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Exploiting quantum parallelism of entanglement for a complete experimental quantum
characterization of a single-qubit device
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We present the full experimental quantum tomographic characterization of a single-qubit device achieved
with a single entangled input state. The entangled input state plays the role of all possible input states in
quantum parallel on the tested device. The method can be trivially extended to anyn-qubit device by just
replicating the whole experimental setupn times.
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The new field of quantum information@1# has recently
opened the way to realize radically new processing devi
with the possibility of tremendous speedups of comp
computational tasks, and of cryptographic communicati
guaranteed by the laws of physics. Among the many pr
lems posed by the new information technology, there is
need of making a complete experimental characterizatio
the functioning of the new quantum devices. As shown
cently in Ref.@2#, quantum mechanics provides us with t
perfect tool to achieve the task easily and efficiently: this
the so-calledquantum entanglement, the basis of the quan
tum parallelism of future computers. In this paper, w
present the full experimental quantum characterization o
single-qubit device, based on this method. Since the me
can be easily extended to anyn-qubit device, the presen
experiment represents a test of the feasibility and of the
perimental limits of the new general tomographic method

How we characterize the operation of a device? In qu
tum mechanics, the evolution of the state is completely
scribed by the so-calledquantum operation@3# of the device,
which here we will denote byE. More precisely, the outpu
staterout is given by the quantum operationE applied to the
input stater in as follows

rout5
E~r in!

Tr@E~r in!#
. ~1!

The normalization constant Tr@E(r in)# in Eq. ~1! is also the
probability of occurrence of the transformationE ~e.g., when
there are other possible alternatives, such as when we
sider the state transformation due to a measuring device
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given outcome!. Therefore, apart from a normalization fa
tor, the quantum evolution is always linear, with the quant
operation playing the role of the so-calledtransfer matrixof
the device, a mathematical tool very popular in optics a
electrical engineering.

Now the problem is: how to reconstruct the form ofE
experimentally? SinceE is essentially a transfer matrix for
linear system, one would be tempted to adopt the conv
tional method of running anorthogonal basisun& of inputs
and measuring the corresponding outputs byquantum tomog-
raphy @4#. However, since states are actually operators—
vectors—as a consequence of the polarization identity in
der to get all off-diagonal~complex! matrix elements of the
state, one actually needs to run not the basis itself, but all
linear combinations of its vectors 221/2(un8&1kun9&), with
k561,6 i . In the following we will call such sets of state
faithful, since they are sufficient to make a complete tomo
raphy of a quantum operation. This method is essentially
quantum process tomographygiven in Ref.@1#, which was
experimentally demonstrated in nuclear-magnetic resona
NMR @5# and recently in quantum optics@6#. The main prob-
lem with such method is the fact that in most practical si
ations, faithful sets of input states are not feasible in the
For example, for continuous-variables process tomogra
in the Fock representation, the statesun8& andun9& would be
photon number states, and achieving their superpositions
remain a dream for experimentalists for many years. But h
the quantum parallelismof entanglement comes to help u
with a single-input entangled state that is equivalent to r
ning all possible input states in parallel@2#. Thus, we do not
need to prepare a complete set of states, but just a si
entangled one, a state commonly available in any mod
quantum optical laboratory.

In the following, we will use the double-ket notatio
uC&&PH^ H to denote bipartite states corresponding to
matrix Cnm of coefficients on fixed given orthonormal bas
un& ^ um&[unm& of H^ H,

uC&&5(
nm

Cnmunm&. ~2!

,
:
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In our optical implementation the entangled systems con
of two single-mode optical beams, and the Hilbert spac
two dimensional, since we will consider only single-phot
polarization states. The key feature of the method imp
that only one of the two systems is an input into theunknown
transformationE, whereas the other is left untouched, as
Fig. 1. This setup leads to the output stateRout , which in
tensor notation writes as follows:

Rout5E^ I ~ uC&&^^Cu!, ~3!

whereI denotes the identical operation. It is a result of line
algebra thatRout is in one-to-one correspondence with t
quantum operationE, as long as the stateuC&& is full rank,
i.e., its matrixC is invertible. This is the case of a so-calle
maximally entangledstate, where the matrixC is propor-
tional to a unitary one. Full-rank entangled states can
easily generated by spontaneous parametric do
conversion of vacuum, as in the experiment reported h
Note that even when a faithful set of input states is availa
in the lab—which is actually true in our case of singl
photon-polarization states—nevertheless, a single fait
entangled state can be much more efficient and more pr
cal. As a matter of fact, in practice, generation of sing
photon-polarization states relies anyway on entanglem
and, as we will see in the following, the present method u
all experimental data much more efficiently than the conv
tional quantum process tomography@1,6#.

Now, how to characterize the entangled state Rout at the
output? For this purpose, a technique for the full determi
tion of the quantum state has been introduced and develo
since 1994. The method named quantum tomography@4# has
been initially introduced for the state of a single mode
radiation, the so-calledhomodyne tomography, and thereaf-
ter it has been generalized to any quantum system. The b
of the method is the measurement of a suitably complete
of observables calledquorum. In our case, we need to mea
sure jointly two quora of observables on the entangled qu
here the quorum being the Pauli matricessx , sy , sz . The
qubit is encoded on polarization of single photons as follo

u0&5̇h†uV&, u1&5̇v†uV&, ~4!

FIG. 1. General experimental scheme of the method for
tomographic estimation of the quantum operationE of a single-
qubit device. Two identical quantum systems—two optical beam
the present experiment—are prepared in an entangled stateuC&&.
One of the two systems undergoes the quantum operationE,
whereas the other is left untouched. At the output one make
quantum tomographic estimation, by measuring jointly two obse
ables~each for each beam! from a quorum$Q( l )%. In the present
experiment, the quorum is represented by the set of Pauli oper
sx , sy , andsz .
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where uV& denotes the electromagnetic vacuum, andh, h†

andv, v† the annihilation and creation operators of the ho
zontally and vertically polarized modes associated with
fixed wave vectork, respectively. In synthesis, Eq.~4! means
that the ‘‘logical zero’’ is encoded on a single horizontal
polarized photon, whereas the ‘‘logical one’’ is encoded o
vertically polarized photon. In the present representation,
Pauli matrices are written as follows:

sx5h†v1v†h, sy5 i ~h†v2v†h!, sz5h†h2v†v.
~5!

According to Eq. ~5!, the sz photodetector is simply
achieved as in Fig. 2.

In order to understand how to design detectors forsy and
sx , we still need some simple algebra for wave plates. T
ring of Pauli matrices is completed by including the ‘‘ide
tity’’ s05h†h1v†v, corresponding to single-photon state
In the following, we use the popular relativistic convention
denoting by sW the three-vector of operatorssW
5(s1 ,s2 ,s3) and by s the four-vector s
5(s0 ,s1 ,s2 ,s3), and use Greek indices for three-vect
componentsa51,2,3 ~or a5x,y,z), and Latin indices for
four-vector componentsi 50,1,2,3.

A wave plate changes the two radiation modes accord
to the matrix transformation

Fh

vG→Wf,uFh

vG , ~6!

where the matrixWf,u is given by

Wf,u5Fz11cz2 sz2

sz2 z12cz2
G , ~7!

wheres5sin 2u, c5cos 2u, z65 1
2 (16eif), u is the wave-

plate orientation angle around the wave vectork, f
52pd/l, l is the wave length, andd is the length of the
optical path through the plate. Special cases are thel/4 wave
plate that can be used withu5p/4 to give the rightc1 and
left c2 circularly polarized modesc65eip/4221/2(6h
1 iv), and thel/2 wave plate that can be used to give t

e

in

a
-

rs

FIG. 2. Pauli-matrixsz measurement apparatus for photo
polarization qubits inserted at the end of each optical beam.
beam is split by a polarizing beam splitter~PBS! into its horizontal
and vertical components, which are separately detected and
corded with a plus and minus sign, respectively. For measuring
other two Pauli matricessx and sy , the PBS is preceded by
suitably orientedl/2 andl/4 wave plate, respectively~see text!.
7-2
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diagonal linearly polarized modesd65221/2(h6v). On the
Pauli operator vectorsW , the mode transformation due to
wave plate is

sW →Rf,usW , ~8!

with rotation matrix

Rf,u5F s21c2cosf 2c cosf sc~12cosf!

c sinf cosf 2s sinf

sc~12cosf! s sinf c21s2cosf
G .

~9!

From Eq.~9! we can see that asx detector can be obtaine
by preceding thesz detector with al/2 wave plate oriented
at u5p/8, whereas asy detector is obtained by precedin
the sz detector with al/4 wave plate oriented atu5p/4.
When collecting data at asa detector, we will denote by
sa561 the corresponding random outcome,sa511 corre-
sponding to theh-detector flashing, andsa521 to the
v-detector flashing. The general experimental setup is t
given by two Pauli detectors—for measuringsa andsb for
varyinga andb –at the output of the entangled beams, as
Fig. 1. The experimental data are collected in coinciden
with two of the four photodetector firings, one for each Pa
detector, thus guaranteeing that the result will be essent
unaffected by quantum efficiency. The experimental corre
tions si

(1)sj
(2) of the random outcomessi

(n) of the detector at
the nth beam (n51,2) on the entangled stateuC&& must
coincide with the following theoretical expectations:

si
(1)sj

(2)5^^Cu~s i
(1)

^ s j
(2)!uC&&5Tr@C1s iCs j* #,

~10!

and, obviously,si
(1)[si

(1)s0
(2) and si

(2)[s0
(1)si

(2). For maxi-
mally entangled states we have the isotropy conditionsa

(1)

5sa
(2)50 for a5x,y,z. The four Bell states will correspon

to the four Pauli matricess j via a state coefficients matrixC
given byC5(1/A2)s j . On the other hand, when a quantu
device performing the unitary transformationU is inserted in
one of the two entangled beams as in Fig. 1, the entan
state uC&& is changed toU ^ I uC&&, which corresponds to
the new coefficients matrixC→UC. In our laboratory we
used the ‘‘triplet’’ state corresponding toC5sx /A2, which
is generated via spontaneous parametric down-conversio
an optical parametric amplifier physically consisting of
nonlinear BBO ~ß-barium-borate! crystal plate, 1.5 mm
thick, cut for type-II phase matching and excited by a puls
mode-locked ultraviolet laser UV having pulse durationt
5140 fsec and wavelengthlp5397.5 nm. The wavelength
of the emitted photons isl5795 nm. The measurement a
paratus consisted of two equal polarizing beam splitters w
output modes coupled to four equal Si-avalanche photode
tors SPCM-AQR14 with quantum efficiencies QE.0.42.
The beams exciting the detectors are filtered by equal in
ference filters within a bandwidthDl53 nm. The detector
outputs are finally analyzed by a computer.
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With the above apparatus, we want now to experimenta
determine the matrix elements of the stateuC&& in Eq. ~2!.
From the trivial identity

^nmuC&&5Cnm , ~11!

we obtain the matrixCnm for the input statesin terms of the
following ensemble averages:

Cnm5eiw ^^Cu01&^nmuC&&

A^^Cu01&^01uC&&
, ~12!

where exp(iw)5C01/uC01u is an unmeasurable phase facto
The choice of the vectoru01& is arbitrary, and it is needed
only for the sake of normalization, e.g., we could have us
u10& or u11&, instead. Using thetomographic expansionover
the four Pauli matrices@4#, we see that, via Eq.~12!, the
matrix element of the input state is obtained from the follo
ing experimental averages:

Cnm5
1

4Ap
(
i j

Qnm
i j si

(1)sj
(2), ~13!

where

p5^^Cu01&^01uC&&5 1
4 ~11s3

(1)!~12s3
(2)! ~14!

is the fraction of events with onesz-detector firing onh and
the other onv, and the matrixQnm

i j is given by

Qnm
i j 5^nus i u0&^mus j u1&. ~15!

The unitary matrixUnm of the device is now obtained
with the same averaging as above, but now for the stat
the output of the deviceuUC&&5(U ^ I )uC&&, namely,

~UC!nm5eiw ^^UCu01&^nmuCU&&

A^^UCu01&^01uCU&&
, ~16!

where we use again Eqs.~14! and~15!, but now the average
expressed by Eq.~12! is carried out over the output stat
uUC&&. The ~complex! matrix elementsUnm are obtained
from Eq. ~16! by matrix inversion. This is, of course, pos
sible since the matrixC is invertible, due to the maximally
entangled character ofuC&&.

An experimental demonstration of the tomograph
method is given in Figs. 3 and 4, where both thereal and
imaginary partsof the four measured matrix elements of th
unitary operatorU of the analyzed device are reported f
two different devices, and compared with the theoretical v
ues. As an see, the experimental results are in very g
agreement with theory, within experimental errors. As a fi
experimental demonstration we have considered only uni
devices, however, it is clear that the method works for n
unitary devices as well. It is also obvious that the method
be used to characterizen qubit devices—e.g., a controlled
7-3
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NOT gate—in which case we just need to multiply byn the
whole setup, by providing an input entangled state and
Pauli detectors for each qubit of the device, with the f
quantum characterization of the device obtained by a jo
tomography on all output entangled pairs. It is clear that
precision of the method will not depend on the particu
tested device—whether it is unitary or not—and will also
independent of the number of qubits. What makes
method particularly reliable in the present single-photo
polarization encoding is the fact that all measurements
performed in coincidence, making the effect of nonu
quantum efficiency of detectors negligible, and effective
purifying the input entangled state. In a different context
e.g., for continuous variables, such as homodyne tomogra
of twin beams@7#—quantum efficiency and entangleme
purity will actually affect the final result: however, the qua
tum tomographic reconstruction can handle all these kind
detection noises below some thresholds@4#, and a mixed
input state in place ofuC&& works well ~but less efficiently!
as long as the state isfaithful, namely, it is related to a maxi

FIG. 3. Experimental characterization of a single optical wa
plate with retardation phasef50.45p and orientation angle of the
optical axis with respect to the laboratory horizontal directionu
520.138p. The experimental matrix elementsUnm of the wave
plate are superimposed to statistical errors for 8000 events,
compared with the theoretical values.
-
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mally entangled one by an invertible map@8#. Unfortunately,
for the twin-beam homodyne tomography@7#, faithfulness
requires the knowledge of the phase of the pump relative
the local oscillator—a feasible but difficult experiment
task—whereas in the present experiment the form of the
tangled input state is completely under control, being de
mined only by the orientation of the nonlinear crystal wi
respect to the pump wave vector and polarization.

In conclusion, we have given the demonstration of a n
tomographic method which allows us to perform a compl
characterization of any quantum device, exploiting the intr
sic parallelism of quantum entanglement, with a single
tangled state playing the role of all possible input states
quantum parallel. The method works for any generally no
unitary multiqubit device, and is particularly reliable in th
present context of single-photon-polarization encoding of
qubit.

This work has been supported by the FET European N
work on QIC ~Contract No. IST-2000-29681-ATESIT! and
the INFM Grant No. PRA 2001 CLON.
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FIG. 4. The same experimental characterization as in Fig
here for a device made of a series of two optical wave plate
wave plate withf50.45p and u520.138p followed by another
wave plate withf5p andu510.29p.
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