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Classical theories with entanglement
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We consider theories where the set of states for every system is a simplex. A special case of
such theories is that of classical theories, i.e. those whose pure states are jointly perfectly discrim-
inable. The standard classical theory is the one satisfying local discriminability. However, simplicial
theories—including the classical ones—can violate local discriminability, thus admitting entangled
states. After proving that simplicial theories are necessarily causal, we provide necessary and suffi-
cient conditions for them to exhibit entanglement, and classify their system-composition rules.

Entanglement is the quantum feature marking the
starkest departure of Quantum Theory from Classical
Theory (the latter, in the following, will be referred to as
the standard classical theory). The phenomenon is com-
monly popularized as the so-called quantum nonlocality,
although the two concepts are not coincident. Indeed, it
is known that the mere existence of entangled states is
not sufficient for nonlocality [1, 2]. On the other hand,
the standard classical theory does not allow for any kind
of entanglement or nonlocality. In this letter, we argue
that the absence of entanglement in the standard clas-
sical theory is due not only to the simplicial structure
of the set of states of the single systems, but also to
the composition rule of systems, which satisfies local dis-
criminability of states. Indeed, as we will show in this
letter, there exist simplicial theories that exhibit entan-
glement, and these include classical theories, defined as
those simplicial theories where the pure states are jointly
perfectly discriminable [3–5]. Besides classical theories,
the definition of simplicial theory encompasses more gen-
eral cases—e.g. noisy versions of classical theories, where
pure states cannot be reliably distinguished due to a lim-
ited set of effects. The results of the present letter hold
in the general case of simplicial theories. The rationale
of such theories is that every deterministic state has a
unique decomposition into pure states.

We prove that, among the classical theories, the only
theory that does not admit entanglement is the standard
classical one. We provide a classification of simplicial
theories in terms of the composition rule for systems.
Finally, as a consequence of the geometric structure of
the sets of states, we show that a simplicial theory is
necessarily causal, highlighting that causality is intrin-
sic to the standard classical theory. After characteris-
ing and classifying simplicial theories from the point of
view of the discriminability and composition of systems,
we draw our conclusions, discussing some information-
theoretic features of this family of theories, and making
a comparison with the existing literature.

We now briefly recall some notion of Operational Prob-
abilistic Theories (OPTs) [6]. In the following we will
denote by roman letters A,B, . . . ∈ Sys(Θ) the systems
of the theory Θ, by E = {Ex}x∈X ⊆ Transf(A→B) a test

of possible transformations Ex from input system A to
output system B corresponding to outcomes x in the out-
come space X. For transformations A ∈ Transf(A→B)
and B ∈ Transf(B→C), we define their composition
BA ∈ Transf(A→C), and analogously for tests. We
denote by St (A) and Eff (A) the set of states and effects
of system A, respectively. We remind that states and ef-
fects are special cases of transformations—i.e. St (A) =
Transf(I→A) and Eff (A) = Transf(A→I), where I is the
trivial system—thus every result holding for transforma-
tions also applies to states and effects. We recall two im-
portant notions from convex and conic analysis, i.e. those
of extremal and atomic points. Let C+ be a convex cone,
with x1, x2 ∈ C+ and p ∈ (0, 1). A point x ∈ C+ is
called atomic if x = x1 + x2 implies x1 ∝ x2, while it is
called extremal if x = px1 + (1 − p)x2 implies x1 = x2.

We will denote by ExtSt(A) the set extremal points of
the convex hull of St (A). Notice that ExtSt(A) contains
the null “state” 0. The deterministic extremal states are
historically called pure states.

We will also use the Dirac-like notation |ρ)A ∈ St (A)
and (a|A ∈ Eff (A). Accordingly, given an arbitrary state
ρi ∈ St (A), a transformation Ex ∈ Transf(A→B), and
an effect ak ∈ St (B), an Operation Probabilistic Theory
(OPT) allows to compute joint probabilities of the form

p (i, x, k | ρ, E , a) := (ak|BEx|ρi)A.

We finally remind the notion of dimension DA of a sys-
tem A, defined as DA := dim StR (A), where StR (A) :=
Span

R
St (A). Effects are separating for states (and vicev-

ersa), i.e. if two states ρ0, ρ1 ∈ StR (A) are different, there
exists an effect a ∈ EffR (A) such that (a|ρ0) 6= (a|ρ1).
The latter property is equivalent to the requirement that
dim StR (A) = dimEffR (A). As a standard requirement,
we consider finite-dimensional OPTs, with DA < +∞
for all A ∈ Sys(Θ). This means that systems of the
theory can be completely probed via the statistics of
a finite number of experiments. For instance, in the
standard classical theory DA is the number of perfectly
distinguishable states of A, while in Quantum Theory
DA = d2A, where dA is the dimension of the Hilbert space
associated to system A.

http://arxiv.org/abs/1909.07134v1
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The existence of parallel composition entails a prescrip-
tion to assign a dimension DAB to a composite system
AB as a function of the dimensions DA and DB of the
local systems A,B. St (AB) contains at least the prod-
uct of the states of A and B, which can be composed
independently, and similarly for effects. By virtue of the
properties of the parallel composition, for every OPT Θ
one has the inequality [7]:

DAB ≥ DADB ∀A,B ∈ Sys(Θ). (1)

This leads us to introduce the excess dimension ∆
(2)
AB ≥ 0

of the composite system AB as follows

DAB =: DADB +∆
(2)
AB ∀A,B ∈ Sys(Θ). (2)

In both standard classical and quantum theory one has

∆
(2)
AB = 0. We now see how this relates to the degree of

holism required in the task of state-discrimination.

Property 1 (n-local discriminability). For m-partite
states and n < m, the factorized effects involving only
k-partite effects with k ≤ n are separating.

In the simplest case where n = 1, the property is
called local discriminability. In both standard classical
and quantum theory, the products of local effects are
separating for multipartite states, namely both theories
satisfy local discriminability.

Proposition 1. Let Θ be an OPT. Then Θ satisfies local
discriminability if and only if the following rule holds:

DAB = DADB ∀A,B ∈ Sys(Θ). (3)

Proof. The proof can be found in Ref. [8]. �

If a theory Θ does not satisfy local discriminability,

then there exist A,B ∈ Sys(Θ) such that ∆
(2)
AB > 0. An-

other important feature shared by both standard classical
and quantum theory, but not by general theories, is the
following.

Property 2 (atomicity of state-composition). The par-
allel composition of two atomic states is atomic [9].

In this letter, we connect the properties of local dis-
criminability and atomicity of state-composition to the
presence of entangled states. We now recall the defini-
tion of separable and entangled states. Given two sys-
tems A,B, the separable states of the bipartite system
AB are those of the form:

|σ)AB =
∑

i∈I

pi|αi)A|βi)B, (4)

with pi > 0 for all i ∈ I, and
∑

i∈I pi ≤ 1. This class
of states can be prepared using only local operations and
classical communication. By negation, entangled states
are those states that are non-separable. The two following
results hold for arbitrary OPTs.

Proposition 2. Let Θ be an OPT. If Θ does not satisfy
local discriminability, then it admits entangled states.

Proof. By hypothesis, from Eqs. (1) and (3) we have that
there exist A,B ∈ Sys(Θ) such that DAB > DADB. Since
product states generate a subspace of StR (AB) of dimen-
sionDADB, containing all separable states, St (AB) must
contain at least a state that is not separable. �

Proposition 3. Let Θ be an OPT. If Θ does not satisfy
atomicity of state-composition, then it admits entangled
states.

Proof. By hypothesis, there exist two atomic states
|ρ)A, |σ)B whose product |π)AB = |ρ)A|σ)B is not atomic.
On the other hand, |π)AB cannot be the form of Eq. (4),
otherwise at least one state among |ρ)A and |σ)B would
be not atomic, contradicting the hypothesis. This implies
that there exists a state of AB which is not separable. �

In the following, we characterise simplicial theories
from the point of view of the admissibility of entangled
states, finding that the converse of Proposition 2 holds in
general for this family of theories, whereas the converse of
Proposition 3 holds in the case where a simplicial theory
satisfies n-local discriminability for some positive integer
n.

Definition 1 (simplicial theory). A simplicial theory Θ
is a finite-dimensional OPT where the set of states of
every system A ∈ Sys(Θ) is a simplex in DA dimensions.

Since the sets of states are simplexes, in a simplicial
theory the decomposition of every state into extremal
states is unique.

Property 3 (causality). An OPT is causal if and only
if it admits a unique deterministic effect [8].

Theorem 1. Simplicial theories are causal.

Proof. Let Θ be a simplicial theory, A ∈ Sys(Θ) and |i)A
an extremal and non-null state. Suppose that |i)A is
not deterministic: then it can be completed to a de-
terministic one, namely there exists a state |σ)A such
that |ρ)A = |i)A + |σ)A is deterministic. Now, let (ej |A
for j = 1, . . . , DA be the linear functionals such that
(ej |j′) = δjj′ for every non-null extremal state |j′)A: this
implies that 0 ≤ (ej |τ) ≤ 1 for all j and all |τ)A ∈ St (A).
One then has:

(ei|ρ) = (ei|i) + (ei|σ) = 1 + (ei|σ) ≤ 1.

namely (ei|σ) = 0 and (ei|ρ) = 1. Then

|σ)A =

DA∑

k=0

pk|k)A, pk ≥ 0 ∀k, pi = 0,

DA∑

k=0

pk = 1.
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Let us now pose

(e|A :=

DA∑

j=1

(ej |A.

Clearly 0 ≤ (e|τ) ≤ 1 for all |τ)A ∈ St (A), and (e|i) = 1,
implying (e|σ) = 0, i.e. pk = 0 ∀k 6= 0. This shows that
|i) is deterministic. Being independent of i, the above
argument proves that all non-null extremal states are de-
terministic. Now the effect (e|A amounts to unit on all
deterministic states, hence it is deterministic. Since the
non-null extremal states of a simplicial theory are com-
plete and linearly independent, there exists a unique ef-
fect (e|A such that (e|j)A = 1 for all extremal non-null
states |j)A. Thus the deterministic effect (e|A is unique.
�

Our first result states that, for a simplicial theory, the
converse of Proposition 2 is also true.

Theorem 2. Let Θ be a simplicial theory. Then Θ ad-
mits entangled states if and only if it does not satisfy local
discriminability.

Proof. (⇐) The implication holds true by Proposition 2.
(⇒) By hypothesis, the theory Θ is simplicial. In par-
ticular, this implies that, for every system A ∈ Sys(Θ):
(i) A has exactly DA non-null extremal states, and (ii)
every deterministic state of A has a unique decomposi-
tion as a convex combination of non-null extremal states.
Let us denote the non-null extremal states of a system
X by |l)X, for l = 1, . . . , DX. By Theorem 1 such states
are also deterministic. Then, for all A,B ∈ Sys(Θ) and
all |i)A ∈ ExtSt(A), |j)B ∈ ExtSt(B), there exists a non-
empty set Iij ⊆ {1, . . . , DAB} such that

|i)A|j)B =
∑

k∈Iij

p
ij
k |k)AB, (5)

with p
ij
k > 0 for k ∈ Iij and

∑
k∈Iij

p
ij
k = 1. Let

(e|A ∈ Eff (A) be the (unique) deterministic effect of A.
Moreover, let us suppose that there exist two different
pairs of indices (̃i, j̃), (̃i′, j̃′) such that J̃ := Iĩj̃ ∩ Iĩ′ j̃′ 6= ∅.

Without loss of generality, we can assume j̃ 6= j̃′. Choose
k̃ ∈ J̃ : since for all k ∈ {1, . . . , DADB} (e|A|k)AB ∈
St (B) is deterministic, it is also non-vanishing for all
k, and being the decomposition into non-null extremal
states unique by simpliciality, from Eq. (5) we con-
clude that (e|A|k̃)AB = |j̃)B = |j̃′)B, which is ab-
surd. Thus Iij ∩ Ii′j′ = ∅ for every different pair of
indices. Now, let us suppose that Θ satisfies local dis-
criminability. Then, by Proposition 1, Eq. (3) holds, and
Iij ⊆ {1, 2, . . . , DADB}, ∀i, j. By conditions Iij 6= ∅ and
Iij ∩ Ii′j′ = ∅, every set Iij must be a singleton. This
implies that for every pair i, j there exists |k)AB such
that |k)AB = |i)A|j)B, namely the parallel composition
of non-null extremal states is a non-null extremal state.

Accordingly, Eq. (3) implies that the states of the form
|i)A|j)B exhaust the set of non-null extremal states of
the composite system AB. As a consequence, Θ does not
admit entangled states. �

Our second result states that, for a simplicial theory
satisfying n-local discriminability for some positive inte-
ger n, the converse of Proposition 3 is also true. For
this we need the following result, that is proved in the
Supplemental Material.

Proposition 4. Let Θ be a simplicial OPT satisfying
n-local discriminability for some positive integer n. Sup-
pose that there exist a pair of systems A,B ∈ Sys(Θ) and
an extremal state |λ)AB ∈ ExtSt(AB) that does not con-
vexly refine any product state |ρ)A|σ)B ∈ St (AB). Then
|λ)AB = 0.

We are now in position to prove the following theorem.

Theorem 3. Let Θ be a simplicial theory satisfying n-
local discriminability for some positive integer n. Then
Θ admits entangled states if and only if it does not satisfy
atomicity of state-composition.

Proof. (⇐) The implication holds true by Proposition 3.
(⇒) According to Proposition 4, under the hypothesis of
the theorem every non-null extremal state of a bipartite
system refines some product of extremal states. Since by
hypothesis the theory admits entangled states, by The-
orem 2 and Proposition 1 there exists a pair of systems
A,B ∈ Sys(Θ) such that DAB > DADB. Then, there
are more non-null extremal states of the composite sys-
tem than products of (non-null) extremal states. Thus,
there must be a product of extremal states |i)A|j)B that
is refined by more than one non-null extremal states, i.e.
|i)A|j)B =

∑
k∈Iij

p
ij
k |k)AB, namely atomicity of state-

composition does not hold. �

The following corollary provides a characterisation of
simplicial theories with entanglement. The standard
classical theory is the unique classical theory where local
discriminability holds.

Corollary 1. Let Θ be a simplicial theory satisfying n-
local discriminability for some positive integer n. Then,
for all systems A,B ∈ Sys(Θ) and non-null extremal
states |k)AB ∈ ExtSt(AB), there exists a unique product
of non-null extremal states |ikjk)AB = |ik)A|jk)B such
that |k)AB convexly refines |ikjk)AB.

Proof. Existence is provided by Proposition 4 and
uniqueness has been proved in the proof of Theorem 2.
�

The latest result leads to a classification of the clas-
sical theories from the point of view of their degree of
nonlocality. Notice that the map k 7→ ikjk used in the
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above proof is not injective in general. As a straightfor-
ward consequence of the previous corollary, we are now
in position to provide a general classification of the com-
posite state-spaces in simplicial theories satisfying n-local
discriminability for some integer n.

Theorem 4 (classification of composite state-spaces in
simplicial theories). Let Θ be a simplicial theory satisfy-
ing n-local discriminability for some integer n. For every
pair of systems A,B ∈ Sys(Θ), the state-space St (AB) is
classified by the following: (i) the dimension of the com-
posite system DAB; (ii) the pure states of AB can be la-
belled as |(ij)k)AB, for i ∈ {1, . . . , DA}, j ∈ {1, . . . , DB},
and k in a finite set Iij , such that:

|i)A|j)B =
∑

k∈Iij

p
ij
k |(ij)k)AB (6)

with p
ij
k > 0 and

∑
k∈Iij

p
ij
k = 1 for all non-null extremal

states |i)A ∈ ExtSt(A), |j)B ∈ ExtSt(B) [10].

Discussion

We showed that every simplicial theory which is not
the standard classical theory contains entangled states.
We also characterised simplicial theories with entangle-
ment, proving that they cannot satisfy local discrim-
inability or—under the hypothesis of n-local discrim-
inability for an integer n > 1—cannot satisfy atomicity of
state-composition. This entails that there exists a pair of
systems A,B such that at least a product of pure states
of A and B is not pure. Finally, we proved that every
simplicial theory is causal. The results of the present
letter do not rely on any additional structure—such as
perfect discriminability, or other principles—beyond the
simplicial one.
If a theory is simplicial, there is no complementarity,

and it is impossible to violate Bell’s Inequalities [11].
Moreover, in presence of local discriminability, the con-
verse is also true [12]. Nevertheless, all simplicial theories
with entanglement contain states with non-null discord
(see Ref. [13]), despite being simplicial. Furthermore,
it is interesting to notice that simplicial theories have
no dimension mismatch [14] and satisfy the Information
Content Principle [15]. Indeed, these properties are not
sensitive to the parallel composition rule, making all the
simplicial theories equivalent on the basis of their simpli-
cial structure. However, the simplicial theories with en-
tanglement remarkably feature hypersignalling [16], thus
displaying time-like correlations which are stronger than
those of both Classical and Quantum Theory. At this
stage, it is not possible to compare simplicial theories
that exhibits entanglement with works on broadcasting [4]
or teleportation [17] in generalized probabilistic theories,
since local discriminability was therein assumed.

One could then examine the relation between simplicial
theories with entanglement and theories having an epis-
temic restriction—such as Spekkens’ toy theory [18]—or
consider them in the light of Refs. [19, 20] about emer-
gent classicality. An explicit construction of a simpli-
cial theory with entanglement, complete with the set of
transformations, would allow one to study the simplicial
scenario as far as information causality [21] or communi-
cation complexity are concerned.
Finally, as shown in Ref. [22], simplicial theories are

the only ones where full information can be extracted by
measurements that do not disturb the measured system
(and this in particular must hold even in the presence of
entanglement).

SUPPLEMENTAL MATERIAL

Operational Probabilistic Theories

The primitive notions of an operational theory are
those of systems, tests, and events. A system S repre-
sents the physical entity which is probed in the labora-
tory, such as a radiation field, a molecule, an elemen-
tary particle. A test E is characterized by a collection of
events {Ex}x∈X, and represents the single occurrence of
a physical process, such as the use of a physical device or
a measuring apparatus. The outcome space X associated
with a test E collects all the possible outcomes that can
occur within the test. Each test E is characterised by an
input system A and an output system B. For instance,
think of an electron–proton scattering: both the input
and the output systems are an electron–proton pair, the
test contains only one event corresponding to the two-
particle interaction, and finally the outcome space is the
singleton set. Whenever the output of a test E1 coincides
with the input of another test E2, the sequential compo-
sition E2 ◦ E1 := E2E1 of the two tests can be defined,
being an allowed test for the theory. Thus, physical sys-
tems define the connection rules for tests.
In an Operational Probabilistic Theory (OPT), two

important classes of tests are those of preparations and
observations, i.e. tests where there is no input or no
output system, respectively. Preparations ρ and obser-
vations a, where A is the output or the input system,
are denoted using the Dirac-like notation |ρ)A and (a|A.
Given some arbitrary preparation event |ρi)A, event Ex

from system A to system B respectively, and observation
event (ak|B, the purpose of an OPT is to compute joint
probabilities of the form:

p (i, x, k | ρ, E , a) := (ak|BEx|ρi)A. (7)

Two events from system X to system Y are equivalent
if all their joint probabilities of the form (7), for the
same other events appearing in Eq. (7), are equal. We
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will call equivalent classes of preparation and observation
events states and effects, respectively. Besides, equiv-
alent classes of arbitrary events from A to B will be
called transformations. Given an OPT Θ, Sys(Θ) will
denote the set of the systems of the theory. For every
A,B ∈ Sys(Θ), St (A), Transf(A→B), and Eff (B) will
denote, respectively, the sets of states of A, of transfor-
mations from A to B, and of effects of B.

Clearly, every event Ex ∈ Transf(A→B) is a map from
St (A) to St (B), or, dually, from Eff (B) to Eff (A). Ac-
cording to the above definitions, effects are separating for
states, i.e. given two states |ρ1)A 6= |ρ2)A, there exists
(a|A ∈ Eff (A) such that (a|ρ1) 6= (a|ρ2). Similarly, an
effect is the equivalence class of those observation events
that give the same probabilities for every state, and thus
states are separating for effects.

Within an operational perspective, an agent is also al-
lowed to perform a test—say with outcome space X—
disregarding the outcomes of a subset Y ⊆ X , and then
merging events in Y into a single event: this possibility
is captured by the notion of coarse-graining. Accord-
ing to probability theory, the probability of the coarse-
grained event Y amounts to the sum of the probabilities
of all the outcomes in the subset Y . Then, for each test
{Ex}x∈X ⊆ Transf(A→B) and every subset Y ⊆ X , the
coarse-grained event is symbolically given by

∑
y∈Y Ey,

and sequential composition distributes over sums. The
converse procedure of a coarse-graining is called a refine-
ment. An event with trivial refinement, i.e. which cannot
be further refined modulo a rescaling by a probability, is
called atomic. Being the framework probabilistic, one
may also consider convex combinations of states, trans-
formations, and effects, corresponding to a randomiza-
tion, i.e. a statistical mixture of events. In general, states,
transformations, and effects can be thought of as embed-
ded in convex spaces. It is often convenient to consider
the real span of sets of states St (A), which is a linear
space denoted by StR (A) := Span

R
St (A). Every system

A is then associated to a quantity DA := dim StR (A),
which is called the dimension of the system A. As
a standard requirement, we consider finite-dimensional
OPTs, namely theories where DA < +∞ for all systems
A ∈ Sys(Θ). The latter assumption means that we are
considering systems that can be completely probed via
the statistics of a finite number of experiments. For in-
stance, in Classical Theory DA is the number of perfectly
distinguishable states of a system A, while in Quantum
Theory DA = d2A, where dA is the dimension of the
Hilbert space associated to the system A.

A test is called deterministic if the associated outcome
space is the singleton set, i.e. the test has a single out-
come. The interpretation of a deterministic test is that
the physical process considered happens with certainty,
i.e. with probability 1. For instance, a states is deter-
ministic if and only if it gives probability 1 on every de-
terministic effect, or, in other words, if and only if it is

normalized.
We conclude this review considering a fundamental

structure of operational theories: parallel composition.
Indeed, the last piece of information one needs to char-
acterise an OPT is a recipe to form compounds out
of systems and events available to local experimenters,
i.e. which are uncorrelated. We denote parallel compo-
sition by the symbol ⊠. The main property of parallel
composition is that

(A ⊠ B) ◦ (C ⊠ D) = (A ◦ C )⊠ (B ◦ D).

In the case of systems, states, and effects, we will use the
following notation: AB := A⊠B, |ρ)A|σ)B := |ρ)A⊠|σ)B,
and (a|A(b|B := (a|A ⊠ (b|B. One has then to specify, for
all events E ∈ Transf(A→B) and D ∈ Transf(C→D),
how the composite event E ⊠ D embeds into the total
space of events Transf(AC→BD). In Quantum Theory,
for instance, this operation is given by the standard ten-
sor product ⊗. As for deterministic events, the proba-
bilistic structure implies that the parallel composition of
two deterministic events is deterministic.

Proof of Proposition 4

We recall that in the main text of the letter we proved
that: (i) any simplicial theory is causal (see Theorem
1), and (ii) the non-null extremal states of a simplicial
theory are deterministic (see proof of Theorem 1). Ac-
cordingly, we will make use of the above results in the
present section.
We also introduce the definition of separable state,

which is of crucial relevance in the remainder. Let
S = S1S2 · · · Sn ∈ Sys(Θ), and |ρ) ∈ St (S). We say
that |ρ) is separable if there exist (finitely many) dis-
joint non-trivial bipartitions Sa0 := {ia1, i

a
2 , . . . , ı

a
k}, S

a
1 :=

{ja1 , j
a
2 , . . . , j

a
N−k} of {1, 2, . . . , n} such that

|ρ) =
∑

a∈A

pa|σ)Sa
0
|τ)Sa

1
,

with pa > 0 for all a ∈ A.

Lemma 1. Let Θ be a simplicial OPT satisfying n-local
discriminability for some positive integer n. For all (n+
1)-partite system S = S1S2 · · ·Sn+1 ∈ Sys(Θ), every state
|ρ) ∈ St (S1S2 · · · Sn+1) admits a convex decomposition
into states each of which convexly refines some separable
state of S1S2 · · · Sn+1.

Proof. Take the subset E ⊆ ExtSt(S1 · · · Sn+1) of all non-
null extremal states of St (S1 · · · Sn+1) which convexly
refine some separable state. Since Θ satisfies n-local
discriminability, this is a spanning set for the space
StR (S1 · · · Sn+1). Moreover, since Θ is simplicial, the
elements of E are linearly independent. As a conse-
quence, the dimension of StR (S1 · · · Sn+1) amounts to
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the cardinality of E , which is then, by simpliciality, a
complete set of states convexly generating every state
|ρ) ∈ St (S1 · · · Sn+1). Equivalently, ExtSt(S1 · · · Sn+1) =
{0} ∪ E . �

Lemma 2. Let Θ be a simplicial OPT. Let |π) ∈
St (S1 · · · Sn) with n ≥ 2, so that |π) = |πI)|πJ ), for
some states |πI) ∈ SI, |πJ ) ∈ SJ with I ∪ J = {1, . . . , n},
I, J 6= ∅, I ∩ J = ∅, and SK = Sk1

Sk2
· · ·Skl

for every
l-tuple K ⊆ {1, . . . , n}. Let |φ) ∈ ExtSt(S1 · · · Sn) be a
non-null extremal state that convexly refines |π). Finally,
given i ∈ I and j ∈ J , let (eKij

| denote the determinis-
tic effect on SKij

with Kij = {1, . . . , n} \ {i, j}. Then
(eKij

|π) is a product state, and (eKij
|φ) ∈ St (SiSj) is a

physical state that convexly refines (eKij
|π).

Proof. The case n = 2 is trivially true, and we will then
assume n ≥ 3 in the following. By hypothesis, we can
pose |π) = p|φ) + (1− p)|σ), where |σ) is a deterministic
state and p ∈ (0, 1]. By construction we have that

(eKij
|π) = p(eKij

|φ) + (1 − p)(eKij
|σ) ∈ St (SiSj), (8)

and clearly both (eKij
|φ) and (eKij

|σ) are determin-
istic states of SiSj. Moreover, by causality, (eKij

| =
(eI\{i}|(eJ\{j}|, then (eKij

|π) is a product state of SiSj.
Since the decomposition into non-null extremal states is
unique by simpliciality, from Eq. (8) we conclude that
(eKij

|φ)—that is non-null, although it may possibly be
non-extremal—convexly refines (eKij

|π). �

Proposition 8. Let Θ be a simplicial OPT satisfying
n-local discriminability for some positive integer n. Sup-
pose that there exist a pair of systems A,B ∈ Sys(Θ) and
an extremal state |λ)AB ∈ ExtSt(AB) that does not con-
vexly refine any product state |ρ)A|σ)B ∈ St (AB). Then
|λ)AB = 0.

Proof. By hypothesis, there exist a pair of systems A,B ∈
Sys(Θ) and an extremal state |λ)AB ∈ ExtSt(AB) that
does not convexly refine any product state |ρ)A|σ)B ∈
St (AB). Let us denote

|λ)AB := . (9)

The theory Θ satisfies n-local discriminability. The case
n = 1 is trivial, since all states are separable (see Theo-
rem 2 in the main text of the letter) and |λ)AB must be
vanishing. In the following we will then assume n ≥ 2.
Let us now define the following (n+ 1)-partite state:

|Ψ) :=

...

...

∈ St ((A1 · · ·An) B1 · · ·Bn), (10)

where the systems Am and Bm′ are copies of, respectively,
A and B for every m,m′ ∈ {1, . . . , n}. By Lemma 1,
the state |Ψ) must be in the convex hull of some states
refining the separable states |Λ) of (A1 · · ·An) B1 · · ·Bn.
The latter must be of one of the following two types

|Λ) =

...

...

,
...

...

...

, (11)

where in the first case (A1 · · ·An) is factorized from
B1 · · ·Bn, while in the second case there must exists a
state of some proper subsystem of B1 · · ·Bn that is fac-
torized. Then there exist coefficients αi ∈ [0, 1] such
that:

|Ψ) =
∑

i

αi|φi), (12)

where the |φi) are non-null extremal states in the con-
vex refinement of some separable state |Λ) of one of the
two types in Eq. (11). By construction, in both cases
we can always find at least a subsystem S = AjBj of
A1 · · ·AnB1 · · ·Bn (now considered as a 2n-partite sys-
tem) such that the marginal state (eS̄|Λ) (where S̄ is the
complementary subsystem of S in A1 · · ·AnB1 · · ·Bn) is a
product state of AjBj . On the other hand the marginal
state of |Ψ) on S is (eS̄|Ψ) = |λ)AjBj

. For each term on
the r.h.s. in Eq. (12), one can then find the above men-
tioned subsystem S and apply (eS̄| to both sides. This
gives an equation of the form:

|λ)AjBj
= αi|χi)AjBj

+ |ωi)AjBj
, (13)

where |χi)AjBj
is in the convex refinement of some prod-

uct state by Lemma 2, and |ωi)AjBj
is a physical state.

Since |λ)AjBj
is an extremal point of a simplex, its convex

decomposition must be trivial, and then either αi = 0 or

|λ)AjBj
= |χi)AjBj

. (14)

Finally, either αi = 0 holds for every i, and then by
direct inspection of the definitions (9) and (10) |λ)AB is
vanishing, or identity (14) holds for some i, contradicting
the hypothesis. �
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