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Introduction

In this paper, in a simple unifying matrix framework, I will present gen-
eral classification of all possible tomography methods, teleportation schemes,
and optimal quantum cloning maps. We will see how every tomographic
method or teleportation scheme corresponds to a choice of operator spanning
sets, and how this framework also leads to methods for engineering new Bell
measurements. On the other hand, the classification of all possible covariant
cloning maps (that are optimal for a given criterion) includes all known types
of cloning, and leads to methods for engineering new cloning machines, which
can be physically realized through unitary transformation with ancilla, and/or
via probabilistic quantum operations, Fidelity criteria for POVM’s can be ex-
ploited to achieve joint POVM’s via cloning. I will give concrete physical
realizations in the paper.

The matrix formalism

Monopartite quantum systems. In the following H and K will denote
-two Hilbert spaces with dim(K) = n > m =dim(H), for which we fix or-
thonormal standard basis (SB) {|f{i))} € H and {|e(j))} € K, respectively
[when there is no ambiguity we'll also use the loose notation {|z) } for either
SB]. By the sarmne matrix symbol M we’ll denote: a) the m x n matrix itseif
M=[M(@)]=[MOLM2) ..., Mn)| = {ﬂf;{u} M(_;} column vectors; b)
the operator M € L(K,H) from Kot M =57, i M.Ulf 1)) e(7)]
[when identifying the operator with its matrix—i. e dropping the “hat”"—we
must remember that the one-to-cne correspondence needs keeping the SB as
fixed. Hence, when considering basis ', f/ different from the SB, the operator
must be written in outer-product formas M' = " | 2:;"_“1 M| F @) e ()]
¢) the vector set (VS) |M (7)) = 3_7%, M;;|f(£)) € M, in term of which the
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operator writes equivalently as

M =33 MG el = ZZU (M (i

The VS M is also a new basis if n = mn = rank(M). Whenn > m =rank{M)
sirictly, we call the (complete) VS M a spanning set (SS). The relative scalar
product between two VS X, Y is given by (z(l)ly(s)) = (X'Y"),. Orthonor-
mal basis correspond to unitary matrices. For a generic SS € the inner prod-
uct is the positive matrix P? = CTC called Gram matrix. If C is a (non
orthogonal) basis, one can find a biorthogonal or dual basis B, such that
(b(Dels)) = (B'C)s = 65, by matrix inversion B = (C1)~!, shortly:
1b(1)) = |~ T[ ) {or’éhonorma'l sets are trivially selfdual). The completeness
relation writes CTB = 3, = |c(1))(b(1}| = I, where I3; denotes the identity
operator in L{H). From a biorthogonal couple (C, B) one can obtain another
bmrthog@nal couple (C', B') with the same Gram matrix as C' == UCV! and
= UBV!, U and V being unitary matrices. Finally, by the QR algo-
rithm (which is based on the Gram-Schmidt orthogonalization procedure), one
achieves the factorization C' == QR, where () is unitary and R is upper triangu-
lar (with positive diagonal), and in this way the orthogonal basis @ is extracted

- from the nonorthogonal SS C.

Bipartite guantum systems.  We now consider a bipartite quantum system
with Hilbert space H ® K. The SB will be denoted by |E(R))) = |E(ij))) =
|f(1)) @ |e(4)}), b = (i7) polyindex. We introduce a matrix notation[ ] which
exploits the isomorphism H @ K ~ L(K,H). Every vector in H ® X can
be written in the matrix form [4) = §77, 3% | Ayl f(3)) ® |e(s)), where
A = [a(j)] is am x n matrix. Also, we have [A}) =3 *_, |a(j)) ® le(5)) =

T fGE)) ® |aT (1)) (in the following, we’ll use T for transposition and *
for coraplex conjugation, bULh with respect to the fixed SB, e.g. by O* we
denote the operator O* = 377 "% OF|f(i))(e(7)|- Notice the following
simple rules: A ® B|CY) = |ACBTY, where A € L(H) and B € L(K),
(B|AY = Tr[B'A]. For H = K one can also write [A) = A® I|I)) =
I AT|I), and {(BJA})) = {(IiA ® B*|I)). We also have the rules for par-
tial traces Tric[|AN(B|] = AB' € L(H) and Try[|AN(B| = ATB* ¢
L(K). To a biorthogonal 8S 3, lc(DR{(b(1)| = Ingx it will correspond a
biorthogonal SS of operators {b(l) ,c(l)} & ,C(.’C, H) such that every operator
A € L{K, M) can be expanded as A = Y, Tr{b'(1)Ajc(i). The completeness
and bmrthogonahty of the SS is equivalent to thc so-called erthogonality re-
lations 3", 01 (Dpgc(D)rs = 80504, ie. P = 3, 01(1) ® e(l) is the operator
that permutes the two Hilbert spaces in the tensor product H ® K. The orthog-
onality relations lead to identities of the form 3, 67 (1)AcT () = AT and its
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transposed/dagger-ed, and, for H =2 KC one also has Y, bT(1) Ae(l) = Tr[A] 1,
and 3, bf(1) @ ¢T(1) = |IN{I| and transposed/dagger-ed relations. Analo-
geusly to the monopartite case, changes of basis are in correspondence with
matrices (tensors), e.g. {e(1))) = 3, cu|E(R)) = 3 ,; cll)i| EGA)). h =
(7) polyindex. One can.see that finding the dual SS {b({)} of {¢(l)} resorts to
the matrix-tensor inversion B =(C1)~!, where C = [c()] = {cni}. k polyin-
dex [here, we consider H = K for simplicity: the generalization to different
spaces is trivial, i.e. inverting the rank=m square part of the rectangular ma-
irix and/or adding orthogonal vectors|. As in the monopartite case one can use
the QR algorithm to factorize the matrix C' and find an orthogonal basis @ of
operators. Notice that an orthogonal basis {|g({)})} will correspond to unitary
matrix-tensors @ = [g(l)], however the opérators ¢(!) are not unitary. >From
the partial traces Texllg() (a()l] = a(i)a(i)! and Trclla(i))(a(i)l] =
(q(7)Tq(2))T, we see that choosing maximally entangled vectors (i.e. with
partial trace proportional to the identity), gives \/mg{1) unitary (obviously for
H =~ K), with the additional orthogonaiity condition for the set Tr[¢(i)q(5)T] =
di7.  We'll call such operator set unitary spanning sets. Notice that in the
present matrix formalism the Schmidt form |AY = 5% Ajv(l))|w* (1)), with
A Tk Zf;:i AP =1, {Ju()}}, {|w"(1))} orthonormal sets, is noting but the
so-called singular value decomposition A = VZWT of the matrix A, with V
and W unitary, and & = [diag(A;), 0], & =rank(A) the Schmidr number. Other
forms of the bipartite vector are related to other mairix decompositions, as, for
example |AY = 3™ |p(i)|uT (1)), with P > 0, P? = AAY UUt = I, is

fai=1

just the polar decomposition A = PU of the matrix A.

Group representations. A simple way to construct unitary SS is to
consider a (generally projective) unitary irreducible representation (UIR) of
a group G. We’ll denote by [G, U, K} the unitary representation of G on H,
U(g) being the unitary representative of the group element g € G. Then, an
operator S8 {u(g)} € L(H) is simply u(g) > U(g), with the proportionality
constant depending on the group representation. This is just a consequence
of the orthogonality relations [dgU(g) ® U'(g) == P, which follow from
the Schur lemmas, dg denoting an invariant Haar measure.! Corresponding
to the operator SS the vectors |u(g))) will constitute an orthonormal basis of
maximally entangled vectors, e. g. a Bell POVM on H & H [in the infinite
dimensional case we can keep the vectors |u(g))) maximally entangled with
Dirac-delta normalization], Such Bell POVM will obviously be covariant un-
der [G, U, H].

Compietely positive maps. The matrix formalism for entangled vec-
tors can be used to exploit the one-to-one correspondence £ — Rg between
completely-positive (CP) maps £ € £L(L(H), L£(K)), and operators 0 < Re €
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L(H ® K)[2]. The correspondence is given by Re = £ @ I(|I){I|) > 0, and
inversely £(p) = Tro[f ® p” Rg], T denoting the trivial CP-map. In the fol-
lowing we’ll call Rg the “R-matrix” or “R-operator” of £. In this fashion.the
Krauss decomposition of the CP-map £(p) = 5, K;pKf 1S just the diagonal
form of its R-operator & = 7, |K})){( K|, and the trace-preserving condi-
tion 3", K K| = Ix becomes the partial-trace normalization Trc[Re] = In.
Similarly, Stinespring dilations of £ are nothing but purifications of the R-
operator in an extended Hiibert space. In general, all various matrix forms
for the R-matrix will lead to different formas for the CP-map. The dual CP-
map €Y € L(L(K),L(H)) eg. X — EY(X), X € L(K) is obtained as
eV (=T e IR?], Ty denoting partial transposition on the second
Hilbert space, and we’ll consistently call Rgﬁ the “dual R-matrix”.

A main virtue of the R-matrix representation resides in the possibility of
classifying CP-maps via the Cholesky decomposition of E-matrices. and, in
particular, classifying group-covariant CP-maps in termss of group-invariant R-
matrices [3], thus resorting to a simple application of the Schur lemma. We
call the CP-map £ G-covariant, when £(1. nggT} = V,E(p)V{, U, and Vi
being unitary representatives of g € G over H and K, respectively. Then, £
is G-covariant, iff [Rg, Uy @ V"] = 0. An operator @ € £(K,H) is invariant
under (G, U, H] iff @ = [Qol5F, where [Q]F = [dg U;QUQ denotes group
averaging. Then, one can prove that the general form of the R-matrix of the G-
covariant CP-map is g = AI:AE, with Ag (complex lower triangular) matrix
itself invariant, which can be written in the block form Az = [4y)8,. =
@y ay, each block a, comprising & full set of equivalent irreducible components
of the representation. : .

The R-representation of CP maps tums out to be very useful for engineer-
ing new quantum channels and new POVM's. For example, approximating a
new POVM n(l) starting from a given one o(!) via a CP-map, is equivalent to
maximizing the POVM-fidelity ' = Tr[(n(l) @ o(f))R?] (or other measure
of distance between operators) over all possible R-matrices Rg. In particular,
for G-covariant POVM'’s, i.e. n(g) = UJn.['e)Ug and o(g) = irfqro(e)b; (e the
identity element of G) a CP-map covariant under [G, UV*, H] must be used,
and the fidelity only between the POVM's “seeds” F = Tr{n(e) @ ofe) R}?
needs to be optimized, which is perfectly analogous to the conventional fidelity
for states.

Tomography, Teleportation, and Cloning

Quantum Tomography. ‘Quantum tomography is a method to estimate
the ensemble average (A) of any linear operator A € £(H) by using only
measurement outcomes of quorum of observables {¢(l)}. One can immedi-
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ately recognize that a quorum is nothing but a 8S {c(l)} made of observables?.
Then, the tomographic estimation of the ensemble average (A4) is obtained as
the double average—over both the ensemble and the quorum—of the unbiased
estimator” Tr(bt Alc(l), namely (A) = 3, Tr[b'(1)A]{c(l)). Hence, of the
biorthogonal couple, the c(l)’s are the quorum, and the b(1)'s give the unbiased
estimator.* Examples of applications are given in Table 1.

! du(l) D | e(l), b(1) |
la o d* C r~Y2D(a)
b || (k,¢) | = dkjk|dg/(dw) | R x [0, ] exp(ikXy)
lc || (z,¢) dzde/ R x [0, ] EZ. ~ Py
2 o d?a C x=1/2(_)'a D(20)
3 |l (=,%) dz dt RxR e~ Pt q) (gle'P"t
4 || (,7) | 2Fldady sin® % | 82 x ST exp(iJ - 7))
5 v 1 {z,y,2,t} Ty
6 | (n,) dep/(27) Z x S allee
7 | (,8) |  dedy/(4n?) Slix 8L | e~lelav| Wy (0] ~iaTay

Table | Examples of spanning sets used in different tomographic schemes. D denotes the
domain of the index [, du(!) the integration measure for continuous {. The dual basis b(l) is
not specified when c(l) is self adjoint or unitary. Examples | are various versions of quantum
homodyne tomography[5]. £2 denotes the projector over the quadrature eigenvector at phase ¢,
with eigenvalue . Example 2 is the parity photon-counting tomography over displaced states
or observabies [6, 7]. Example 3 is the tomography of a free particle[7], p and g denoting
momentum and position respectively, and ¢t the time. Example 4 is the angular momentum
tomography(4]. Example 5 is the Pauli tomography(4]. Example 6 and 7 are the nonlinear and
the nonunitary phase-tomographies of Ref. [7] (both have a quorum of generalized observabies,
L.e. nonorthogonal POVM's). le'®) = 520 ) e™?|n) denotes the Susskind-Glogower phase
vector, e the raising/lowering photon operators, s(n) is the sign of n. Other examples, as the
multimode homodyne tomography. can be found in Ref. [4]. For more details the reader is
addressed to the extensive literature on the subject.

Quantum Teleportation.  Ina general teleportation scheme, Alice and Bob
share the entangled pure state |A)) ({A| on the Hilbert space Hy @ Hj, while
Alice performs a joint measurement on Hy & Ha, corresponding to the POVM
lg(h)) {q(R)|. The state that emerges at Mz at the Bob side after the Alice
measurement is given by o = Trial (p), ([AV( Ay (g (a(R)])ya) =
A*qT(h) pg(h) AT, for measurement outcome [. Alice transmits { to Bob, and
if the quantum operation A*q'(l) is invertible[8]—as if unitary, when both
|A) (Al and |g(h)) {g(h)| are maximally-entangled (the POVM is Bell)—then
Bob can apply the inverse operation of A*qf(l) and recover the original state.
E voila: that’s all! In Ref. [9] the teleportation schemes corresponding to
38 from UIR of groups were presented, showing that all known teleporta-
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tion schemes correspond to abelian groups. The original teleportation scheme
[10] for one qubit corresponds to the projective UIR of the dihedral group
D,. The generalization to d dimension of the same Ref. [10] is the projec-
tive UIR of the group Zy x Z4.> The continuous variables teleportation of Ref.
[11] is an example of infinite dimensional teleportation, with the group be-
ing the abelian group of translations over the complex plane, with projective
UIR given by the Weyi-Heisenberg group of displacement operators D(z).°
This last case is particularly interesting, since from it we can learn a general
procedure to engineer Bell measurements from local measurements. Here the
shared resource (from parametric downconversion) cannot be maximally en-
tangled due to the infinite dimension of the Hilbert space, and the output state
comes out distorted as D'y (z) p D 4(z), where Da(z) = D(z) 4 D'(z). The
Bell measurement is achieved through the global unttary transformation V' =
exp (a'b — ab') performed by the beam splitter over local (i.e. single-mode)
homodyne joint measurements, resulting in ﬁlD(z +iy)) = V|27V 2% ®

|2‘"1/2y}_.m.-2, where lv), denotes an eigenvector of the quadrature operator
Xy = & (ale® + ae™'®) with eigenvalue v. Perfect Teleportation is achieved
in the limit of vanishing distortion for A;; = lime—1(1 — 1£[*)1/2£94,;. The
present Bell measurement scheme maybe generalized to arbitrary quantum sys-
tem by devising a single global unitary operator which achieves the transfor-
mation V[2} ® |j) = |g(ij)})) from the local observable |7) & |7) to the Bell
one |q(ij)), where {g(h)} h = (ij} is 2 unitary SS (i.e. maximally entan-
gled). Modulo local unitary transformations, this resort to find the solution
V of the factorization equation V1 g(i7) © IV = m~Y2U (i) @ U(j), where
Ulij) = Vmq(ij), m =dim(H) (we choose UU(0,0) = I), and the unitary
local operators U (j) connect the local POVM to a fixed reference vector |0) as
gy = U(7}|0). For a single qubit a solution is given by the phase-shift operator
V = exp (i%0y @ o). For arbitrary quantum system, the general solution is
unknown.

Quantum Optimal Cloning[3]. A quantum cioning map C from N to M
copies is just a CP-map in £{L(HZY), £{H=M)} which outputs a permutation-
invariant state, i.e.. invariant under Sy (which doesn’t necessarily mean that
the state i3 Bose or Fermi). A Gr-covariant cloning is a quantum cloning with
R-matrix invariant under 72N 17*#N . We call the quantum cloning optimal
when it satisfies some optimality condition, typically it minimizes a given
cost-function. The cloning which is covariant under the full unitary group
U(m), m =dim({H), and minimizes the fidelity F = Tr[e®YC(a®V)! for
pure states o is the universal cloning of Werner[12]. While proving opti-
mality, one can also see that herz the output state C(c®") is bosonic. A
N.= 1 — M = 2 cloning which achieves the optimal joint measurement
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of two conjugated quadratures of radiation (analogous of position and momen-
tum of a particle) is the cloning of Cerf[13], which is covariant under the W H
group. It minimizes the seed POVM fidelity F' = Tr{(Ej ® E;ff'*’ ® -U)Rg"],
where the vacuum state v “seeds” the coherent state POYM (optimal joint

measurement), which is W H-covariant, and Eg @ Eg i seeds the joint local
measurements of commuting quadratures over clones under the joint displace-
ment D®2, Stinespring dilations of the cloning map C in the form Clp) =
St(p ® I4)8 for p € L(H®Y) for some ancillary Hilbert space A, with
§ e L(H®N 13N @ A) generally not unitary, naturally provide quantum op-
erations which physically achieve the cloning. For the Cerf cloning map(13]
(N =1— M2)onehas C(p) = S{p® 1)S, with § = ;%V(v NV V
being the beam splitter transformation given above. This map can be achieved
either probabilistically or unitarily (on a further extended Hilbert space). The
probabilistic way is mimicked by just a couples of beam splitters in a row
[14], with an ancillary chaotic input radiation (which imitates the identity in
the Stinespring extension). A unitary realization is given in Ref. [15] through
a network of three parametric amplifiers. Extensions of the probabilistic map
to generic N and M can be obtained using multi-splitters and chaotic ancil-
lary radiation, however the efficiency is going down exponentially vs M (for
example, for N = 1 and large M it goes asymptotically as M7~ [14], &
being the thermal photon number of the ancillary state).

Notes

1. Throughout the paper, _f dg will represent a discrete sum for G discrete.

2. We call observable a generally complex operator with orthonormal spectral resolution, or, in other
words, ¢(l) is o generally complex function of a single self adjoint operator

3. Motice that the general method of noise deconvolution given in Ref. [4]—where the deconvolved
estimator is achieved by evaluating the inverse CP-map of the noise over the estimator—is just equivalent
to finding the biorthagonal basis of the noisy quorum.

4. The gquorum obtained with the method of operator 55 can be used also for quantum tomographic
strategies different from the averaging one, e.g. the maximum-likelihood srategy. This method works only
for the estimation of the density matrix itself (or for any set of unknown parameters of the density matrix),
and it is restricted to finite dimensions. The likelihood function is just L(p) = zf‘_r__l log Tr(pp(l;){z;)] =
N'Tr(p), where 7 runs over the N measurements in the sample, p(1){xc) denotes the (noisy) POVM corre-
spanding to the [-th element of the quorum, with outcome 2, and the search of the maximum is made over
the parameters ¢ which parameterize the density matrix p = py. A full reconstruction of the density matrix
can be achieved with the Cholesky parametrization p = v+, searching over matrix elements (real on the
diagonal) of the lower-triangular matrix 7, through a downhill simplex method.

3. Zg % Z4 denotes the abelian group of discrete translations over 3 lattice embedded in a torus.
The m-dimensional projective UIR is given by: Z(j,1) = ¥, e*™ % i/mip\ (k@ (|, Z(1,7) Z(',5") =
g2milimz g @ 7'); The particular case for rn = 2 is the dihedral group £ of w-rotations around
three perpendicular axes, with the projective representation isornorphic ta the nonabelian group of the three
Fauii matrices plus identity. More explicitly, one has U{0,0) = [, U{0,1) = e, U{1,0) = o,
UL 1) = oy,
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6. The abelian group of translations over the complex plane, with projective UIR given by the Weyi.
Heisenberg group (W &) of displacement operators (z & O D(z) = exp(zal — z*a). D(z)D(w) =

Diz +ru)eé{““- ~t W)
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