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Abstract

Quantum estimation of the operators of a system is investigated by analyzing its Liouville space of operators. In this way it is
possible to easily derive some general characterizations for the sets of observables (i.e., the possiblequorums) that are measured
for the quantum estimation. In particular we analyze the reconstruction of operators of spin systems. 2000 Elsevier Science
B.V. All rights reserved.

1. Introduction

Two fundamental restrictions limit the possibility of
devising a state reconstruction method. On one hand,
the quantum complementarity principle does not allow
to recover the quantum state from measurements on a
single system, unless we have some prior information
on it. On the other hand, the no cloning theorem
ensures that it is not possible to make exact copies of
a quantum system, without having prior knowledge of
its state. Hence, the only possibility for devising a state
reconstruction procedure is to provide a measuring
strategy that employs numerous identical (although
unknown) copies of the system, so that different
measurements may be performed on each of the
copies.

The problem of state estimation resorts essentially
to estimating arbitrary operators of a quantum system
by using the result of measurements of a set of ob-
servables. If this set of observables is sufficient to give
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full knowledge of the system state, then it is defined
as a quorum [1]. Notice that, in general, a system may
allow various, different quorums. Quantum tomogra-
phy was born [2] as a state reconstruction technique in
the optical domain, and has recently been extended [3]
to a vast class of systems. By extension, we now de-
note as “Quantum Tomography” all unbiased quan-
tum state reconstruction procedures, i.e., those proce-
dures which are affected only by statistical errors that
can be made arbitrarily small by increasing the num-
ber of measurements. Tomography makes use of the
results of the quorum measurements in order to re-
construct the expectation value of arbitrary operators
(even not observables) acting on the system Hilbert
spaceH.

The purpose of this Letter is to present in a for-
mally familiar manner (employing the Dirac notation
also on operator space) a constructive method to derive
tomographic formulas for quantum systems, at least
for finite dimensional Hilbert spaces. This is achieved
by giving conditions to build quorums and to check
whether a given set of operators is a quorum. In this
way, we obtain an extension of the recently proposed
group tomography [3], where similar conditions were
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derived for systems with an underlying group struc-
ture.

In Section 2 we give the definitions and the con-
ditions to identify a quorum of operators by analyz-
ing the space of operators of a system as a linear vec-
tor space. We derive a constructive algorithmic pro-
cedure to obtain tomographic formulas in the case of
finite quorums. In Section 3 we give some examples
of applications of the presented method in the domain
of spin systems, where various different quorums are
available [3,4].

2. General estimation

Consider the set of system operators, i.e., the
Liouville spaceL(H). If we initially restrict ourselves
to Hilbert–Schmidt operators inL(H), then this set
is itself a Hilbert space of operators, with the scalar
product

(1)
〈
Â
∣∣B̂ 〉 def= Tr

[
Â†B̂

]
.

It is then possible to employ all the properties of linear
vector algebra, and to use the Dirac notation, by using
the following definitions for bra and ket vectors:

Ô→ ∣∣Ô〉,
(2)Tr

[
•Ô†]→ 〈

Ô
∣∣ • .

In this vision, quantum tomography consists of ex-
pressing the operator̂A we want to evaluate as an ex-
pansion on the observables of the quorum as

(3)
∣∣Â〉= ∫

X

dx
∣∣Ĉ(x)〉〈B̂(x)∣∣Â〉,

where|Â〉 is a generic operator inL(H), |Ĉ(x)〉 (with
x ∈ X ) is the set of quorum observables (C(x) is a
generally complex function of a selfadjoint operator,
hence it is observable in this sense), and the set〈B̂(x)|
is the dual of the quorum. In ordinary notation, Eq. (2)
is the tomography identity, i.e.,

(4)Â=
∫
X

dx Tr
[
B̂(x)†Â

]
Ĉ(x).

Notice that the extension of the theory to non-norma-
lizable vectors in the operator Hilbert space is imme-
diate: one only has to require the existence of the trace

of Eq. (4). If, for example,Â is a trace-class operator,
then we do not need to requirêB(x) to be of Hilbert–
Schmidt class, since it is sufficient to requirêB(x)
bounded. Through Eq. (3), the tomographic recon-
struction procedure is immediately obtained. In fact,
by measuring the observables|Ĉ(x)〉 of the quorum,
we can1 express the mean value of any operator〈Â〉
in terms of the eigenvalues of|Ĉ(x)〉 as

(5)
〈
Â
〉= ∫
X

dx
∑
m

p(m,x)λ(x)m Tr
[
B̂†(x)Â

]
,

where p(m,x) is the probability of obtaining the
eigenvalueλ(x)m when measuring the quorum observ-
ableĈ(x). In particular, the reconstruction of the den-
sity matrix on a given orthonormal basis|n〉 ∈H cor-
responds to employing Eq. (5) with the generalized
projectorÂ= |n〉〈n′|.

Since we want Eq. (3) to be valid for a generic
operator|Â〉 in L(H) (or also in a subspace ofL(H)),
then we must require that the|Ĉ(x)〉 constitute a
spanning set for the operator (sub)space, with the
set of 〈B̂(x)| acting as its dual. A spanning set is a
generalized basis for a vector space: it is a complete
set of vectors but it is not, in general, composed of
linearly independent (or normalized) vectors. Define
dual〈B̂(x)| of the set|Ĉ(x)〉 as the set constructed so
to have〈
B̂(x)

∣∣Ĉ(x ′)〉= Tr
[
B̂†(x)Ĉ(x ′)

]= δ(x, x ′),
(6)∀x, x ′ ∈ X ,

whereδ(x, x ′) is a reproducing kernel for〈B̂(x)|, i.e.,

(7)
∫
X

dx δ(x, x ′)
〈
B̂(x)

∣∣= 〈B̂(x ′)∣∣.
Since|Ĉ(x)〉 is a complete set,δ(x, x ′) is a reproduc-
ing kernel also for this set, i.e.,

(8)
∫
X

dx δ(x, x ′)
∣∣Ĉ(x)〉= ∣∣Ĉ(x ′)〉.

From linear vector algebra we obtain the following
four equivalent definitions of spanning set:

1 Eq. (5) is obtained by taking the expectation value of both
members of Eq. (3) and by calculating the expectation value trace
using the eigenvectors of the quorum observables|Ĉ(x)〉.
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A set of vectors|Ĉ(x)〉 (with dual 〈B̂(x)|) is a
spanning set⇔
(i)

∀∣∣Â〉 ∈L(H),∣∣Â〉= ∫
X

dx
∣∣Ĉ(x)〉〈B̂(x)∣∣Â〉,

i.e., the tomographic identity, namely Eq. (3).
(ii) |Ĉn〉 is complete, i.e., (no nonzero element is

orthogonal to|Ĉ(x)〉 ∀x):〈
Â
∣∣Ĉ(x)〉= 〈B̂(x)∣∣Â〉= 0,

(9)∀x ∈ X ⇒ ∣∣Â〉= 0.

(iii) The following operatorial identity resolution ap-
plies,

(10)
∫
X

dx
∣∣Ĉ(x)〉〈B̂(x)∣∣= ˆ̂1,

where ˆ̂1 is the identity super-operator, namely

the operator acting on operators such thatˆ̂1[Â] =
Â ∀Â ∈ L(H).

(iv) ∫
X

dx
〈
Â
∣∣Ĉ(x)〉〈B̂(x)∣∣Â〉= ∥∥Â∥∥2 def= Tr

[
Â†Â

]
,

∀∣∣Â 〉 ∈ L(H).
In the usual notation, these equivalent definitions write
as [5]:

(i)

Â=
∫
X

dx Tr
[
B̂ †(x)Â

]
Ĉ(x).

(ii)

Tr
[
B̂†(x)Â

]= Tr
[
Â†Ĉ(x)

]= 0,

∀x ∈ X ⇒ Â= 0.

(iii) ∫
X

dx 〈i|Ĉ(x)|j 〉〈k|B̂ †(x)|l〉 = δilδjk,

where {|n〉} is a basis for the system Hilbert
spaceH.

(iv) ∫
X

dx Tr
[
Â†Ĉ(x)

]
Tr
[
B̂†(x)Â

]= Tr
[
Â†Â

]
,

∀Â ∈L(H).
In order to obtain the dual set〈B̂(x)| starting from a

given set|Ĉ(x)〉, one in general has to solve the oper-
atorial equation (6) that defines the quorum. For finite
quorums, this resorts to a matrix inversion. An alter-
native procedure is now proposed. It derives from the
Gram–Schmidt orthogonalization method [6], which
allows to derive a basis starting from a complete set
of vectors. Namely, one obtains a basis|yk〉, given the
complete set|Ck〉 (assume for simplicity that all|Ck〉
are non-zero and that in{|Ck〉} there are no couples of
proportional vectors), recursively defined as

(11)

{ |y0〉 .= 1
N0
|C0〉

|yk〉 .= 1
Nk

(
|Ck〉 −∑k−1

j=0 |yj 〉〈yj |Ck〉
)
,

whereN0
.= ‖|C0〉‖ and

Nk
.=
∥∥∥∥∥|Ck〉 −

k−1∑
j=0

|yj 〉〈yj |Ck〉
∥∥∥∥∥.

Notice that in the recursion (11) one must take care
of eliminating all the vectors|Ck〉 which are a linear
combination of the|yj 〉 with j < k.

Write the identity resolution for the basis obtained
with procedure (11), i.e.,

1̂=
∑
k=0

|yk〉〈yk|

≡ |C0〉
N0
〈y0|

(12)+
∑
k=1

1

Nk

(
|Ck〉 −

k−1∑
j=0

|yj 〉〈yj |Ck〉
)
〈yk|.

By using repeatedly Eq. (11) (expressing|yj 〉 of
Eq. (12) in terms of the|Cn〉s) and by reorganizing
the terms in the sums, we can find the dual set〈Bn| as

〈B0| = 〈y0|
N0
− 〈y0|C1〉〈y1|

N0N1

+
(
−〈y0|C2〉
N0N2

+ 〈y0|C1〉〈y1|C2〉
N0N1N2

)
〈y2| + · · · ,
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〈B1| = 〈y1|
N1
− 〈y1|C2〉〈y2|

N1N2

+
(
−〈y1|C3〉
N1N3

+ 〈y1|C2〉〈y2|C3〉
N1N2N3

)
〈y3| + · · · ,

(13)
...

Eq. (12) guarantees that it is possible to write

(14)1̂=
∑
n

|Cn〉〈Bn|,

which is just definition (iii) (i.e., Eq. (10)) of spanning
set.

Summarizing, we described a method for deriving
tomographic formulas for arbitrary systems. One must
start from a set of operatorŝCn he or she would like to
use as a quorum, and verify that such a set is complete,
i.e., that no nonzero element ofL(H) is orthogonal to
all Ĉn:

(15)
〈
Â
∣∣Ĉn〉= Tr

[
Â†Ĉn

]= 0, ∀n⇒ ∣∣Â〉= 0.

If the set is finite, then one can employ the orthogo-
nalization procedure outlined previously to derive the
dual set. If the set is infinite discrete or continuous,
then one can only resort to finding appropriate so-
lutions for Eq. (6). Once the dual is known, the to-
mographic identity (3) can be written explicitly. The
reconstruction procedure, in terms of the probabili-
ties of measurements of quorum observables, follows
straightforwardly and yields Eq. (5), which allows to
obtain arbitrary operator expectation values in terms
of quorum outcome probabilities. Of course, one may
think of similar procedures based on different orthog-
onalization algorithms.

Since no hypotheses were made on the structure of
the system Hilbert space, the theory presented in this
section is valid for any quantum system. In the follow-
ing section we will give some example applications.

3. Example of application: spin tomography

Here we show an application of the theory presented
in the previous section by rederiving the spin tomog-
raphy [3,4], where various different quorums may be
employed.

The simplest possible example is a spins = 1
2

system. In this case we expect that the Pauli matrix
and the identity constitute a quorum (since any 2× 2
matrix can be written on such a basis). Take the

quorumQ def= {σ̂x, σ̂y , σ̂z, 1̂}: it is immediate to verify
that it is complete. Since the quorum operators are
orthogonal, i.e.,σ̂α • σ̂α′ = 1̂δαα′ (α,α′ = x, y, z),
using the Gram–Schmidt procedure it is immediate
to obtain the dual set asC = {12σ̂x , 1

2 σ̂y ,
1
2σ̂z,

1
21̂}.

Expansion (3) of a matrix̂A is, thus

(16)
∣∣Â〉= 1

2

[ ∑
α=x,y,z

|σ̂α〉
〈
σ̂ †
α

∣∣Â〉+ |1̂〉〈1̂∣∣Â〉],
which immediately yields the reconstruction proce-
dure

〈
Â
〉= 1/2∑

m=−1/2

∑
α=x,y,z

p(m, Enα)mTr
[
Âσ̂α

]
(17)+ 1

2
Tr
[
Â
]
,

wherep(m, Enα) is the probability to obtain the eigen-
valuem=±1

2 while measuringES • Enα . This equation
allows the reconstruction of the expectation value of
any spins = 1

2 operatorÂ from the measurement of
the spin in thex, y, z directions.

For an arbitrary spins, a possible quorum is given
by the spin component in all directions, i.e., the ob-
servable ES • En ( ES being the spin operator andEn a
vector on the unit sphere). In order to find the dual
〈B̂|, consider the exponential of the quorum, i.e.,
D̂(ψ, En)= exp(iψ ES • En), which satisfies definition (iii)
(i.e., Eq. (10)) of spanning set. In fact,D̂(ψ, En) consti-
tutes a unitary irreducible representation of the group
SU(2). The orthogonality relation between the matrix
elements of the group representationD(g) of dimen-
siond writes as [7]

(18)
∫
R

dgDjr(g)D
†
tk(g)=

V

d
δjkδtr,

wheredg is the group Haar invariant measure, and
V = ∫

R
dg. ForSU(2), with the 2s+1 dimension uni-

tary irreducible representation̂D(ψ, En), Haar’s invari-
ant measure is sin2 ψ2 sinϑ dϑ dϕ dψ , andV = 4π2.
Thus, the orthogonality relations in this case are given
by

2s + 1

4π2

∫
Ω

d En
2π∫
0

dψ sin2 ψ

2
〈j |eiψ En•ES |r〉

(19)×〈t|e−iψ En• ES |k〉 = δjkδtr,
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Fig. 1. Monte Carlo comparison between continuous and discrete tomography for a spins = 1/2 system. Continuous tomography usesD̂(ψ, En)
as quorum, while discrete tomography uses the quorumQdef= {σ̂x , σ̂y , σ̂z, 1̂}. Left: convergence of the mean value of〈sz〉 for a coherentα = 2
spin state for increasing number of experimental data (the theoretical value is given by the horizontal line). The circles◦ refer to continuous, the
stars? to discrete tomography. Right: plot of the statistical error bars of the graphs on the leftvsexperimental data. The error bars are obtained
by dividing the experimental data into 20 statistical blocks. Notice that the two tomographic procedures are essentially equivalent.

which is the the spanning set definition (iii) for the set
of operators|D̂〉 = D̂, with dual〈D̂†|• = Tr[D̂†•].

Then, it is possible to write the spin tomography
identity as

Â= 2s + 1

4π2

∫
Ω

d En
2π∫
0

dψ sin2 ψ

2

(20)× Tr
[
ÂD̂†(ψ, En)]D̂(ψ, En),

from which the following reconstruction procedure is
derived:

〈
Â
〉= 2s + 1

4π2

s∑
m=−s

∫
Ω

d Enp(m, En)
2π∫
0

dψ sin2 ψ

2

(21)× Tr
[
Â e−iψ(ES•En−m)

]
,

wherep(m, En) is the probability of obtainingm as the
measurement result ofES • En. This equation allows the
reconstruction of arbitrary spins expectation values
〈Â〉, from spin measurements in all directionsEn.

Numerical simulations show that the two preced-
ing quorums are (for spins = 1

2) equivalent, namely
the same number of experimental measurement data
yield the same results and the same statistical er-
ror bars, apart from statistical fluctuations. In Fig. 1

a Monte Carlo comparison of the two spin reconstruc-
tion strategies based on the two different quorums is
given. Both reconstructions are applied to a coherent

spin state, defined as|α〉 def= exp(αS+ − α∗S−)|−s〉,
whereS+, S− are the spin lowering and raising oper-
ators and|−s〉 is the eigenvector ofSz relative to the
minimum eigenvalue.

Weigert has shown [4] that another spins quo-

rum can be obtained by takingNs
def= (2s + 1)2 ar-

bitrary2 directions Enk and measuring the observ-

ablesQ̂k def= |Enk〉〈Enk |, which are the projectors for the
eigenspace relative to the maximum eigenvalues of
the observablesES • Enk . We define a dual〈Q̂k| for the
|Q̂k〉 by requiring

(22)
〈
Q̂k
∣∣Q̂k′ 〉= δkk′ ,

i.e., Eq. (11) of [4], which is just the dual set defin-
ition (6). Condition (22) together with the complete-
ness of the chosen quorum, guarantee that|Q̂k〉 (with
dual 〈Q̂k|) is a spanning set forL(H), thus allowing

2 Actually the choice of the directions is not completely arbi-
trary, but “almost” [4] any choice yields a complete set of operators
in L(H).
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the tomographic identity

(23)
∣∣Â〉= Ns∑

k=1

∣∣Q̂k 〉〈Q̂k∣∣Â〉,
i.e., (using the notation of [4])

(24)Â=
Ns∑
k=1

Tr
[
ÂQ̂k

]
Q̂k,

whereQ̂k is the dual operator of̂Qk . The explicit form
of the dual setQ̂k can be derived by a matrix inversion
starting from Eq. (22) or by the Gram–Schmidt based
procedure method given above. The reconstruction
procedure is, in this case,

(25)
〈
Â
〉= s Ns∑

k=1

p(s, Enk)Tr
[
ÂQ̂k

]
,

where p(s, Enk) is the probability of obtaining the
maximum eigenvalues, when measuringES • Enk . This
allows the reconstruction of arbitrary spin operators
Â from measurements of the spin alongNs fixed
directions.

4. Conclusions

Recent group tomography [3] gives a general frame-
work that allows to derive all the state reconstruc-
tion procedures that employ quorums which exhibit
a group symmetry. Here we extended these results to
generic state reconstruction procedures. In fact, we
have seen how it is possible to give a characterization
of tomographic formulas in terms of linear vector alge-
bra on the vectors of the Liouville space of the system.

A constructive method to derive new tomographic
formulas has been proposed starting from the Gram–
Schmidt orthogonalization procedure. At least in prin-
ciple, it allows to calculate the quorum dual for the

quantum systems that allow a discrete quorum. We
have given some examples of the method in the spin
domain, by re-obtaining all the known spin tomogra-
phies using linear vector algebra arguments. For the
sake of illustrating the method, we limited our analy-
sis to the description of spin systems, but all known
tomographies can be analyzed in this framework [5].
Moreover, one may expect to employ the presented
procedures to uncover new tomographies for quantum
systems for which state reconstruction procedures are
not presently known.
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