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NOTSE IN NON-LINEAR AMPLIFIERS : QUANTUM LIMIT IN A SQUEEZED OPERATING STATE
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A quantum non-linear amplifier is analysed in which the operating state is coherent. squeezed
and multi-boson squeezed. The quantum noise characterization of the amplifier is crucially
connected to its phase sensitiveness: different types of amplifiers are available depending on

their operating states.

The quantum mechanical description of

amplifiers is customarily based on the
following ingredients: a set of (bosenic) input
modes, a set of (bosonic) output modes, the
amplifier's degrees of freedom (which can be
gither bosonic or fermionic) and an interaction

scheme of the latter which transfers input to
output].

Restricting for simplicity our attention to
the single mode case and denoting by a\,a'I and
A,A+ the input and output bosons respectively,
the evolution equations of the amplifier -
averaged over the internal degrees of freedom -

are given by the mapping
A= Pa,a’) v

& is constrained to

beleng to a realization of the automorphism

where the functional

group of the Weyl algebra (namely [a,a+} =1
should imply [A, A+]=1).

The other relevant property of an amplifier
is its operating state |[@> - which is assuned
to be independent of the input state |, 5 -
describing how the amplifier's internal modes
are prepared.

The relevant physical quantities describing
how the amplifier actually operates ars the
mean-square fluctuation of the output amplitude

. 2

f2/

have been

A A2 v B
(ahy™ (o 1A e

where the averages s =

e ?inf
| e e

explicitly written in terms of input states

only, because of the assumed factorization
properties of the density matrix and in view of
the averaging performed on the evolution
equations; and the gain
i i
G=| <A/ Zas] /3/
In present communication we shall consider

a variety of evolution functionals 27, both
polynomial and analytic, as well as a set of
different choices of dnput states selected to
e coherent states and study the ) phasze
sensitivity of the amplifier, namely how the
quantum input noise is processed.

definition of

More  precisely Caves'

phase-insensitive Tinear amplifier will be

extended to non-linear evolution equations,
essentially by dropping the
of <A% under

transtormations. The most general po1ynomia1,ﬁﬁ

requirement of

invariance arbitrary phase

of degree 2 readsz.
&5 :p{a+Qa’ ) C+Matla’ /af

where the complex parameters P,G,M,N satisfy
the conditions
B /5/

.
M

1
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=-q /6/

fgs./5/,/6/ are the consiraints whereby /4/
indeed realizes an  automorphism of Weyl's
algebra.

We consider three different choices for
| Lo
i)  Coherent staies

Lay=D{a)|0s
/7
Ot & l=exp ( aa - Fa)
where |0% is the vacuum state and we 7z

Such states are interesting in present
application because they correspond to phase
insensitive input noise, namely (4al=0.

11} Sgueezed states4
|z, a>=D{ a)5{z}|0>
78/
Slz)=exp {z(a+}2—za2}
where z € & is the squeezing parameter. They
can never give a phase insensitive input noise,
in that

(4a)=(z/2|z|) sinh(4|z]) /97
can be zero only for z=0, in which case /8/
transform into /7/.
i1i) Multi-boson squeezed states?
iz,'.-.‘;a}k =D{ a )S{k](z,w)IO)’ S0/

S{k}[z,w]=exp{zb+(kJ+iwa4a—zb{k}}

weaj; ¥ ZE%O i ke./ﬁ‘

+ . iy
where b(k}’ b (k) are multi-boson operators

[b{k}’f{k}}_l' ; [a-l.a’b(k)}:_kb[k) 1Y

which can be vrealized by the normal ordered

serﬁes6

[%] denating the maximum integer £x and
ﬁ1, 1=0,...,] & set of arbitrary phases. MNote
that a“# b, .

For the state /10/ the input noise is

characterized by variance

(aa)%- )2 Ok ‘P[k}ZF{|¢(k)|2|Z|2} 14/
where !
sin{kw/Z}ejkw/z
?[k)__— T ;'(15/
kw2

and the function F , whose properties where
thoroughly discussed in refarence &, is defined
by

s R
Flx)=e™ E; e f16/
n=0 n!

{ Aa) as given by /16/ can wanish only far 2=0

2m sv

oFr W= s AR el sar ke,
e
In the former two cases the state /10/
turns into the coherent state?. The states
|z, Wiy g are thus non-Gaussian wave packets?1
which, for k>2, are phase insensitive as well
as coherent in a non-trivial way.
In case i1) the output noise is
characterized by mean-square fluctuation
( AR)2=2p2s0( 212450 +sinh 2] 2] ) (Mz2s NZE 1722+
+2PT {{sinh|z| (MSz+NCZ)/ |z |+cosh|z|(HCHIS) )+
+H cash(2|z]|)
T= o+Qu Ay
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and gain
G = iP(T2+SC}/m N T e | 14
where
S=coshlz|+Q Z sinh|z[/|z] 19/

C=0 cosh|z|+z sinh|z|/|z|

case 1) is recovered from /f17/,/18/ simply
setting z=0, and the linear case for P=0.

One can check how the non-Tinearity forbids
phase intensitivity. In the linear case, Caves
results [;!A]Z = MM, G = [MeN &/« |2 are
straightforwardly recovered adopting the vacuum
as operating state. It is also interesting to
notice how the gain given by /18/ has state
dependence hinting (minimum of G wvs.e } to
different stability of  the
amplifier.

In case i1} the results are much more

regimes  of

complicated and rich of features.

In view of the special role ascribed by
eq./14/ to the choice & = 2, we shall confine
here our attention to it.

The mean square fluctuation of the output
amplitude is:

(48)% =2p? [41’5_R QiF '+ O.H- { &, +

A YZRUL%0% T2 Je20R VP22 (§31(R+T2+Q)+
MT( £ 40 E)/p+@g+_;,1_2_g) F+d (R2+| 120505+
2
2p

+2T})+ T}.

9=Ee0PE 5 0,15 E° 120/
ReOIS (% L Ecte )zl

T -0(2724Q)+ TUNMQ) /P+hN/2P°

vhere F = F( §2 ) is given by /16/ and H =

H{ _Ez) is defined by
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o0 4 R
Hix)=e* Y — V(zn+2)%-1 /21/

n=0 n!

The complex structure of the dependence of
(A A)E on P,0,M.,N and z,w ., hints to the
possibility of changing the characteristics of
the amplifier (switching from phase-insensitive
to phase-sensitive) by a suitable choice of the
state parameters (z,w,k].

Another interesting case 1is that of the
evolution equation given by:

4 +
A—Lb( J.Jb [k)+Ma+Na feef

k
The more outstanding property of /22/ is
that unlike /4/ it is possibly to put M=H=0D
without infringing the restriction for I oto
e a realization of the automarphism group of
the Weyl algebra. The calculations are a divect
application of the method outlined above and

the result are too long to be reported here.
valuable
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