of local interaction
among its elementary constituents was first formalized in von
Neumann’s pioneering paper [1] with the notion of the cellular
automaton. The automaton is a regular lattice of cells with a
finite number of states, equipped with a rule that updates the
cell states from time t to time t + 1. This rule must be local,
namely, the state of the x cell at t + 1 depends only on the states
of a finite number of neighboring cells at t . Cellular automata
have been a popular topic for many years, as a new paradigm
for complex systems, and many books have been devoted to
the subject (see, e.g., Refs. [2,3]). One of the reasons for its
first success, which eventually has become its own weakness,
is the chaotic behavior of the automaton dynamics [4].

Differently from classical cellular automata, quantum
cellular automatons (QCAs) exhibit a less chaotic behavior,
which makes them predictable for large number of steps
[5]. Here the cells are finite-dimensional quantum systems
interacting locally and unitarily. Locality of interactions being
an essential ingredient of any physical evolution, QCAs have
been considered by Feynman as candidates for simulating
physics [6,7]. More recently QCAs received interest in the
quantum information community, leading to many results
on their mathematical theory [8–10] and on their general
dynamical features [5,11–14]. In quantum-field theory, after
the first appearance of a prototype of QCA in the Feynman
chessboard [6], which discretizes the Dirac-field path integral,
a similar framework appeared in the work of Nakamura [15],
motivated by a rigorous formulation of the Feynman path
integral, and later in the seminal work of Bialynicki-Birula
[16], as a lattice theory for Weyl, Dirac, and Maxwell fields.
Then the possibility of using automatons for describing the
evolution of relativistic fields emerged in the context of
lattice-gas simulations, especially in the work of Meyer [17],
where the notion of “field automaton” first appeared, and in
the papers by Yepez [18].

More recently QCAs have been considered for extending
quantum-field theory [19] to the Plank scale. In this context
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the one-dimensional Dirac automaton has been derived
from the symmetries of the QCA [20] showing how the
usual Dirac dynamics emerges at the Fermi scale, though
relativistic covariance and other symmetries are violated
at the Planck/ultrarelativistic scale. Similarly to lattice-gas
theories, here the quantum cell corresponds to the evalua-
tion ψ(x) of a quantum field on site x of a lattice, with
the dynamics updated in discrete time steps by a local
unitary evolution. However, differently from the lattice-gas
approach, here the continuum limit is not taken; instead,
the asymptotic large-scale (Fermi) evolution is considered.
Within this perspective the Lorentz covariance holds exactly
in the relativistic limit of small momenta and masses, whereas
generally it is distorted as in the deformed relativity models in
Refs. [21–23].

In the present paper we analyze in detail the one-particle
sector of the automaton of Refs. [19,20]. Here, particle states
are “smooth” states peaked around a momentum eigenstate
of the QCA. We consider dynamical quantities such as the
particle position, momentum, and velocity, along with their
evolution both in the free case and in the presence of a potential,
recovering typical features of Dirac quantum-field evolution—
such as Zitterbewegung and the Klein paradox—from the pure
quantum information processing of the QCA. Recently there
has been a renewed interest in Dirac features in solid-state
and atomic physics, which provide the physical hardware to
simulate the dynamics. Zitterbewegung can be seen in the
response of electrons to external fields [24] and can appear
for nonrelativistic particles in a crystal [25–27], quasiparticles
in superconductors [28], and systems with spin-orbit coupling
[29,30]. Proving that the oscillation behavior is not unique to
Dirac electrons, but rather is a generic feature of spinor systems
with linear dispersion relations, these works opened the way
for possible simulation of Zitterbewegung using, for example,
trapped ions [31,32], two-band crystalline structures such as
graphene [33,34] and semiconductors [35–39], ultracold atoms
[40], and, finally, photonic crystals [41]. On the other hand,
the Klein paradox (tunneling of relativistic particles) provides
insight into the mechanics of relativistic particles propagating
through potential barriers and into vacuum polarization effects.
Moreover, the Klein paradox has been a focus of the topic of
graphene as a simulator for the Dirac equation, as in Refs.
[32,42,43], and for trapped ions. Recently also microfabricated
optical waveguide circuits have become an alternative physical
simulator for particle dynamics [44].
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After reviewing the Dirac QCA in one dimension in Sec. II,
in Section III we present the evolution of position and momen-
tum operators for the automaton, showing the Zitterbewegung
behavior produced by the interference between positive and
negative frequencies. In Sec. IV we modify the QCA in order to
insert a potential in the free evolution and show the automaton
dynamics in the presence of a barrier for one-particle states. We
end the paper with a summary and some concluding remarks
in Sec. V.

II. THE DIRAC AUTOMATON

The quantum automaton corresponding to the Dirac equa-
tion in one dimension, first introduced in [19], has been
derived from the discrete automaton symmetries of parity
and time-reversal in Ref. [20], where also the Dirac equation
has been recovered as the large-scale relativistic limit of the
automaton. The cell of the quantum automaton is given by
the evaluation ψ(x) of the two-component field operator ψ ,
and the unitary evolution of one step of the automaton is
given by

ψ(x) → Uψ(x), ψ(x) :=
(

ψr (x)
ψl(x)

)
, (1)

where ψl and ψr denote the left and right modes of the field,
respectively, whereas the unitary matrix U is given by

U =
(

nS −im

−im nS†

)
, n2 + m2 = 1, (2)

with S denoting the shift operator Sf (x) = f (x + 1). The
constants n and m in Eq. (2) can be chosen positive. As shown
in Refs. [19,20], the parameter m plays the role of an adi-
mensional inertial mass and it is bounded by one. We remark
that the automaton description is completely adimensional,
and a conversion to the usual physical dimensions requires
the length, time, and mass, which one can take as the Planck
length ℓP , the Planck time τP , and the Planck mass mP , the
latter playing the role of the bound for the inertial mass. The
maximal speed of propagation of information is one cell per
step (c = ℓP /τP in dimensional units, corresponding to the
speed of light). The quantum field can be taken generally as
fermionic, bosonic, or even anyonic. However, in the present
case it is not relevant, since we consider only single-particle
states, which span the Hilbert space C2 ⊗ l2(Z), and for which
we use the factorized orthonormal basis |s⟩|x⟩, where for |s⟩ we
consider the canonical basis corresponding to s = l,r . These
states can also be obtained as ψ

†
s (x)|$⟩ upon introducing

a vacuum |$⟩ which is annihilated by the field operator
and invariant under the automaton evolution. Similarly, also
N -particle states with N > 1 can be obtained by acting with
products of N evaluations of the field operator, building up the
Fock space in the usual way. Note that the evolution of the field
is restricted to be linear, and there exists a unitary operator
U such that the field evolution is given by V ψs(x)V † =
Uψs(x), with V |$⟩ = |$⟩, whereas for the product of
field evaluations the evolution is given by tensor pow-
ers of U as V ψs1 (x1) . . . ψsN

(xN )V † = U⊗Nψs1 (x1) ⊗ . . . ⊗
ψsN

(xN ).

In the |s⟩|x⟩ representation the unitary matrix U can be
written as

U :=
∑

x

(
n|x − 1⟩⟨x| −im|x⟩⟨x|
−im|x⟩⟨x| n|x + 1⟩⟨x|

)
, (3)

describing a quantum walk on the Hilbert spaceC2 ⊗ l2(Z) [5].
Thanks to the translational invariance of U , it is convenient

to move to the momentum representation,

|k⟩ := 1√
2π

∑

x

e−ikx |x⟩, k ∈ [−π,π ], (4)

and U becomes

U =
∫ π

−π

dkU (k) ⊗ |k⟩⟨k|, U (k) =
(

neik −im
−im ne−ik

)
.

(5)

As in solid-state physics, the discreteness implies that mo-
menta k are constrained to the Brillouin zone, namely, |k| ! π .
By diagonalizing the unitary matrix U (k),

U (k)|s⟩k = e−isω(k)|s⟩k, ω(k) = arccos(n cos k),
(6)

|s⟩k := 1√
2

[ √
1 − sv(k)

s
√

1 + sv(k)

]

, s = ±, v(k) := ∂kω(k),

it is easy to evaluate the logarithm of U (e−iH := U ) as

H =
∫ π

−π

dkH (k) ⊗ |k⟩⟨k|,

H (k) = ω(k) (|+⟩k⟨+|k − |−⟩k⟨−|k)

= sinc−1ω(k)(−n sin k σ3 + mσ1), (7)

where σi i = 1,2,3 denote the Pauli matrices.
The function ω(k) is the dispersion relation of the automa-

ton, which recovers the usual Dirac one ω(k) =
√

k2 + m2 in
the limit k,m ≪ 1, as shown in [20]. This is also clear in Fig. 1,
where the dispersion relation as a function of k is reported for
four values of the mass. The derivative v(k) in Eq. (6) is then
the group velocity of the wave packet which is peaked around
the wave vector k. The s = +1 eigenvalues correspond to
positive-energy particle states, whereas the negative s = −1
eigenvalues correspond to negative-energy antiparticle states.
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FIG. 1. (Color online) The Dirac automaton dispersion relation
in Eq. (6) for four values of the mass: m = 0.1, 0.2, 0.4, and 0.8.
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Note that the operator H , regarded as a Hamiltonian, describes
the evolution for continuous times (U (t) ≡ Ut ), which in this
context has no physical meaning.

In the following sections we analyze two typical aspects
of the Dirac-field dynamics, namely, Zitterbewegung and the
Klein paradox.

III. POSITION AND MOMENTUM OPERATORS
AND ZITTERBEWEGUNG

The QCA, (2), recovers the Dirac-field dynamics for
customary relativistic wave vectors and energies (consider
that, e.g., an ultrahigh-energy cosmic ray has k ≃ 10−8) [20].
In this section we show how efficiently it reproduces a
typical feature of the one-particle Dirac dynamics, namely,
the Zitterbewegung.

The Zitterbewegung was first recognized in 1930 by
Schrödinger [46], who noticed that in the Dirac equation
describing a free relativistic electron the velocity operator
does not commute with the Dirac Hamiltonian: the evolution
of the position operator, in addition to the classical motion,
shows a very fast periodic oscillation, with frequency 2mc2 and
amplitude equal to the Compton wavelength h̄/mc, with m the
rest mass of the relativistic particle. This jittering motion first
encountered in the Dirac theory of the electron was then shown
[24] to arise from the interference of states corresponding to
the positive and negative energies resulting from the Dirac
equation, with the trembling disappearing with time [47] for a
wave-packed particle state. Zitterbewegung oscillations cannot
be directly observed by current experimental techniques for
a Dirac electron since the amplitude should by very low,
≈10−12 m. However, it can be seen in a number of solid-
state, atomic physics, photonic-crystal, and optical waveguide
simulators, as stated in Sec. I.

The “position” operator X providing the representation |x⟩
(i.e., such that X|s⟩|x⟩ = x|s⟩|x⟩) is defined as follows:

X =
∑

x∈Z

x(I ⊗ |x⟩⟨x|). (8)

Generally, X provides the average location of a state

|ψ⟩ =
∑

x ∈ Z
s = r,l

fs(x)|s⟩|x⟩ (9)

in terms of ⟨ψ |X|ψ⟩. If we take as the conjugated “momen-
tum” the operator

P =
∫ π

−π

dk

2π
k(I ⊗ |k⟩⟨k|), (10)

we have the commutation relation between X and P ,

⟨ψ |[X,P ]|ψ⟩ = i − i

2

∑

s=r,l

(|f̂s(π )|2 + f̂s(−π )|2), (11)

where f̂ (k) is the discrete Fourier transform of f (x). Equa-
tion (11) differs from the usual canonical commutation relation
[X,P ] = i by a boundary term. This is in agreement with
the existence of perfectly localizable states on the automaton,
i.e., |ψ⟩ = |χ⟩|x⟩, for which the expectation values of the
commutator vanishes. However, from now on we consider
states for which the boundary term is negligible.

In the following it is convenient to work with the continuous
time t interpolating exactly the discrete automaton evolution,
namely, Ut . However, all numerical results are given only for
discrete t , namely, for repeated applications of the automaton
unitary U in Eq. (2).

The time evolution of the position operator X(t) =
U−tXUt can be more easily computed by integrating the
differential equation A(t) = [H,[H,X(t)]], where H was
defined in Eq. (7). We have

A(t) =
∫ π

−π

dk A(k,t) ⊗ |k⟩⟨k|, A(k,t) = e2iH (k)tA(k),

(12)

A(k) = − 2ω2

sin2 ω
nm cos k σ2,

which leads to

X(t) = X(0) + V t + ZX(t) − ZX(0), (13)

V (k) = −v(k)2σ3 + v(k)
√

1 − v(k)2σ1, (14)

ZX(k,t) = − 1
4H−2(k)A(k,t), (15)

where V is the classical component of the velocity operator,
which, in the base diagonalizing Hamiltonian (7), is V (k) =
v(k)σ3 and is proportional to the group velocity v(k). Since the
generic one-particle state |ψ⟩ is the superposition of a positive
and a negative energy state, i.e., |ψ+⟩ + |ψ−⟩, the evolution
of the mean value of the position operator, X(t), can be
written as

xψ (t) := ⟨ψ |X(t)|ψ⟩ = x+
ψ (t) + x−

ψ (t) + x int
ψ (t),

x±
ψ (t) := ⟨ψ±|X(0) + V t |ψ±⟩, (16)

x int
ψ (t) := 2Re[⟨ψ+|X(0) − ZX(0) + ZX(t)|ψ−⟩],

where Re denotes the real part. The interference between
positive and negative frequency is responsible for the os-
cillating term x int

ψ (t) whose magnitude is bounded by 1/m
(see the Appendix), which, in the usual dimensional units,
corresponds to the Compton wavelength h̄/mc. These results
show that x int

ψ (t) is the automaton analog of the so-called
Zitterbewegung. In the Appendix we show that for t → ∞
the term 2Re[⟨ψ+|ZX(t)|ψ−⟩], which is responsible for the
oscillation, goes to 0 as 1/

√
t , and only the shift contribution

coming from 2Re[⟨ψ+|X(0) − ZX(0)|ψ−⟩] survives. Note that
this asymptotic behavior could be different in the presence
of a potential as shown in Refs. [49,50], where a revival of
Zitterbewegung occurs for a Dirac oscillator. As noted in Sec. I,
this phenomenon was never observed for a free relativistic
electron because of the small value of the electron Compton
wavelength, which is 10−12 m. The results in this section are
in agreement with those for the Hadamard walk [51].

In Fig. 3 we have considered the evolution of states with
particle and antiparticle components smoothly peaked around
some momentum eigenstate, namely,

c+|ψ+⟩ + c−|ψ−⟩, |ψ±⟩ =
∫

dk√
2π

gk0 (k)|±⟩k|k⟩, (17)

where |c+|2 + |c−|2 = 1 and gk0 is a Gaussian peaked
around the momentum k0 with width σ . An easy
computation shows that for these states the shift
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FIG. 2. (Color online) Plots of z(k) (left) and ω(k)/π (right)
related to the oscillation amplitude and frequency of the position
expectation value in Eq. (13). In both cases the plots are reported for
different values of the mass (m = 0.1, 0.2, 0.4, and 0.8, from top to
bottom (left) and from bottom to top (right).

contribution reduces to 2Re[⟨ψ |X(0) + ZX(0)|ψ⟩] =
Im(c∗

+c−)/(2π )
∫ π

−π
dk|gk0 (k)|2z(k), with the function

z(k) = m cos ω(k)/ sin2 ω(k) bounded again by the Compton
wavelength 1/m and the oscillation frequency given by
ω(0)/π (see also Fig. 2). It is worth noting that when the wave
packets are both peaked around k = 0, as in the first two cases
in Fig. 3, the damping of the oscillation amplitude can be
observed for times much longer than those we could consider
in our simulation. Indeed, since the wave packet is sharp in
k = 0, the asymptotic approximation of Eq. (A1) proves to be
accurate only for very large values of t .

IV. EVOLUTION WITH A SQUARE POTENTIAL BARRIER

In order to study the scattering with a potential, we
modify the automaton, adding a position-dependent phase
representing a square potential barrier, as in Refs. [51,52].
We provide explicitly the transmission T and reflection R
coefficients as functions of the energy and mass of the incident
wave packet and of the potential barrier’s height. We find a
general behavior independent of the regime, namely, of the
energy and mass of the incident particle. When the value of
the potential barrier is increased beyond a certain threshold the
transmitted wave reappears and the reflection coefficient starts
to decrease. The width of the R = 1 region is an increasing
function of the mass, which is proportional to the gap between
positive- and negative-frequency eigenvalues of the unitary
evolution.

For a generic potential φ(x), the unitary evolution becomes

Uφ :=
∑

x

e−iφ(x)
(

n|x − 1⟩⟨x| −im|x⟩⟨x|
−im|x⟩⟨x| n|x + 1⟩⟨x|

)
.

We analyze the simple case φ(x) := φ θ (x) [θ (x) is the
Heaviside step function], which is a potential step that is 0
for x < 0 (region I) and has a constant value φ ∈ [0,2π ] for
x " 0 (region II) as illustrated in Fig. 4.

Let us now study the eigenvector of Uφ of the form

|,k⟩ = -I|+⟩k|k⟩ + -Iβk|+⟩−k|k⟩ + γk-II|+⟩k′ |k′⟩,
-I :=

∑

x<0

I ⊗ |x⟩⟨x|, -II :=
∑

x"0

I ⊗ |x⟩⟨x|,
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FIG. 3. (Color online) Automaton evolution of a state as in
Eq. (17) showing the Zitterbewegung of the position expectation
value. Top: m = 0.15, c+ = 1/

√
2, c− = i/

√
2, k0 = 0, and σ =

40−1. The calculated shift and oscillation frequency are, respectively,
⟨ψ |X(0) + ZX(0)|ψ⟩ = 3.2 and ω(0)/π = 0.05, according to the
simulation. Middle: m = 0.15, c+ = 1/

√
2, c− = 1/

√
2, k0 = 0,

σ = 40−1. The calculated shift and oscillation frequency are 0
and 0.13, respectively. Bottom: m = 0.13, c+ =

√
2/3, c− = 1/

√
3,

k0 = 10−2π , σ = 40−1. In this case the particle and antiparticle
contribution are not balanced and the average position drift veloc-
ity is thus ⟨ψ+|V |ψ+⟩ + ⟨ψ−|V |ψ−⟩ = (|c+|2 − |c−|2)v(k0) = 0.08,
corresponding to an average position x+

ψ (800) + x−
ψ (800) = 464 [see

Eq. (16)]. Note that for t → ∞ the term 2Re[⟨ψ+|ZX(t)|ψ−⟩, which
is responsible for the oscillation, goes to 0.

where βk , γk , and k′ are functions of k. The condition that |,k⟩
is an eigenstate of Uφ , i.e., Uφ|,k⟩ = e−iω(k)|,k⟩, implies that

x
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FIG. 4. Schematic of the potential.
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ω(k′) = ω(k) − φ,

βk = e−ik
√

(1 + v)(1 − v′) − e−ik′√
(1 − v)(1 + v′)

−eik
√

(1 − v)(1 − v′) + e−ik′√(1 + v)(1 + v′)
,

γk = 2eiξ (v cos k − i sin k)
−eik

√
(1 − v)(1 − v′)) + e−ik′√(1 + v)(1 + v′)

,

(18)

with v := v(k) and v′ := v(k′) the group velocities of the
incident and transmitted wave. Let us now consider the
superposition

|1(0)⟩ :=
∫

dk√
2π

gk0 (k)|,k⟩,

where gk0 (k) is a function in C∞
0 [−π,π ] which we assume to

be smoothly peaked around k0. The state at time t is then

|1(t)⟩ :=
∫

dk√
2π

gk0 (k)e−iω(k)t |,k⟩,

and one can verify that for t ≪ 0 the state is negligible in
region II, while the only appreciable contribution in region II
comes from the term eik0x , which describes a wave packet that
moves at group velocity v(k0) and hits the barrier from the left.
When t ≫ 0 the state can be approximated by a superposition
of the reflected and a transmitted wavepacket as

|1(t)⟩ t≫0−−→ β(k0)
∫

dk√
2π

gk0 (k)e−iω(k)t |+⟩−k|k⟩

+ γ̃ (k0)e−iφt

∫
dk√
2π

g̃k′
0
(k′)e−iω(k′)t |+⟩k′ |k′⟩,

where we have defined

k′
0 s.t. ω(k′

0) = ω(k0) − φ,

γ̃ (k0) := γ (k0)

√
v(k′

0)
v(k0)

,

g̃k′
0
(k′) =

√
v(k′

0)
v(k0)

gk′
0
(k′)

(one can check
∫

dk|
√

2π |g̃k′
0
(k′)|2 = 2π ), whose group ve-

locities are −v(k0) for the reflected wave packet and v(k′
0) for

the transmitted wave packet (see Fig. 5).
The probability of finding the particle in the reflected

wave packet is R = |β(k0)|2 (reflection coefficient), while
the probability of finding the particle in the transmitted
wave packet is T = |γ̃ (k0)|2 (transmission coefficient). The
consistency of the result can be verified by checking that
R + T = 1. For k ≪ m ≪ 1 (Schröedinger regime) we re-
cover the usual reflection and transmission coefficient for the
Schröedinger equation with a potential step. In Fig. 6 we
plot the reflection coefficient R as a function of φ and k for
different values of the mass m. Clearly when φ = 0 we have
R = 0 and increasing φ while fixing k the value increases
up to R = 1. One may note that when ω(k) − arccos(n) <
φ < ω(k) + arccos(n) Eq. (18) has a solution for imaginary k′

which implies an exponential damping of the transmitted wave
and pure reflection. By further increasing the value of φ beyond
the threshold ω(k) + arccos(n), Eq. (18) has a solution for real
k′ and negative ω(k′), and then the transmitted wave reappears

FIG. 5. (Color online) Group velocity of the transmitted wave
packet as a function of the potential barrier height φ and of the
momentum k of the incident particle state. From top left to bottom
right the transmitted group velocity is depicted for values of the mass
m = 0.1, 0.2, 0.4, and 0.8.

and the reflection coefficient decreases. This is the so-called
“Klein paradox,” which is caused by the presence of positive-
and negative-frequency eigenvalues of the unitary evolution.
The width of the R = 1 region is an increasing function of the
mass equal to 2 arccos(n), which is the gap between positive-
and negative-frequency solutions (see Fig. 1).

In Fig. 7 we plot the reflection R coefficient and the
transmitted wave velocity group v(k′

0) as a function of the
potential barrier height φ, with the incident wave packet
having k0 = 2 and m = 0.4. From the figure it is clear that
after a plateau with R = 1 the reflection coefficient starts
decreasing for higher potentials. In Fig. 8 we show the
scattering simulation for four increasing values of the potential,

FIG. 6. (Color online) Reflection coefficient as a function of the
potential barrier height φ and of the momentum k of the incident
particle state. From top left to bottom right the reflection coefficient
is depicted for values of the mass m = 0.1, 0.2, 0.4, and 0.8.
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FIG. 7. (Color online) Reflection coefficient for m = 0.4 and
momentum of the incident particle k0 = 2 as a function of the
potential barrier height φ (section of plots in Figs. 5 and 6 for m = 0.4,
k0 = 2).

say φ = 1.42, 1.55, 2, and 2.4 (see the figure caption for
details).

V. CONCLUSIONS

In this paper we have studied the dynamics of the QCA in
Refs. [19,20], which gives the Dirac dynamics as emergent in
the limit of small wave vectors. We have presented computer
simulations and analytical evaluations, focusing on typical
features of the Dirac dynamics, in particular, Zitterbewegung
and the scattering from potential. Our automaton covers all
regimes of masses and energy momenta, beyond the same
validity range of the Dirac equation, with the possibility of
considering arbitrary input states, enabling us to investigate
and visualize a wide range of fundamental processes. These
facts, in addition to the discreteness of the automaton, make
it the ideal theoretical counterpart for the experimental simu-
lators in the literature. A similar quantum cellular automaton

FIG. 8. (Color online) Simulations of the Dirac automaton
evolution with a square potential barrier. Here the automaton
mass is m = 0.2, while the barrier turns on at x = 140. In the
simulation the incident state is a smooth state of the form |ψ(0)⟩ =∫

dk
√

2πgk0 (k)|+⟩k peaked around the positive energy eigenstate
|+⟩k0 with k0 = 2 and with gk0 a Gaussian having width σ = 15−1.
The incident group velocity is v(k0) = 0.90. The simulation is run
for four increasing values of the potential φ. Top left: Potential
barrier height φ = 1.42, reflection coefficient R = 0.25, velocity of
the transmitted particle v(k′

0) = 0.63. Top right: φ = 1.55, R = 0.75,
v(k′

0) = 0.1. Bottom left: φ = 2, R = 0.1, v(k′
0) = 0. Bottom right:

φ = 2.4, R = 0.50, v(k′
0) = 0.33.

can also be developed in two dimensions [53], corresponding
to graphene as a quantum simulator.
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APPENDIX: BOUND OF THE OSCILLATING TERM
AND ITS ASYMPTOTIC BEHAVIOR

Here we provide an upper bound for the oscillating term
x int

ψ (t) in Eq. (16) in the position operator evolution derived in
Sec. III and we derive its behavior for very long time steps.
The jittering of the position expectation value is caused by the
operator ZX(t) which in the base diagonalizing the automaton
Hamiltonian H (7) can be written as

ZX(t) =
∫ π

−π

dke2iω(k)σztZX(k) ⊗ |k⟩⟨k|,

ZX(k) = z(k)σ2, z(k) = m cos ω(k)
2 sin2 ω(k)

,

with z(k) ∈ L1(−π,π ) for any m ̸= 0. By defining

|ψ±⟩ =
∫ π

−π

dk√
2π

g±(k)|±⟩k|k⟩, g±(k) ∈ C∞
0 [−π,π ],

we have

2Re[⟨ψ+|ZX(t)|ψ−⟩] =
∫ π

−π

dk

π
z(k)Re[ig∗

+(k)g−(k)e2iω(k)t ].

Since, for any m ̸= 0, ω(k) has three stationary points in k =
0, ± π [ω(1)(0) = ω(1)(±π ) = 0 and ω(1)(k) ̸= 0 elsewhere in
the closed interval k ∈ [−π,π ], with ω(2)(0),ω(2)(±π ) ̸= 0],
the stationary phase approximation gives

2Re[⟨ψ+|ZX(t)|ψ−⟩]

t≫0−−→
∑

k=0,±π

z(k)Re

[

ig∗
+(k)g−(k)e2iω(k)t

√
i

πω(2)(k)t

]

,

(A1)

showing that the term 2Re[⟨ψ+|ZX(t)|ψ−⟩] goes to 0 as 1/
√

t .
In order to find an upper bound for x int

ψ (t) note that

∣∣x int
ψ (t)

∣∣ ! 2|⟨ψ+|X(0) − ZX(0) + ZX(t)|ψ−⟩|
! 2(|⟨ψ+|X(0)|ψ−⟩| + |ZX(0)| + |ZX(t)|),

and according to the expression of ZX(k), we get

|ZX(0)| + |ZX(t)| ! 2|ZX(0)|,

|ZX(0)| ! max
k∈[−π,π]

|z(k)| = z(0) =
√

1 − m2

2m
.
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Now defining the C∞
0 [−π,π ] test function ϕ(k,k′) = g∗

+(k)g−(k′)⟨+|k|−⟩k′ , we have

|⟨ψ+|X(0)|ψ−⟩| =
∣∣∣∣

〈
dδ(k − k′)
d(k − k′)

∣∣∣∣|ϕ(k,k′)⟩
∣∣∣∣ =

∣∣∣∣⟨δ(k − k′) |
∣∣∣∣
dϕ(k,k′)
d(k − k′)

〉∣∣∣∣

=
∣∣∣∣

∫ π

−π

dk

2π
dk′ δ(k − k′)g∗

+(k)g−(k′)
d

d(k − k′)
⟨+|k|−⟩k′

∣∣∣∣

=
∣∣∣∣

∫ π

−π

dk

2π
g∗

+(k)g−(k)f (k)
∣∣∣∣ ! max

k∈[−π,π]
|f (k)| = f (0),

f (k) := n

sin2 ω
, f (0) =

√
1 − m2

m2
,

which, finally, gives
∣∣x int

ψ (t)
∣∣ ! 2

m
+ 2

m2
. (A2)
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