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Abstract – We show that the computational model based on local fermionic modes in place
of qubits does not satisfy local tomography and monogamy of entanglement, and has mixed
states with maximal entanglement of formation. These features directly follow from the parity
superselection rule. We generalize quantum superselection rules to general probabilistic theories
as sets of linear constraints on the convex set of states. We then provide a link between the
cardinality of the superselection rule and the degree of holism of the resulting theory.
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In his pioneering paper on physical computation [1],
Feynman wondered about the possibility of simulating
fermions by local commuting quantum systems in in-
teraction —what we would call nowadays a “quantum
computer”. Ever since, the relation between fermions
and local quantum systems has been largely investigated.
The Jordan-Wigner map [2] transforms isomorphically the
fermionic algebra into a qubit algebra, and has been a
valuable instrument for solving the 1d xy spin-chains [3,4],
or to extend to the Fermionic case notions such as the
entanglement [5], the entropic area law [6], and univer-
sal computation [7,8]. However, in many applications
one needs to map quantum algebras in an “isolocal” way,
namely mapping local quantum operations into local ones,
and nonlocal to nonlocal ones. The Jordan-Wigner trans-
form is not isolocal, and this leads to some ambiguities
in defining the partial trace [9–12], and in assessing the
local nature of quantum operations [13]. Here the Wigner
superselection rule comes to help.

The Wigner superselection rule forbids superpositions
between states with odd and even particle number, based
on the simple argument of the impossibility of discriminat-
ing a 2π rotation from the identity [14,15]. The Wigner
superselection rule allows one to circumvent the problems
connected to isolocality [5] without restoring it. The price
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to pay, as we will see in this letter, is that the theory be-
comes non-locally-tomographic [16,17], namely one cannot
discriminate between two nonlocal states using only local
measurements, unlike quantum theory (qt).

The notion of local tomography (also called local dis-
criminability [18]) has been introduced in the new context
of general probabilistic theories, which has become the
stage for the recent axiomatization program of qt. Ex-
amples of such theories are the classical information the-
ory [17], the box-world [19], and the real quantum theory
(rqt) [20,21]. In such a framework, a theory that lacks
local-tomography is called holistic [21]. In this letter we
will introduce a notion of superselection rule for a general
probabilistic theory, corresponding to a linear constraint
over the convex set of states. Such a notion contains the
usual superselection rules of qt as special cases, but also
includes other cases, e.g. rqt as a superselection restric-
tion. We will provide a link between the number of lin-
early independent constraints and the degree of holism of
the resulting theory.

In addition to the feature of local tomography, another
characteristic trait of qt is the monogamy of entangle-
ment, i.e. loosely speaking a limitation on the sharing of
entanglement. For example, if two qubits are maximally
entangled, neither of them can be entangled with any other
system. After extending the usual notions of entangle-
ment of formation and concurrence to the fermionic sce-
nario, we will show that in the fermionic quantum theory
(fqt), entanglement is in general not monogamous due
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to the Wigner superselection rule. As we will show, the
monogamy violation goes hand in hand with the existence
of maximally entangled states that are mixed. Moreover,
one has maximally entangled sets (mess) [22] containing
more than one bipartite state, whereas qt has only the
singlet, and non-trivial mess need tripartite systems.

In the following we will restrict to probabilistic theo-
ries that are convex (i.e. all sets of transformations are
convex) and causal [17] (namely, the probability of the
preparation is independent of the choice of the observa-
tion test). Transformations include as special cases states
and effects, and we will denote by St(A) and Eff(A) the
convex set of (generally subnormalized) states and the con-
vex set of effects of system A. In the presence of the non-
restriction hypothesis in its extended version (namely all
admissible transformations belong to the theory), a the-
ory is fully specified by the sets of states St(A) and by the
composition of systems. Imposing a superselection rule σ
on a theory corresponds to linearly sectioning all sets of
transformations for each multipartite system. Under the
non-restriction hypothesis this reduces to linearly section-
ing just the sets of states. Thus, superselecting the system
A with the rule σ means sectioning linearly St(A) giving a
new set of states St(Ā), which is identified with the system
Ā := σ(A) of the constrained theory. For consistency, the
superselection map σ must commute with system compo-
sition, forcing the definition of composition for the con-
strained theory as σ(A)σ(B) := σ(AB) (we remind that
system composition is denoted by juxtaposition, namely
the composed system of A and B is AB). Notice that,
being linear, σ preserves convexity of the theory. This
means that, e.g., in a qt with a superselection rule, states
from different sectors cannot be superimposed, but can be
mixed.

In the following we will denote by XR the linear span of
the set X, e.g. EffR(A) is just the set of linear functionals
on states. The superselection rule σ will be defined for an
arbitrary system A through linearly independent effects
sσ

i ∈ EffR(A), i = 1, . . . , V σ
A as follows:

St[σ(A)] := {ρ ∈ St(A)|sσ
i (ρ) = 0, i = 1, . . . , V σ

A }.

Clearly St(Ā) ⊆ St(A) and Eff(Ā) ⊆ Eff(A). One has

DĀ = DA − V σ
A , (1)

where DA := dim[StR(A)]. For a general theory one has
DAB ≥ DADB, and this provides an upper bound for the
number of independent constraints of a composite system,
i.e. V σ

AB ≤ DAV σ
B + DBV σ

A + DAB − V σ
A V σ

B .
It is easy to see that for any b ∈ Eff(B̄) and any

i = 1, . . . , V σ
A , the functional sσ

i ⊗ b ∈ EffR(AB) is a
constraint for AB. Indeed, suppose by contradiction that
sσ

i ⊗ b(ρ) ̸= 0 for ρ ∈ St(AB), then since b(ρ) = α is a
valid state for Ā, we have sσ

i (α) ̸= 0 against the hypothe-
sis. The same argument holds exchanging the subsystems
A and B, and we conclude that the composite system AB
has at least DĀV σ

B + DB̄V σ
A = DAV σ

B + DBV σ
A − 2V σ

A V σ
B

of linearly independent constraints. In summary we have
the bounds

V σ
AB ≥ DAV σ

B + DBV σ
A − 2V σ

A V σ
B ,

V σ
AB ≤ DAV σ

B + DBV σ
A − V σ

A V σ
B + DAB − DADB.

(2)

A superselected theory saturating the lower bound in
eq. (2) is called minimal. For such a theory the constraints
for bipartite systems are only those of the form sσ

i ⊗ b and
a⊗ sσ

j , with a ∈ Eff(Ā) and b ∈ Eff(B̄). A minimal super-
selected theory can be built “bottom-up” by defining the
constraints on the elementary systems.

Before proceeding, we recall the notions of n-local effect
and of n-local-tomographic theory [21]. We call an effect
n-local if it can be written as conical combination of com-
posite effects made of effects that are at most n-partite.
A set of effects E is called separating for a set of states
S if any two states of S are discriminated by an effect
of E. We call a theory n-local-tomographic if the set of
n-local effects is separating for multipartite states. For
a local-tomographic theory (i.e. n = 1) one has DAB =
DADB. Notice that an n-local-tomographic theory is also
(n + 1)-local-tomographic. We will call a theory strictly
n-local-tomographic if it is n-local-tomographic but not
(n − 1)-local-tomographic.

By definition, a strictly bilocal-tomographic theory
(i.e. n = 2) has [21]

DAB > DADB, (3)

DABC ≤ DADBDC + D̃ABDC + D̃BCDA + D̃CADB, (4)

where
D̃AB := DAB − DADB. (5)

A strictly bilocal-tomographic theory that saturates the
upper bound will be called maximally bilocal-tomographic,
and it requires all 2-local effects to separate multipartite
states.

In the following we will focus on the superselection of
a local-tomographic theory. This is the case, for example,
of qt with parity or charge superselection and of the rqt.
In this case DAB = DADB and therefore eq. (2) becomes

V σ
AB ≥ DAV σ

B + DBV σ
A − 2V σ

A V σ
B , (6)

V σ
AB ≤ DAV σ

B + DBV σ
A − V σ

A V σ
B . (7)

In this scenario we have a striking relation between the
discriminability of states and superselection rules. In-
deed a minimal superselected theory is maximally bilocal-
tomographic. This can be proved by evaluating DABC
using the saturated bound of eq. (6) and the identities
of eq. (5), eq. (1), and ABC = Ā(BC), and noticing
that it is equal to the right-hand side of eq. (4). While
a minimal superselected theory is maximally bilocal-
tomographic, a theory saturating the upper bound (7) is
local-tomographic. In the intermediate range one can find
superselected theories of any degree of holism.

We now give a precise definition of the fqt. The
fqt is the theory with non-restriction hypothesis, whose
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generic system NF is the quantum one made only of
a finite number N of qubits, satisfying the constraint
that all states must commute with the parity operator

PN := 1
2 (I +

∏N
j=1 σ(j)

z ) (σα denotes a Pauli matrix).
The system 1F corresponds to the so-called local fermionic
mode (lfm), and the state spaces introduced here are
the same as in Bravyi and Kitaev [7]; however, the non-
restriction hypothesis allows for more transformations in
our case. Locality of transformations, necessary for defin-
ing the composition of systems, is given in terms of the
local fermionic algebra, which is generated by the creation
and annihilation operators ψ†

i and ψi, respectively, with
i = 1, . . . , N , satisfying the anti-commutation relations
[ψ†

i ,ψj ]+ = δijI, [ψi,ψj ]+ = 0. Let |Ω⟩ be the unique

joint eigenvector of the operators ψ†
jψj with zero eigen-

value, and build a representation of field operators for a
given ordering 1, 2, . . . , N of the qubits, given by the or-
thonormal basis for C2N

:

|q1, . . . , qN ⟩ := ψ†q1

1 . . . ψ†qN

N |Ω⟩ qi = 0, 1; i = 1, . . . , N,
(8)

where |q1, . . . , qN ⟩ are the joint eigenvectors for the qubit

σ(j)
z for j = 1, . . . , N , forming a basis for the Fock space.

Notice that a vector of eq. (8) corresponds to a Slater
determinant in the first quantization formalism. The cho-
sen ordering identifies a specific Jordan-Wigner transform.
We now can define locality of transformations. We say
that an admissimble transformation of the NF system is
local on the subsystem MF with M < N if the Kraus oper-
ators belong the representation of the field algebra of MF.
The parity super-selection rule forbids superpositions of
vectors belonging to H0 and H1 eigen-spaces of the parity
operators in C2N

, and splits the operator spaces represent-
ing EffR(NF) = StR(NF) as Herm(H0)⊕Herm(H1), whose
operators are spanned by products of even numbers of field
operators.

In the following we will denote by NQ the multipartite
system of N qubits, with 2N -dimensional Hilbert space.
Since qt is local-tomographic we have DNQ

= DN
1Q

=

22N . On the other hand, according to the parity pre-
scription the dimension of the fermionic system NF is
DNF

= 22N−1 = DNQ
/2. Notice that the single-lfm sys-

tem 1F has only two possible pure states |0⟩, |1⟩, thus cor-
responding to the classical bit, whereas the linear space of
states for the system of N lfms is StR(NF) = EffR(NF) =

Herm(C2N−1

) ⊕ Herm(C2N−1

), namely the direct sum of
two copies of the space of states of N − 1 qubits.

The fqt saturates the bound of eq. (4), and is then
maximally bilocal-tomographic. Indeed, for elementary
fermionic systems we have

8 = D2F
> D2

1F
= 4, D3F

= D3
1F

+ 3D̃2F
D1F

= 32, (9)

where D̃2F
= D2F

− D2
1F

= 4 is the dimension of
the non-local component of 2F. The full theory is
maximally bilocal-tomographic, indeed, the number of
independent local and 2-local effects for N lfms is

∑⌊n/2⌋
k=0

( n
2k

)
Dn−2k

1F
D̃k

2F
= 22n−1 = DNF

. We emphasize
that the fqt provides an example of a bilocal-tomographic
theory whose systems do not satisfy the dimensional pre-
scription in ref. [21] (see footnote 1).

Besides being bilocal-tomographic, the fqt is also a
minimally superselected qt of qubits. It is easy to see that
the 1F system can be achieved from the qubit by means of
the superselection constraints Tr[σxρ] = Tr[σyρ] = 0 for
all ρ ∈ St(1F), hence D1F

= D1Q
−V σ

1Q
with V σ

1Q
= 2. The

whole fqt can be built bottom-up by minimally extend-
ing the constraints to the composite systems. Indeed the
lower bound in eq. (7) is achieved.

Since the fqt is minimally superselected from a
local-tomographic theory, it must be maximally bilocal-
tomographic. This is indeed the case, as one can see from
the dimensional analysis in eq. (9).

It is worth mentioning that the fqt is not the only min-
imal superselected qt. Another example is given by rqt.
Its systems NR have dimensions DNR

= dNR
(dNR

+ 1)/2
with dNR

the number of perfectly distinguishable states for
the system NR. On the other hand one has NR = σ(NQ)
where the superselection rule is given by the constraint
ρ− ρT = 0, with T denoting transposition with respect to
a fixed basis taken as real, that for 1R (one rebit) corre-
sponds to the linear constraint Tr[σyρ] = 0. The rqt is
minimally superselected, since the number of constraints
for the composite system NRMR given by V σ

NRMR
=

1
2dNR

dMR
(dNR

dMR
− 1) saturates the lower bound (7).

Then the theory is maximally bilocal-tomographic, as
pointed out in [21].

Notice that, due to the parity constraint, the fqt re-
tains only superpositions of pure states with total occu-
pation numbers that are equal modulo 2. If instead we
allow only superpositions with total occupation numbers
that are equal modulo k for any integer k, we get a theory
that is k-local-tomographic.

We now study entanglement in the fqt, and show that
it shares some features with the rqt, as the existence of
maximally entangled mixed states, and the violation of
entanglement monogamy. We will see that these phenom-
ena are due to the fact that both theories are superselected
versions of qt. One would conjecture that both features
may be related to the non-local-tomographic nature of the
theories; however, this remains an open issue.

In a general probabilistic theory entanglement must be
quantified in operational terms, namely as a resource for
performing a task. For example, entanglement in qt rep-
resents the resource needed to prepare states of the the-
ory under the restriction of locc (local operations and

1In ref. [21] the authors after proving that DAB−DADB = LALB

for some integers LA and LB, under the assumption that DA + LA,
DA −LA are strictly increasing functions of the number of perfectly
discriminable states dA, prove that in a bilocal-tomographic theory
one has DA = 1

2 (dr

A +ds

A) for some integers r, s satisfying r ≥ s > 0.
The strict monotonicity of the function DA−LA is too restrictive and
it excludes the fqt from the set of admissible bilocal-tomographic
theories. Indeed, for the fqt we have DNF

− LNF
= 0 for any NF.
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classical communication). For bipartite states in qt all
measures of entanglement refer to a standard unit —the
ebit— which is the amount of entanglement of a bipartite
singlet state, and the so-called entanglement of formation
is the number of ebits that are needed to achieve the state
by locc. Since the fqt is non-classical, considering en-
tanglement as a resource under locc is meaningful. A full
theory of entanglement for the fqt would require a com-
plete analysis of the transformations of states under locc:
this is beyond the scope of the present letter. However,
here we will show that, independently of such analysis,
one can assess features that are very different from those
of entanglement in qt. These are: 1) the existence of
mixed states with maximal entanglement of formation;
2) the need of mes [22] for bipartite states; 3) bipartite
states with maximal entanglement of formation that do
not belong to a mes; 4) the violation of monogamy of
entanglement.

We now extend the notion of concurrence [23] and pro-
vide a lower bound to entanglement of formation [24] for
the fqt.

In the usual quantum scenario, the entanglement of for-
mation is defined for a generally mixed state ρ ∈ St(AB)
as follows: E(ρ) := minDρ

∑
i piS(TrA |Ψi⟩⟨Ψi|), where

S(σ) is the von Neumann entropy of the state σ, and
Dρ := {{pi, |Ψi⟩} | ρ =

∑
i pi|Ψi⟩⟨Ψi|} is the set of all

the pure decomposition of the mixed state ρ. One has
E(ρ) = limn→∞ Fn(ρ)/n, where Fn(ρ) is the minimum
number of singlets states needed by two parties in order
to prepare via locc n random states |Ψi⟩ in any decom-
position that achieves E(ρ) [25]. The bound is achieved
for pure states [26]. For a mixed state ρ of two qubits one

has E(ρ) = E(C(ρ)), with E(x) := h(1+
√

1−x2

2 ), h the bi-
nary Shannon entropy, and the concurrence C(ρ) defined
as

C(ρ) := min
Dρ

∑

i

piC(|Ψi⟩), (10)

with C(|Ψ⟩) for pure states given in ref. [23]. Both the
entanglement of formation and the concurrence are zero if
and only if the state ρ is separable, and for two qubits they
reach the maximum value 1 if and only if ρ is a maximally
entangled state.

In ref. [27], both the entanglement of formation and
the concurrence have been specialized to rqt restricting
the minimum to the set of pure decompositions DR

ρ on
real states. In ref. [5] the entanglement of formation has
been extended to the fqt; here we do the same for the
concurrence

EF(ρ) := min
DF

ρ

∑

i

piE(|Ψi⟩), (11)

CF(ρ) := min
DF

ρ

∑

i

piC(|Ψi⟩), (12)

with DF
ρ the set of all the pure decompositions of ρ that

satisfy the parity superselection rule. Since each mixed
state is parity decomposed uniquely as ρ = p0ρ0 + p1ρ1

and all fermionic decompositions in DF
ρ must preserve p0

and p1, one has EF(ρ) = p0EF(ρ0)+p1EF(ρ1) and CF(ρ) =
p0CF(ρ0)+p1CF(ρ1). Moreover, since DF

ρi
≡ Dρi

, we have
EF(ρi) = E(ρi) and CF(ρi) = C(ρi), hence

EF(ρ) = p0E(ρ0) + p1E(ρ1), (13)

CF(ρ) = p0C(ρ0) + p1C(ρ1). (14)

The above definition of entanglement of formation is not
proved to have the same operational asymptotic inter-
pretation as in qt; however, one can prove that it is a
lower bound for it, since bipartite fermionic loccs are all
admissible quantum loccs, and any fermionic entangled
resource state has a quantum entanglement of formation
smaller than (or equal to) one. Notice that, unlike qt [23]
and rqt [27], the quantities EF and CF do not satisfy
the relation EF(ρ) = E(CF(ρ)). Nevertheless we have
that EF(ρ) ≥ E(CF(ρ)), and for a maximally entangled
state Φ it is EF(Φ) = E(CF(Φ)) = 1. Therefore, when
EF (ρ) = 1, EF coincides with the operational entangle-
ment of formation. Moreover, notice that the states of
eq. (8) have fermionic entanglement of formation equal to
zero, according to the fact that a single Slater determinant
in the fermionic theory is actually a product state.

Using the quantities EF and CF we can show that in the
fqt there exist maximally entangled mixed states. The
state

Φ := 1
4 (I ⊗ I + σx ⊗ σx) , (15)

is the equal mixture of the fermionic pure states |Ψ0⟩ =
1√
2

(|00⟩ + |11⟩) and |Ψ1⟩ = 1√
2

(|01⟩ + |10⟩). It is easy

to check that EF(Φ) = CF(Φ) = 1, i.e. Φ has maximal
entanglement of formation. On the other hand, in qt, Φ is
separable since it can be regarded as the equal mixture of
the pure states |+⟩|+⟩, |−⟩|−⟩, with |±⟩ = 1√

2
(|0⟩± |1⟩),

which gives E(Φ) = C(Φ) = 0. Such a decomposition,
however, is not allowed in the fermionic case, because the
states |±⟩ violate the parity superselection rule. We could
have replaced σx in eq. (15) with any linear combination
of σx and σy according to the superselection constraints
Tr[σxρ] = Tr[σyρ] = 0 on the single lfm system. Since
in rqt we have only the linear constraint Tr[σyρ] = 0 for
one rebit, the same argument holds for the state in eq. (15)
with σx replaced by σy [27], namely the theory has mixed
maximally entangled states.

As already mentioned, the state Φ, despite having max-
imum entanglement of formation, cannot be transformed
by locc into a maximally entangled pure state. It actu-
ally happens that for two lfms the concept of maximally
entangled state under locc has to be superseded by the
concept of mes, as it has already been pointed out for
n-partite quantum entanglement with n ≥ 3 [22]. A mes
for an n-partite system is the minimal set of n-partite
states such that any other n-partite state can be obtained
by locc from a state in the set. Two examples of mes
for two lfms are the set of all even non-factorized pure
states with positive coefficients, and the set of all odd
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non-factorized pure states (notice that locc can change
the parity using the map σx · σx).

Consider now the 3F pure state |Φp⟩ := 1
2 (|000⟩+|110⟩+

|011⟩+|101⟩). If we trace the state |Φp⟩ over any one of the
three lfm we find that the reduced bipartite state of two
lfms is the mixed state Φ of eq. (15) which has maximal
entanglement of formation. Therefore, in the fqt, as well
as in rqt [28], monogamy of entanglement is violated,
since the amount of entanglement can be totally shared
by each pair of systems, a feature forbidden in qt.

We conclude this letter by observing that, while
fermionic computation and standard quantum computa-
tion have been shown to be equivalent [7], our findings
about fermionic entanglement suggests that the same may
not hold for distributed fermionic computation.
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