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Abstract
We explore the possibility of achieving the optimal joint measurement of
noncommuting observables on a single quantum system by performing
conventional measurements of commuting self-adjoint operators on the
clones of the original quantum system. We consider the case of both finite-
and infinite-dimensional Hilbert spaces. In the former we study the joint
measurement of three orthogonal components of a spin 1

2 ; in the latter we
consider the case of the joint measurement of any pair of noncommuting
quadratures of one mode of the electromagnetic field. We show that
universal covariant cloning is not ideal for joint measurements, and a
suitable nonuniversal covariant cloning is needed.
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1. Introduction

The first scheme for the joint measurement of noncommuting
observables performed on a single quantum system was
introduced by Arthurs and Kelly [1]. The problem of
evaluating the minimum added noise in the joint measurement
of position and momentum, and more generally of a pair of
observables whose commutator is not a c-number, was then
solved by Yuen [2]. A similar approach to the problem has been
followed in [3]. In the case of two quadratures of one mode of
the electromagnetic field the problem can be phrased in terms
of a coherent POVM whose Naimark extension introduces an
additional mode of the field. This kind of measurement can be
realized by means of a heterodyne detector [4].

The case of the angular momentum of a quantum system
is more difficult, and no measurement scheme has appeared in
the literature so far. Spin coherent states [5] can be introduced
and interpreted as continuous (overcomplete) POVM, but the
corresponding Naimark extension is unknown. It was shown
that the spin coherent POVM minimizes suitably defined
quantities that represent the precision and the disturbance of
the measurement [6], but explicit realizations of such a POVM
are not known (see [7] and [8]3). The joint measurement of
the three components Jx , Jy and Jz of the angular momentum
could also be studied with a discrete spectrum, rather than
continuous. This problem does not yet have a solution. Joint
measurements are a crucial ingredient in general quantum
teleportation schemes [9], and are essential in connecting the
quantum with the classical meaning of the angular momentum

3 For spin 1
2 an Arthurs–Kelly scheme has been found.

itself. Therefore, it is of great interest to find schemes that
realize them.

The idea of this paper is to use quantum cloning to achieve
joint measurements. It is well known that perfect cloning
of unknown quantum systems is forbidden by the laws of
quantum mechanics [10]. The first universal cloning machine
for spin- 1

2 systems was proposed in [11], and later proved to be
optimal in [12]. More general universal transformations were
then proposed in [13] and proved to be optimal in [14, 15].
However, if we want to use quantum cloning to realize joint
measurements, we may need to optimize it for a reduced
covariance group, depending on the kind of desired joint
measurement. The cloning transformations mentioned above
were optimized by imposing total covariance, i.e. for all
possible unitary transformations. In general a restriction of
the covariance group leads to a higher fidelity of the cloning
transformation, as for example in the case of phase covariant
cloning [16], where, however, only the bounds for the fidelity
of the optimal cloning are given, and not the form of the optimal
map.

In the case of finite-dimensional systems we will study the
joint measurement of the three components of spin- 1

2 states
by operating the 1 → 3 universal covariant cloning on the
original state and then performing independent measurements
of σx , σy and σz on the three output copies. We will show that
the resulting POVM is not optimal with respect to the added
noise.

For infinite-dimensional systems it is not clear how to
find the universal transformations for cloning. The extension
to infinite dimension of the maps given in [15] needs a
regularization procedure, an example of which is given here
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in section 4. The infinite-dimensional 1 → 2 cloning
machine proposed in [17] is universal for coherent states, with
resulting fidelity equal to 2/3. In this paper we show that
the cloning transformation proposed in [17] is optimal for the
joint measurement of orthogonal quadratures, and the joint
measurement can be generalized to any angle between two
noncommuting quadratures.

The paper is organized as follows. In section 2 we consider
the case of spin- 1

2 systems. We first recall the universal 1 → 3
cloning transformation and then exploit it to achieve joint spin
measurements. In section 3 we study the case of infinite-
dimensional systems, first reviewing the 1 → 2 transformation
of [17] and then applying it to the joint measurement of two
quadratures of one mode of the electromagnetic field. In
section 4 we present a regularization of the map in [15] in
order to extend it to infinite-dimensional Hilbert spaces, and
show that the universal cloning does not achieve the optimal
joint measurement. We summarize the results in section 5.

2. The finite-dimensional case: joint spin
measurements

In this section we analyse the case of spin- 1
2 systems, by

first reviewing the universal covariant cloning which produces
three output copies from a single input, and then exploiting
this procedure to achieve the joint measurement of the spin
components. We will show that the joint measurement
obtained in this way is only an approximation of the spin
measurement POVM of [5].

2.1. Universal covariant 1 → 3 cloning

We consider the case of universal cloning, namely
transformations whose efficiency does not depend on the form
of the input state. General N → M universal cloning
transformations, which act on N copies of a pure state |ψ〉
and produce M output copies as close as possible to the input
state, were proposed in [13] and later proved to be optimal
in [14, 15]. We consider here the form given in [15]. The
output state ρM of theM copies for spin- 1

2 systems is given by

ρM = N + 1

M + 1
SM(|ψ〉〈ψ |⊗N ⊗ 1I⊗(M−N))SM, (1)

where SM is the the projection operator onto the symmetric
subspace of the M output copies. The fidelity F(N,M) =
〈ψ |TrM−1[ρM ]|ψ〉 of each output copy with respect to the
initial state |ψ〉 is given by

F(N,M) = M(N + 1) +N

M(N + 2)
. (2)

Since the cloning transformation is universal it can be also
viewed as a shrinking transformation of the Bloch vector of
each copy, described by the shrinking factor η(N,M) [12,14]:
the density operator describing the state of theM output copies
is given by ρout = 1

2 [1I + η(N,M)�sin · �σ ], where �sin denotes
the Bloch vector of the initial state |ψ〉 and {σα, α = x, y, z}
are the Pauli operators. For the optimal transformations (1) the
shrinking factor is η(N,M) = N

M
M+2
N+2 . In the particular case

of the 1 → 3 cloning the above map takes the form

ρ3 = 1
2S3(|ψ〉〈ψ | ⊗ 1I⊗2)S3, (3)

where S3 is the projector on the space spanned by the vectors
{| si〉〈si |, i = 0–3}, with | s0〉 = | 000〉, | s1〉 = 1/

√
3(| 001〉 +

| 010〉 + | 100〉), | s2〉 = 1/
√

3(| 011〉 + | 101〉 + | 110〉) and
| s3〉 = | 111〉, where {| 0〉, | 1〉} is a basis for each spin- 1

2
system. The value of the shrinking factor in this case is
η(1, 3) = 5/9.

2.2. The joint spin measurement via cloning

We will now study a method to measure jointly the
three components of a spin- 1

2 system by first generating
three approximate copies of the input state through the
cloning transformation (3), and then performing independent
measurements on the three copies, namely measuring a
different spin component on each copy. The POVM
corresponding to the usual projection on the α-component
of the Bloch vector for one copy is given by the operator
[1I+mασα]/2, where α = x, y, z andmα = ±1 corresponds to
the outcome of the measurement. The POVM�( �m)describing
the measurement of the three components, each performed on
a different copy, is then given by

�( �m) = 1
8 (1I +mxσx)⊗ (1I +myσy)⊗ (1I +mzσz), (4)

where the triplet {mx,my,mz} represents the outcomes of the
measurement. We will now consider the sequence of the 1 → 3
cloning transformation followed by the measurement of a spin
component on each of the three copies as a joint measurement
on the initial input state of the original copy. In order to derive
the corresponding POVM we first compute the probability
distributionp( �m) as a function of the vector �m = {mx,my,mz}

p( �m) = Tr[�( �m) 1
2 S3(|ψ〉〈ψ | ⊗ 1I⊗2)S3]. (5)

This measurement, viewed as a joint measurement on the
original copy |ψ〉〈ψ |, can then be described in terms of the
POVM �( �m)

�( �m) = 1
2 Tr2,3[S3�( �m)S3], (6)

where Tri denotes the partial trace over the ith clone. A lengthy
and straightforward matrix algebra gives

�( �m) = 1
8 [1I + 5

9 �m · �σ ]. (7)

Notice that the 5/9 factor in front of the Pauli operators
corresponds to the shrinking factor of the optimal 1 → 3
cloning transformation.

We will now compute the accuracy of this joint
measurement. The POVM (7) leads to the following rescaling
between the measured average value 〈σα〉m and the theoretical
one for all three spin components:

〈σα〉m =
∑

�m
mα Tr[|ψ〉〈ψ |�( �m)] = 5

9 〈ψ |σα|ψ〉. (8)

Therefore, the unbiased estimate 〈σα〉e for the spin components
corresponds to rescaling the measured outcome variables to
mα = ±9/5, such that 〈σα〉e = 9

5 〈σα〉m, and the second
moment is also rescaled as follows: 〈�σ 2

α 〉e = 81
25 〈�σ 2

α 〉m.
In order to study the uncertainty of this measurement we
compute the sum of the variances corresponding to the three
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spin components Jα = σα/2. Since 〈σ 2
α 〉m = 1 for all the

components, the uncertainty in the estimate is given by

〈�J 2〉e =
∑

α=x,y,z
〈J 2
α 〉e − 〈Jα〉2

e = 1
4 (3

81
25 − 1) = 109

50 . (9)

Let us evaluate the corresponding accuracy for the
coherent measurement [5]. The coherent POVM is given by the
projection onto spin coherent states | n〉〈n | [18], where n =
(sin θ cosφ, sin θ sin φ, cos θ) is a unit vector and J · n| n〉 =
−j | n〉. Let us calculate, as an example, the uncertainty related
to the component Jz. Since the measurement is unbiased, the
measured mean values of the spin components 〈Jα〉m coincide
with the theoretical mean values, and we do not need to
introduce rescaling factors as we did in the previous case. The
estimated values therefore coincide with the measured ones.
For the component Jz one has [18]

〈Jz〉m =
∫

dµ (n)(j + 1) cos θ | n〉〈n |, (10)

where dµ (n) = dn (2j + 1)/4π . The measured mean value
of J 2

z is given by

〈J 2
z 〉m =

∫
dµ (n)(j + 1)2 cos2 θ | n〉〈n |, (11)

that can be written as [18]

〈J 2
z 〉m = j + 1

j + 3/2

[
〈ψ |J 2

z |ψ〉 +
1

2
(j + 1)

]
. (12)

The measured mean values related to the x and y components
can be calculated analogously and one has the same relation
as equation (12) for all components α = x, y, z. The total
uncertainty in the spin measurement then takes the form

〈�J 2〉e = j (j + 1)2

j + 3/2
+ 3

(j + 1)2

2j + 3
−

∑
α=x,y,z

〈Jα〉2
e � 2j + 1,

(13)
where for j = 1/2 and pure states the bound is achieved, and
is equal to 2. This value has to be compared with equation (9),
obtained by three measurements on the three cloned copies.
As we can see, the joint measurement via universal covariant
cloning does not achieve the minimum added noise as does the
optimal POVM; however, it provides a good approximation.
Notice that the minimum added noise would be achieved by a
discrete POVM of the form �( �m) = 1

8 [1I + �m · �σ ].

3. The infinite-dimensional case: joint quadrature
measurements

In this section we study the cloning for infinite-dimensional
systems proposed in [17]. We review such 1 → 2
transformation and then apply it to the joint measurement of
two quadratures of one mode of the electromagnetic field.
We will show that the cloning transformation is optimal for
joint measurements of orthogonal quadratures, and the joint
measurement can be generalized to any angle between two
noncommuting quadratures by suitably changing the state of
the ancilla.

3.1. 1 → 2 cloning for continuous variables

For the following, it is convenient to introduce the formalism
of heterodyne eigenvectors. Consider the heterodyne-current
operator [20] Z = a + b†, which satisfies the commutation
relation [Z,Z†] = 0 and the eigenvalue equation Z|z〉〉ab =
z|z〉〉ab, with z ∈ C. The eigenstates |z〉〉ab are given by [21,22]

|z〉〉ab ≡ Da(z)|0〉〉ab = Db(z
∗)|0〉〉ab, (14)

where Dd(z) = ezd
†−z∗d denotes the displacement operator

for mode d and |0〉〉ab ≡ 1√
π

∑∞
n=0(−)n| n〉a| n〉b. The

eigenstates |z〉〉ab are a complete orthogonal set with Dirac
normalization ab〈〈z|z′〉〉ab = δ(2)(z − z′), δ(2)(z) denoting
the delta function over the complex plane. For z = 0 the
state |0〉〉ab can be approximated by a physical (normalizable)
state, corresponding to the output of a nondegenerate optical
parametric amplifier (NOPA)—a so-called twin beam—in the
limit of infinite gain at the NOPA [21].

It is also useful to evaluate the expression cb〈〈z|z′〉〉ab which
is given by

cb〈〈z|z′〉〉ab = 1

π
Da(z

′)TacD†
c (z), (15)

where Tac = ∑
n |n〉a c〈n| denotes the transfer operator [9],

i.e. Tac|ψ〉c = |ψ〉a for any state |ψ〉. In the following we
transpose the main results of the continuous variable cloning
of [17], according to the formalism just introduced. The input
state at the cloning machine can be written

|φ〉 = |ϕ〉c ⊗
∫

C

d2z f (z, z∗)|z〉〉ab (16)

where |ϕ〉c is the initial state to be cloned, belonging to the
Hilbert space Hc, whereas Ha is the Hilbert space pertaining
to the cloned state, and Hb is an ancillary Hilbert space. We
do not specify for the moment the explicit form of the function
f (z, z∗). The cloning transformation is realized by the unitary
operator

U = exp [c(a† +b)−c†(a+b†)] = exp [2i(YcReZ−XcImZ)]
(17)

with Xc, Yc denoting the conjugated quadratures for mode c,
namely Xc = (c + c†)/2 and Yc = (c − c†)/2i.

The unitary evolution in equation (17) can be approached
experimentally by means of a network of three NOPAs
under suitable gain conditions [23]. Notice the simple
relation U |z〉〉ab = D†

c (z) |z〉〉ab. The state after the cloning
transformation is given by

|φout〉 = U |φ〉 =
∫

C

d2z f (z, z∗)D†
c (z)|ϕ〉c ⊗ |z〉〉ab. (18)

Let us evaluate the one-mode restricted density matrix ,c and
,a corresponding to the state |φout〉, for the Hilbert spaces Hc

and Ha supporting the two clones. For ,c one has

,c = Trab[|φout〉〈φout |]
=
∫

C

d2z |f (z, z∗)|2D†
c (z)|ϕ〉c c〈ϕ |Dc(z), (19)
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where we have evaluated the trace by using the completeness
and the orthogonality relation of the eigenstates |z〉〉ab. For ,a ,
using equation (15), one has

,a = Trcb[|φout〉〈φout |]
=
∫

C

d2w |
∼
f (w,w∗)|2D†

a(w)|ϕ〉a a〈ϕ |Da(w), (20)

where
∼
f (w,w∗) denotes the Fourier transform over the

complex plane

∼
f (w,w∗) =

∫
C

d2z

π
ewz

∗−w∗z f (z, z∗). (21)

Hence, for f (z, z∗) =
∼
f (z, z∗) one has ,c = ,a , namely

the two clones are identical. In the following we will
show that the choice of the function f (z, z∗) determines
a criterion of optimality in terms of joint measurement of
noncommuting quadratures of the original system, through
independent measurements of commuting quadratures over the
two clones.

3.2. The joint measurement of quadratures via cloning

Quantum cloning allows one to engineer new joint
measurements of a quantum system, by suitably measuring the
cloned copies. In the case of 1 → 2 copies just introduced, we
will show that measuring two quadratures on the two clones is
equivalent to the joint measurement of conjugated quadratures
on the original, similarly to a heterodyne measurement.
Consider the simplest case

f (z, z∗) =
√

2

π
exp (−|z|2) (22)

in equations (16), (19) and (20). One obtains ,c = ,a ,
namely the two clones are identical, and their state is given
by the original state |ϕ〉 degraded by Gaussian noise. The state
preparation |χ〉 pertaining to the Hilbert space Ha ⊗ Hb is
given explicitly by

|χ〉 =
√

2

π

∫
C

d2z e−|z|2 |z〉〉ab

=
√

2π
2

3

∞∑
n=0

1

n!

(
−2

3

)n
a†nan|0〉〉ab

= 2
√

2

3

∞∑
n=0

(
−1

3

)n
| n〉a ⊗ | n〉b

= eatanh 1
3 (ab−a†b†)| 0〉a ⊗ | 0〉b. (23)

One recognizes in equation (23) the twin-beam state at the
output of a NOPA with total number of photonsN = 〈χ |a†a+
b†b|χ〉 = 1/4, corresponding to a gain G = 9/8 [23]. More
generally, notice that√

2

π�2

∫
C

d2z e−�2|z|2 |z〉〉 = eatanhλ(ab−a†b†)| 0〉a⊗| 0〉b, (24)

with λ = (�2 − 1/2)/(�2 + 1/2).
Now let us evaluate the entangled state , at the output of

the cloning machine. After tracing over the ancillary mode b,
one has

, = Trb[|φout〉〈φout |] = 1
2Pc,a(|ϕ〉c c〈ϕ | ⊗ 1Ia)Pc,a, (25)

where Pc,a is the projector given by

Pc,a =
∫

C

d2z
2

π
e−|z|2 D†

c (z)⊗Da(z)

= V

(∫
C

d2z

π
e− 1

2 |z|2 D†
c (z)⊗ 1Ia

)
V †

= V

(∫
C

d2z

π
e−zc†

ez
∗c ⊗ 1Ia

)
V †

= V (| 0〉c c〈0 | ⊗ 1Ia)V
†, (26)

and V = exp [π4 (c
†a − ca†)] realizes the unitary

transformation

V

(
c

a

)
V † = 1√

2

(
1 −1
1 1

)(
c

a

)
. (27)

In the last line of equation (26) a derivation similar to
equation (23) has been followed. Measuring the quadratures
Xc andYa over the two clones is then equivalent to performing a
measurement on the original state |ϕ〉c, with the measurement
described by the following POVM:

F(x, y) = 1
2 Tra[Pc,a| x〉c c〈x | ⊗ | y〉a a〈y |Pc,a], (28)

where | x〉c and | y〉a denote the eigenstates of Xc and Ya ,
respectively. From the relations [22]

V †| x〉c c〈x |⊗| y〉a a〈y |V = 2|
√

2(x−iy)〉〉ca ca〈〈
√

2(x−iy)|,
(29)

c〈0|z〉〉ca = 1√
π

| z∗〉a, (30)

V |α〉c ⊗ |β〉a = | (α + β)/
√

2〉c ⊗ | (β − α)/
√

2〉a (31)

(in equations (30) and (31) the single-mode states denote
coherent states) one obtains

F(x, y) = 1

π
| x + iy〉c c〈x + iy |, (32)

namely the coherent-state POVM, which is the well known
optimal POVM for the joint measurement of the conjugated
quadratures Xc and Yc. In fact, from equations (18)–(20), one
has the following relations between the quantum expectation
values 〈φout| · · · |φout〉 over the output state |φout〉 with respect
to the values 〈ϕ| · · · |ϕ〉 over the original input state:

〈φout|g(c, c†)|φout〉 =
∫

C

d2z |f (z, z∗)|2 〈ϕ|g(c−z, c†−z∗)|ϕ〉,
(33)

〈φout|g(a, a†)|φout〉
=
∫

C

d2z |
∼
f (z, z∗)|2〈ϕ|g(c − z, c† − z∗)|ϕ〉, (34)

which holds for any function g. In particular, forf (z, z∗) given
by equation (22), one has

〈φout|�X2
c |φout〉 = 〈ϕ|�X2

c |ϕ〉 + 1
4 , (35)

〈φout|�Y 2
a |φout〉 = 〈ϕ|�Y 2

c |ϕ〉 + 1
4 , (36)

namely one achieves the simultaneous measurement of
conjugated quadratures over the input state with minimum
added noise [2], thus proving the optimality of the joint
measurement.
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The condition in order to obtain identical clones

f (z, z∗) =
∼
f (z, z∗) can be satisfied also by a bivariate

Gaussian of the form

f (z, z∗) =
√

2

π
exp

(
−Re2z

σ 2
− σ 2 Im2z

)
. (37)

In such a case the cloning transformation becomes optimal for
the joint measurement of noncommuting quadratures at angles
which depend on the parameter σ in equation (37). In fact,
equation (25) is replaced by

, = 1
2Pc,a(σ )(|ϕ〉c c〈ϕ | ⊗ 1Ia)Pc,a(σ ), (38)

where the projector Pc,a(σ ) is evaluated as follows:

Pc,a(σ ) =
∫

C

d2z
2

π
exp

(
−Re2z

σ 2
− σ 2 Im2z

)
×D†

c (z)⊗Da(z)

= V Sc(ln σ)

(∫
C

d2z

π
e− 1

2 |z|2 D†
c (z)⊗ 1Ia

)
S†
c (ln σ) V

†

= V Sc(ln σ) (| 0〉c c〈0 | ⊗ 1Ia) S
†
c (ln σ) V

†

= Sc(ln σ)⊗ Sa(ln σ) Pc,a S
†
c (ln σ)⊗ S†

a (ln σ), (39)

and Sd(r) = exp [r(d†2 − d2)/2] denotes the squeezing
operator for mode d

S
†
d (r) dSd(r) = (cosh r) d + (sinh r) d†. (40)

As in equation (28), one can evaluate the POVM that is obtained
upon measuring the quadratures Xc and Ya over the clones.
From the relations for quadrature projectors

S†
c (ln σ) | x〉c c〈x | Sc(ln σ) = 1

σ
| x/σ 〉c c〈x/σ |,

S†
a (ln σ) | y〉a a〈y | Sa(ln σ) = σ | xσ 〉c c〈xσ |,

(41)

and from equations (29)–(31), one has

Fσ (x, y) = 1
2 Tra[Pc,a(σ )| x〉c c〈x | ⊗ | y〉a a〈y |Pc,a(σ )]

= 1

π
Dc(x + iy) Sc(ln σ)| 0〉c c〈0 |S†

c (ln σ)D
†
c (x + iy). (42)

Equation (42) shows that the POVM is formally a squeezed
state. Such a kind of POVM is optimal [2] for the joint
measurement of the two noncommuting quadrature operators
Xφ,X−φ , with φ = arctg(σ 2). In fact, one has the relations∫

dx
∫

dy (x cosφ ± y sin φ) Fσ (x, y) = X±φ, (43)

∫
dx
∫

dy (x cosφ±y sin φ)2 Fσ (x, y) = X2
±φ+ 1

4 | sin(2φ) |,
(44)

namely the outcomes x cosφ ± y sin φ trace the expectation
values of the observables X±φ respectively, with minimum
added noise [2].

4. Regularization of the universal covariant cloning

In this section we give a procedure to extend the completely
positive (CP) map for the universal cloning of Werner’s
paper [15] in the case of infinite-dimensional Hilbert space.

The procedure is based on a suitable regularization in order to
achieve a trace-preserving map. In particular, we will show
that the universal 1 → 2 cloning does not provide a tool to
obtain the joint measurement of noncommuting observables.
Hence, we prove that Werner-type cloning and the cloning
of [17] used in the previous section are different, and they are
optimal for different purposes.

We rewrite here the CP map for N → M cloning given
in [15]

T (,) = d[N ]

d[M]
SM (, ⊗ 1I⊗(M−N)) SM, (45)

where d[N ] = (
d+N−1
N

)
, d being the dimension of a single-copy

Hilbert space; SM is the projector on the symmetric subspace,
as mentioned in section 2, and , = |ψ〉〈ψ |⊗N is the initial
state of N identical copies in the state |ψ〉〈ψ |. The projector
SM can be written in terms of two-site permutation operators
�(ij) (transposition), by using recursively the relation [24]

SM = 1

M

(
1I +

M−1∑
i=1

�(iM)

)
SM−1. (46)

The permutation operator�(ij) can be expressed on the Hilbert
space Hi ⊗Hj as [25]�(ij) = ∑

n An ⊗A†
n, where {An} are a

generic set of operators satisfying the completeness relation
B = ∑

n Tr[A†
nB]An. The map in equation (45) can be

formally extended to infinite-dimensional Hilbert space upon
using the transposition operator

�̃(ij) =
∫

d2α

π
Di(α)⊗D

†
j (α); (47)

however, the trace-preserving condition on physical CP maps
imposes replacement of the identity operator in equation (45)
with a normalizable state. Here we suggest a regularization of
1 → 2 cloning in Hc ⊗ Ha by using equation (47) along with
the normalizable (thermal) state λa†a , and then we write

T̃ (,) = K S̃2 (, ⊗ λa
†a) S̃2, (48)

where K is a constant and

S̃2 = 1
2 (1Ic ⊗ 1Ia + �̃(ca)). (49)

From the identities

Tra[�̃(ca)] = 1Ic, Trc[�̃(ca)] = 1Ia,

�̃(ca) (A⊗ B) = (B ⊗ A) �̃(ca),
(50)

and the trace-preserving condition Tr T̃ (,) = 1, one obtains
the value of K

K = 2{Tr[(1I + ,) λc
†c]}−1. (51)

Notice that the dependence ofK on,makes the transformation
in equation (48) nonlinear; however, such a nonlinear character
is vanishing for λ → 1. The regularization indeed consists in
taking the limit λ → 1. In this case the one-site restricted
density matrix is given by

Tr1 [T̃ (,)] = Tr2 [T̃ (,)] = 1

2

(
, +

λc
†c

Tr[λa†a]

)
, λ → 1,

(52)
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which generalizes the depolarizing Pauli channel to the
infinite-dimensional case.

In the following we will show that, in contrast to the
cloning of section 3, our regularization of Werner-type cloning
does not allow us to achieve the optimal joint measurement of
conjugated quadratures. In fact, similarly to equation (28), one
can evaluate the POVM that corresponds to separate quadrature
measurements over the two clones as follows:

G(x, y) = Trc[K λ
a†a S̃2 | x〉c c〈x | ⊗ | y〉a a〈y | S̃2]. (53)

Asymptotically, in the limit λ → 1, one rewrites

G(x, y) � 1 − λ

2
(a〈y|λa†a|y〉a | x〉c c〈x |

+a〈x|λa†a|x〉a | y〉c c〈y | + a〈x|λa†a|y〉a |x〉cc〈y|
+a〈y|λa†a|x〉a |y〉cc〈x|). (54)

Notice that one has∫
dx
∫

dy x G(x, y) = 1

2
Xc +

1 − λ

2
(Tr[Xaλ

a†a]

+λc
†cXc +Xcλ

c†c) → 1

2
Xc, (55)∫

dx
∫

dy x2 G(x, y) = 1

2
X2
c +

1 − λ

2
(Tr[X2

aλ
a†a]

+λc
†cX2

c +X2
cλ

c†c) → 1

2
X2
c +

1

8

(
1 +

2λ

1 − λ

)
, (56)

and analogous expressions for integration on y. Hence, the
average values of the variables x and y provide the expectation
values of the quadratures Xc and Yc (apart from the scaling
factor 1/2, similar to the shrinking factor of section 2).
However, one can see that the statistical error for such variables
diverges for λ → 1 since the the second moment goes to
infinity.

The symmetrizer in equation (49) can be rewritten as
follows:

S̃2 = 1

2
V

[
1Ic ⊗ 1Ia +

∫
d2α

π
Dc(

√
2 α)⊗ 1Ia

]
V †

= 1
2 V [1Ic ⊗ 1Ia + (−)c†c ⊗ 1Ia]V

†

= V

[ ∞∑
n=0

|2n〉cc〈2n| ⊗ 1Ia

]
V †. (57)

This expression can be more easily compared with the projector
of equation (26) that achieves the cloning transformation for
the optimal joint measurement. The different action of the two
projectors is clear on the basis of coherent states. One has

S̃2|α〉c|β〉a ∝ |α〉c|β〉a + |β〉c|α〉a
×Pc,a|α〉c|β〉a ∝ |(α + β)/2〉c|(α + β)/2〉a, (58)

hence the operator Pc,a indeed projects on a space that is
smaller than the symmetric subspace. In fact the cloning map
T (,) = 1

2Pca(σ )(, ⊗ 1Ia)Pca(σ ) is not universally covariant,
but is covariant only under the group of unitary displacement
operators, namely

T (D(α) ,D†(α)) = D(α)⊗2 T (,)D†(α)⊗2. (59)

5. Conclusions

In this paper we have investigated the possibility of achieving
the joint measurement of noncommuting observables on a
single quantum system by means of quantum cloning. We
have shown that the universal covariant cloning is not optimal
for joint measurements, and a suitable noncovariant cloning is
needed. Hence, different measures of quality should be used
for quantum cloning, depending on what final use is to be made
of the output copies. This is also indicated by recent studies
of different copying machines for information transfer [26]. If
we want to use quantum cloning to realize joint measurements,
we need to optimize it for a suitable reduced covariance group,
depending on the kind of desired joint measurement. For
spin 1

2 —a finite-dimensional example—the universal cloning
optimized by imposing total covariance [13,15] is not optimal
for the joint measurement. Also in the infinite-dimensional
case, the suitably regularized universal covariant cloning
does not allow us to achieve the ideal joint measurement of
noncommuting observables.

A restriction of the covariance group in general leads to
a higher fidelity of the cloning transformation, as in the case
of phase covariant cloning [16] or for the cloning map of [17],
which is not universal. The last case indeed provides a tool
to perform the ideal joint measurement, as we have shown in
section 3.

Regarding the experimental feasibility of the schemes
of measurement presented in this paper, we want to stress
that a way to implement the universal cloning was proposed
in [19], with clones as indistinguishable photons, and the
final measurement of the three spin components on the three
output copies would correspond to nonlinear observables of
radiation, whose measurement is not currently feasible. On
the contrary, the infinite-dimensional case is more realistic,
since the 1 → 2 cloning considered in section 3 can be
achieved experimentally by means of a sequence of parametric
amplifiers [23], and the quadrature measurements are obtained
by customary homodyne detectors.
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