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We show how the Weyl quantum walk derived
from principles in D’Ariano & Perinotti (D’Ariano
& Perinotti 2014 Phys. Rev. A 90, 062106.
(doi:10.1103/PhysRevA.90.062106)), enjoying a
nonlinear Lorentz symmetry of dynamics, allows
one to introduce Hopf algebras for position and
momentum of the emerging particle. We focus on two
special models of Hopf algebras–the usual Poincaré
and the κ-Poincaré algebras.

1. Introduction
Quantum walks (QWs) [1–5] and more generally
quantum cellular automata (QCA) [6–8] have been
recently considered not only as a tool for quantum
simulation of fields [9–11], but also for the foundation
of quantum field theory [12–20]. The QCA framework
appears as the natural candidate for the extension of
the informational paradigm, which has been crucial in
the understanding of foundations of quantum theory
[21–27]), to the foundation of quantum field theory.

The free theory has been derived starting from a
denumerable set of elementary quantum systems in
interaction along with the general assumptions of homo-
geneity, locality, isotropy and linearity of the interactions
[17,18]. The whole framework does not require Lorentz
covariance, which results as a subgroup of the dynamical
symmetries of the quantum walk/ automaton in the limit
of small wavevectors [28,29]. For general wavevectors,
the Lorentz transformations are nonlinear, thus realizing
a model of doubly special relativity (DSR) [30–32].
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In this paper, we consider the simplest case of the mentioned quantum walk field theory
derived from principles, namely the one-particle sector of the free Weyl automaton of
reference [17]. We show how the dynamics of this walk enjoys a nonlinear Lorentz symmetry,
which allows us to introduce Hopf algebras [33–35] for position and momentum of the quantum
walk particle, generalizing the role of the Lie algebra of symmetries. We focus on two special
models of Hopf algebras: the usual Poincaré and the κ-Poincaré algebras [36].

After reviewing the derivation of the Weyl quantum walk in §2 along with its symmetries,
in §3, we analyse the nonlinear relativity symmetry, within the context of Hopf algebras—the
canonical framework in which deformed relativity models are studied [32,37,38]. We expound
an analysis, closely related to the one in reference [39], where we study how our non linear
deformation of the Lorentz group affects the Hopf algebraic construction of space–time and
phase space. We consider the nonlinear deformation in the two alternative scenarios: the usual
Poincaré and the κ-Poincaré cases. We will see that the construction of space–time as the dual
space to the algebra of translations is left unaffected by any nonlinear deformation that recovers
the linear Lorentz transformations at the leading order. Whether we obtain the usual space–time
or a non-commutative version is a feature that is independent on the nonlinear transformation
that we apply to the momentum operators. This is a slight generalization of the result of
reference [39] where only the nonlinear deformations that leave the rotation sector undeformed
were considered. On the other hand, we see that the construction of the phase space as the left
cross-product algebra between momentum space and space–time, does depend on the nonlinear
deformation. We then derive the set of deformed Heisenberg commutation relations emerging in
our framework both in the usual Poincaré and in the κ-Poincaré cases. Deformed Heisenberg
commutation relations are an ubiquitous feature of quantum gravity models, they were first
observed in the context of string theory [40,41], then studied on their own right by many
authors [42–46], and recently considered for experimental verification [47].

2. Quantumwalk and relativity
A quantum walk describes the discrete time evolution of particle on a discrete set Γ . The Hilbert
space of the system is H := ℓ2(Γ ) ⊗ Cs, where ℓ2(Γ ) is the Hilbert space of square summable
function over Γ and Cs is the Hilbert space corresponding to the internal degrees of freedom of the
evolving particle. We introduce the orthonormal basis {|g⟩} of ℓ2(Γ ). The physical interpretation
is straightforward: the state |g⟩ ⊗ |ψ⟩ correspond to a particle which is localized in g with internal
state |ψ⟩. The dynamics is described by a unitary operator A (A†A = AA† = I) on H. As shown in
reference [17], the requirements of homogeneity and locality of the dynamics imply that the set Γ is
endowed with a graph structure corresponding to the Cayley graph of a group G1. The generators
of G are represented by a translation operator Th acting on ℓ2(Γ ) as follows: Th|g⟩ = |gh−1⟩ (T is
the right regular representation of G). Then, the homogeneity and locality assumption imply that
the unitary operator corresponding to the quantum walk A can be decomposed as follows:

A =
∑

h∈S

Th ⊗ Ah, (2.1)

where S is the set of generators and Ah are operators on Cs.
Given a Cayley graph Γ and a fixed dimension s for the Hilbert space of the internal degrees

of freedom, the existence (or not) of a quantum walk on it is a highly non-trivial problem.
In reference [17], some authors of the present manuscript addressed the case in which Γ is the
Cayley graph of the Abelian group Z3 and the dimension of the internal degree of freedom is s = 2.
Moreover, they assumed the quantum walk to be isotropic, a condition that translates the idea that
all the directions on the lattice are equivalent. In mathematical terms, there must exist a unitary
representation U over C2 of a group L of graph automorphisms, transitive over a set of direct

1For the reader’s convenience, we remind the definition of Cayley graph. Let G be a group and S be a generating set of G.
The Cayley graph Γ = Γ (G, S) is a coloured directed graph such that (i) each element of G corresponds to a vertex, (ii) each
generator S is assigned a colour cs and (iii) for any g ∈ G, s ∈ S, g and gs are joined by a directed edge of colour cs.
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generators,2 such that one has
∑

h∈S Th ⊗ Ah =
∑

l(h)∈S Tl(h) ⊗ UlAhU†
l for all l ∈ L. Under these

assumptions, there is only one admissible Cayley graph of Z3, which is the one corresponding to
the body-centred cubic lattice, and there are only two admissible quantum walks over it (up to
a local change of basis). The analytical expression of these quantum walks is easily given in the
Fourier transform basis |k⟩ = (2π )−3/2 ∑

x∈Z3 eik·x|x⟩ (where x clearly denotes an element in Z3)

A± :=
∫

B
dk|k⟩⟨k| ⊗ A±

k

A±
k := (2π )−3/2

∑

y∈S

eik·yA±
y

A±
k := λ±(k)I − in±(k) · σ±

n±(k) :=

⎛

⎜⎝
sxcycz ± cxsysz
cxsycz ∓ sxcysz
cxcysz ± sxsycz

⎞

⎟⎠ ,

λ±(k) := (cxcycz ∓ sxsysz)

and cα := cos
(

kα√
3

)
, sα := sin

(
kα√

3

)
, α = x, y, z.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

where B denotes the Brillouin zone of the body-centred cubic lattice and σ+ = σ denote a vector
of the usual Pauli matrices, whereas σ− = σT denotes the transposed ones. The unitary constraint
implies that A±

k is unitary for every k ∈ B. Note that owing to the discreteness of the lattice the
quantum walk is band-limited in k. The quantum walk dynamics is determined by the solutions
of the eigenvalue equation (A± − eiω)|ψ⟩ = 0 that is equivalent to

(sinωI − n±(k) · σ±)ψ(k,ω) = 0, (2.3)

which also implies the identity
sin2 ω − |n±(k)|2 = 0, (2.4)

which defines the dispersion relation of the automaton. It is easy to check that, by taking
in the limit k → k0 = (0, 0, 0) in equation (2.3), the quantum walk A+ (resp A−) recovers
the dynamics of the right-handed (resp left-handed) Weyl equation. Clearly, taking the same
limit in equation (2.4) gives the usual relativistic dispersion relation ω2 − |k|2 = 0. We note
that the same behaviour occurs in the limit k → k2 =

(√
3π/2

)
(−1, −1, −1) and in the limits

k → k1 =
(√

3π/2
)

(1, 1, 1), k → k3 =
√

3π (1, 0, 0) with the chirality exchanged. Because of this
reason, we refer to the quantum walks in equation (2.2) as Weyl walks. It is a remarkable result
that a Lorentz invariant dynamics is recovered from a dynamical model which follows from the
only assumptions of homogeneity, locality and isotropy, without the relativity principle.

In the following, we will consider only the A+ Weyl walk and we will drop the ± apex in order
to simplify the notation. The entire analysis can be straightforwardly applied to the A− case.

In the quantum walk, framework space and time are not on an equal footing: space is given
by the lattice structure, whereas time comes from the discrete steps of the evolution. It is then
far from obvious whether and how it is possible to recover changes of space–time coordinates
that mix space and time, like boosts in special relativity. This question was recently addressed
and answered in reference [29] where the notion of change of observer for quantum walks was
defined as an invertible map Lβ over [−π ,π ] × B, as follows:

(ω, k) → (ω′, k′) =Lβ (ω, k), (2.5)

where the parameter β labels different changes of reference-frame. The idea is not to focus on
the discrete lattice coordinates and the discrete time step, but rather to consider (ω, k)–which

2The homogeneity assumption guarantees that the set S of generators can be split into disjoint subsets S+ ∪ e ∪ S−, where S−
is the set of inverses of S+ and e is the identity element.
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are constants of motion of the quantum walk—as the fundamental variables. In this setting, a
symmetry of the dynamics is defined as follows.

Definition 2.1. Let A be a quantum walk on Z3. A symmetry of the dynamics for A is a triple
(Lβ ,Γβ , Γ̃β ), with Lβ defined in equation (2.5) and Γβ , Γ̃β invertible matrix functions of (ω, k),
such that

(sinωI − n(k) · σ ) = Γ̃ −1
β (sinω′I − n(k′) · σ )Γβ . (2.6)

The set of symmetries SA is a group which we refer to as the symmetry group of the quantum walk A.

The next step is then to explore whether the symmetry group of the Weyl walk A contains a
representation of the Lorentz group which recovers the usual one in the regime in which the walk
approaches the Weyl equation (i.e. near k0, k1, k2, and k3). In other words, we are asking whether
there exists a deformed relativity model which preserves the dynamics of the Weyl walk A.

Deformed (or doubly) special relativity is a theoretical proposal in which one modifies the
linear Lorentz transformations in order to have an invariant energy scale in addition to the speed
of light. Such a theory has been proposed by Amelino-Camelia [30] and developed by other
authors [31] as a kinematic structure which may underlie quantum theory of gravity. Indeed,
if the Planck length were a threshold beyond which quantum gravity effects would become
relevant, this length should be the same for all the observers, a statement which clearly disagrees
with special relativity. A deformed relativity model consist of replacing the usual (linear) Lorentz
transformation Lβ in momentum space as follows:

Lβ →Lβ ,

Lβ =D−1 ◦ Lβ ◦ D

and (ω, k) →Lβ (ω, k),

⎫
⎪⎪⎬

⎪⎪⎭
(2.7)

where the map D is a singular invertible map such that its Jacobian JD equals the identity in
(ω, k) = 0. These conditions are needed in order to have an invariant energy, while recovering the
usual phenomenology at energy scales much smaller than the Planck scale.

For a complete derivation where we refer to reference [29]. Apart from a null measure set, we
split the Brilloun zone B into four parts Bi, i = 0, . . . 3. Each vector ki belongs to the corresponding
region Bi. The regions Bi are chosen such that the compositions L(i)

β =D(i)−1 ◦ Lβ ◦ D(i) are well
defined, with D(i) given by

D(i) :Σi → Γ0, D(i) :

(
ω

k

)

-→ g(ω, k)

(
sinω
n(i)(k)

)

,

Σi := {(ω, k) s.t. k ∈ Bi, sin2 ω − |k|2 = 0}

and Γ0 := {p ∈ R4 s.t. pµpµ = 0},

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(2.8)

for a suitably defined function g(ω, k).3 The maps L(i)
β provide a well-defined nonlinear

representation of the Lorentz group on each set Σi.
For i = 0, 2, one can easily check that the conditions of definition 2.1 are met if we set Γk =Λβ

and Γ̃k = Λ̃β , provided that Λβ is the right-handed spinor representation of the Lorentz group,
and Λ̃β is the left-handed representation. For i = 1, 3, the same holds provided we exchange the
two representations. The four vector (ω, k) ∈Σi transforms under the nonlinear representation
L(i)
β . Because ∪3

i=0Bi = B (apart from a zero-measure set), we have that the maps L(i)
β provide a

notion of Lorentz transformation for any solution of the Weyl QCA dynamics.

3An admissible expression of the function g(ω, m) is explicitly given in reference [29]. For the following consideration, it
suffices to know that g(ki) = 1 and ∇g(ki) = 0 for all i = 0, . . . , 3.
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We note that the choice of the map (2.8) is not unique, because there are many admissible
choices for the function g(ω, k). The symmetry group SA of the Weyl walk A contains then many
different instances of deformed relativity. However, all of them will recover the usual Lorentz
transformations near the points ki. The four invariant regions are interpreted as four different
particles (this is the phenomenon of Fermion doubling).

Finally, it is worth stressing the reversed perspective of this approach with respect to the usual
one in relativistic quantum mechanics. The Weyl walk dynamics has been singled out without
requiring Lorentz invariance, whereas the Lorentz invariance is recovered as a symmetry of the
dynamics.

3. Hopf Algebra, κ-Poincare and non-commutative space–time
Here, we explore how the deformation of the Lorentz group given by the nonlinear deformation
(2.8) manifests itself at the level of the Poincaré algebra. We will restrict to the D(0) case and then
drop the (0) apex in order to simplify the notation, the generalization for i = 1, 2, 3 is trivial. In
order to perform this analysis, we will need to consider the framework of Hopf algebras (for
a comprehensive introduction to the subject, we suggest reference [34]). The notion of Hopf
algebra generalizes that of Lie algebra to a less ‘rigid’ object, which is can accommodate a
nonlinear version of the Lorentz group, which is incompatible with a Lie algebra structure.
Unfortunately, any specific nonlinear deformation of the Lorentz group, of the kind in equation
(2.7), is not sufficient to select a unique Hopf algebra, because there are many compatible
coproduct structures. Nevertheless, it is interesting to study the role that our deformed Lorentz
transformation plays within the context of Hopf algebras, because this is the canonical context in
the specialized literature on deformed relativity [32,37,38].

(a) Classical Poincaré and κ-Poincaré–Hopf algebras
The Lie algebra of the Poincare group is given by the relations

[Mi, Mj] = iϵijkMk [Mi, pj] = iϵijkpk

[Mi, Nj] = iϵijkNk [Mi, p0] = 0

[Ni, Nj] = −iϵijkMk [Ni, pj] = iδijp0

and [Ni, p0] = −ip0 [pµ, pν ] = 0,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.1)

where we denoted with Mi the generators of spatial rotations, with Ni the generators of boosts
and with pµ the generators of translations—p0 denoting the generator of time translation. Clearly,
if we apply a nonlinear map to the generators pµ, then the set of commutation relations (3.1) is
spoiled, and generally does not define a Lie algebra anymore. However, it is possible to treat such
deformations on formal grounds, within the more general setting of Hopf algebras. The universal
enveloping algebra of the Lie algebra (3.1) can be endowed with a Hopf algebra structure by
defining the primitive coproduct /, antipode S and co-unit ϵ as

/(O) = 1 ⊗ O + O ⊗ 1,

S(O) = −O, S(1) = 1

and ϵ(O) = 0, ϵ(1) = 1.

⎫
⎪⎪⎬

⎪⎪⎭
(3.2)

These relations are just a rephrasing of the usual Poincaré Lie algebra structure (3.1) in the
language of Hopf algebras, where the additional co-algebra structure allows one to express
the Leibniz rule for the infinitesimal action of the group on products of functions through the
coproduct. This rule can be easily accounted for using the tensor product structure and the theory
of group representations. On the other hand, within the context of Hopf algebras, any invertible
analytical map that transforms momenta as p′

ν = fν (pµ) can be treated as a change of basis in an
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infinite dimensional algebra. Even if, from a mathematical perspective, this transformation is just
a change of basis, it may have significant physical consequences like, e.g. a deformation of the
dispersion relation.

Nonlinear modifications of the translation generators are not the only possible deformation
of the classical Poincaré symmetry. It is indeed possible to consider scenarios in which the
Hopf-algebraic structure itself is different (up to any change of basis) from the classical one
given by equations (3.1) and (3.2). Of particularly interest are those deformations of the classical
Poincaré–Hopf algebra that reduce to the usual one in a suitable limit of values of the deformation
parameters. The classification of all the possible deformation of Poincaré–Hopf algebra is still an
open problem.

Up to now, the most studied example is the so-called κ-Poincaré–Hopf algebra [33,36], which
in the so-called classical basis [37,48] takes the following form:

the same algebraic sector

/(p0) = κ

2
(K ⊗ K − K−1 ⊗ K−1) + 1

2κ
(K−1|p|2 ⊗ K−1)

+ (K−1pi ⊗ pi + K−1 ⊗ K−1|p|2)

and /(pi) = pi ⊗ K + 1 ⊗ pi,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

where K := (1/κ)(p0 + (p2
0 − |p|2 + κ2)1/2) and κ is a real parameter. One can check that the usual

classical Poincaré–Hopf algebra is recovered in the limit κ → ∞.
Then, starting from the enveloping algebra of the Poincaré Lie algebra we have two different

roads that can be explored: (i) assume the co-algebra structure (3.2) and consider the classical
Poincaré–Hopf algebra or (ii) assume equation (3.3) and study the κ-Poincaré–Hopf algebra. On
the one hand, our scenario singles out a set of generators kµ that are defined in terms of the
classical one pµ by the nonlinear deformation p =D(k). On the other hand, our model does not
prefer any of the different algebraic models, and it is interesting to consider the consequences
of the nonlinear deformation given by the map D in both the classical Poincaré and in the
κ-Poincaré cases.

(b) From Poincaré–Hopf algebra to space–time
One of the most popular speculations concern the relation between the algebra of position
coordinate and the algebra of translation.

If we denote by T the Hopf algebra generated by the translation generators pµ, then one can
define the position algebra as the dual Hopf algebra T∗ on which T acts covariantly [36]. T∗ is
determined by introducing the generators xµ and the pairing

⟨ f (pµ), xν⟩ = f
(
∂

∂xµ

)
[xν ](0). (3.4)

This way of introducing the pairing follows the classical pairing between the enveloping algebra
of R4 with the algebra of functions on R4, i.e. the translation generators act as derivatives
evaluated at the origin. The structure of T∗ is then determined by the axioms of Hopf algebra
duality

⟨p, xy⟩ = ⟨/(p), x ⊗ y⟩

and ⟨pq, x⟩ = ⟨p ⊗ q,/(x)⟩.

}

(3.5)

Because the momenta commute, we have that positions co-commute with co-commutators

/xµ = 1 ⊗ xµ + xµ ⊗ 1. (3.6)

The commutation relations [xµ, xν ] are different from 0 only if the coproducts for the pµ are
not co-commutative. Then, if we are dealing with the usual Poincaré algebra, then we will always
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have a commutative space–time, independently of the nonlinear mapping we are using to define
the generators, as their coproduct will still be co-commutative.

The scenario is different in the κ-Poincaré case where it has been proved that the Hopf algebra
defined by equations (3.3) leads to the following commutation relations for positions

[xi, xj] = 0 [x0, xi] = − i
κ

xi. (3.7)

In this case, it could happen that a different choice of the generators pµ could lead to different
commutation relations. In the literature [39], it is proved that the commutation relations (3.7) do
not depend on the choice of basis as long as it is rotationally invariant and such that the usual
generators are recovered in the limit κ → ∞. It is possible to slightly generalize this result by
dropping the assumption of rotational invariance.

Lemma 3.1. Let M : p -→ p′ =M(p) be a transformation of the translation generators such that
JM(0) = I. Then, the commutation relations (3.7) remain unchanged.

Proof. First, we observe that, from the pairing (3.4), we have that the only terms in the co-
commutators (3.3) that are relevant for computing the commutators [xµ, xν ] are the ones that are
at most bilinear, i.e. /(p0) = 1 ⊗ p0 + p0 ⊗ 1 + (1/κ)

∑
i pi ⊗ pi and /(pi) = pi ⊗ 1 + (1/κ)pi ⊗ p0 +

1 ⊗ pi. By power expanding M, we have p′
µ = pµ + (1/κ)mαβpαpβ and by power expanding the

inverse function M−1, we have pµ = p′
µ + (1/κ)nαβp′

αp′
β . It is then easy to verify that, up to the

bilinear terms, the coproduct /(p′
0) is co-commutative, whereas the coproducts /(p′

i) are the sum
of a co-commutative term and (1/κ)p′

i ⊗ p′
0. Because the non-co-commutative term (1/κ)p′

i ⊗ p′
0

has the same expression independently of the nonlinear mapping M, the commutation relation
for the space–time variables remains the same. !

This result tells us that our nonlinear mapping, which satisfies the hypotheses of lemma 3.1,
does not change the commutation relations for the space–time variables.

(c) From Poincaré–Hopf algebra to phase space
We have seen in the preceding section that a notion of space–time can be introduced as the dual
T∗ to the Hopf algebra of translations T. The additional notion of left coregular action

p ◃ x := ⟨p, x(2)⟩x(1) (3.8)

allows to introduce a notion of phase space [37,49] as the left cross-product algebra T∗ ! T where
the multiplication is defined as

(x ⊗ p)(x′ ⊗ p′) = x(p(1) ◃ x′) ⊗ p(2)p′. (3.9)

If we define the isomorphisms

x ∼ x ⊗ 1 p ∼ 1 ⊗ p, (3.10)

it makes sense to consider the commutation relation

[pµ, xν ] = xν ⊗ pµ − ⟨pµ(1), xν⟩1 ⊗ pµ(2) − ⟨pµ(1), 1⟩xν ⊗ pµ(2). (3.11)

We will see that the commutation relations (3.11) will depend on the choice of the generators, i.e.
they depend on the nonlinear deformation.

We will now compute the commutation relation (3.11) for the choice of generators given by
the map D. Because we cannot derive an analytic expression for the inverse map D−1, we will
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consider just the terms up to the first order in 1/κ . We have then

E =ω ω= E

px = kx + 1
κ

kykz kx = px − 1
κ

pypz

py = ky − 1
κ

kxkz ky = py + 1
κ

pxpz

and pz = kz + 1
κ

kxky kz = pz − 1
κ

pxpy.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

This result holds the same for any choice of g(ω, k) such that ∇g(0) = 0.
After some cumbersome but straightforward calculation, we have, in the classical Poincaré–

Hopf algebra case

[ki, xj] = −iδij − i
(−1)δi,2

κ
(δi+1,jki+2 + δi+2,jki+1)

and [ω, xj] = [ki, t] = 0 [ω, t] = i,

⎫
⎪⎬

⎪⎭
(3.13)

where we used the notation x = 1, y = 2, z = 3 and the sums are meant to be modulo 3. Similarly,
in the κ-Poincaré–Hopf algebra case, we get

[ki, xj] = −iδij

(
1 − ω

κ

)
− i

(−1)δi,2

κ
(δi+1,jki+2 + δi+2,jki+1)

[ω, xj] = i
κ

kj − 1
2κ

xj|k|2 [ki, t] = 0

and [ω, t] = i − 1
2κ

xj|k|2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

Different from the space–time commutation relations, the commutation relation between
position and momentum are affected by the choice of the basis. As one could expect, in both cases,
we recover the usual commutation relations between position and momentum as the deformation
parameter κ goes to infinity.

4. Conclusion
In this paper, we have studied the dynamical symmetries of the Weyl quantum walk. As explained
in the paper such walk is particularly interesting, because it was derived from general principles
without assuming Lorentz covariance, but nevertheless it recovers a Lorentz-invariant dynamics
in the limit of small wavevectors. For large wavevectors the Lorentz group becomes nonlinear,
and we have a model of doubly special relativity. We introduced the Hopf algebras for position
and momentum of the quantum walk particle, and evaluated the structure constants of the
algebras for the usual Poincaré and the κ-Poincaré cases. Generalizing a result of reference [39], we
have shown that the space–time commutators are left unaffected by any nonlinear deformation
that recovers the linear Lorentz transformations at the leading order. Finally, we derived the
analytical expression up to the first order in the inverse Planck-energy κ−1 of the deformed
Heisenberg commutation relations.
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