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Common misconceptions on the Heisenberg principle are reviewed, and the original spirit of the principle is
reestablished in terms of the trade-off between information retrieved by a measurement and disturbance on
the measured system. After analyzing the possibility of probabilistically reversible measurements, along with
erasure of information and undoing of disturbance, general information-disturbance trade-offs are presented,
where the disturbance of the measurement is related to the possibility in principle of undoing its effect.

1 Introduction

The need for hard miniaturization and the recent discovery of radically new information processing [1], have
dramatically changed our attitude towards Quantum Mechanics, which eventually got out the middle age
of purely academical consideration, to become a relevant chapter of the modern information technology.
At the beginning “quantum” was a synonymous of “uncertainty”, and was considered just as a major
limitation in nanotechnology. More recently, however, we learned how to turn the “quantum” into a powerful
horse that we can harness and ride, with unimagined possibilities in principle for guaranteed cryptographic
communications and tremendous speedup of complex computational tasks, giving birth to the new quantum
information technology.

In the theoretical research for quantum information, one of the main programs is undoubtedly to establish
the actual limitations and controllability of quantum measurements, in a unified framework suited to the
needs for optimization and engineering. However, looked with not expert eyes, this program should appear
quite incompatible with the paradigm itself of quantum mechanics: the so-called “Heisenberg principle”,
which establishes the “participatory” nature of the quantum experiment. In fact, according to its popular
version – based on the gedanken experiment of the γ-ray microscope [2, 3], which was then elevated to
“principle” by Ruark [4] – it is impossible to measure one variable, say the momentum p, of a conjugated
pair (e.g. position q and momentum p) without “disturbing” the value of the conjugated variable q of an
amount ∆q no less than the order of �/∆p, where ∆p is the accuracy of the measurement [5]. And such
paradigm is not just a folklore for the layman, since the principle is clearly stated and emphasized in excellent
textbooks of quantum mechanics – e.g. the valuable Messiah book [6], which devotes a lengthy section to the
“uncontrollable disturbance during the operation of measurement”, with an extensive analysis of different
thought experiments in support of the generality of the “principle”, and concluding that “the unpredictable
and uncontrollable disturbance suffered by the physical system during a measurement is always sufficiently
strong that the uncertainty relations always hold true.” Misunderstanding and misuses even at the level of
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advanced research are revealed, for example, by the controversy [7–15] on the existence of a “standard
quantum limit” for precision in monitoring a free mass position – a problem which arose in the field of
gravitational wave detection. Finally, the controversial nature of the Heisenberg principle is also witnessed
by the existence of an entire book on quantum measurements [16] based on the use of the principle beyond
its original heuristic nature, in contrast to some “classics” of quantum mechanics that not even mention it
– e.g. the Landau and Lifshitz book [17] – whereas, for example, if you look for “uncertainty principle” in
the subject index of the Peres book [18] the referred page number is provocatively the page of the index
entry itself.

Before proceeding with the discussion on the Heisenberg principle, let me first clarify some common
confusion between “uncertainty relations” and “uncertainty principle”, the former concerning the statistics
of repeated measurements on an ensemble of equally prepared identical quantum systems, the latter, on
the contrary, concerning a sequence of measurements on the same quantum system (this difference is well
emphasized in the Jammer book [19]). The “uncertainty relations” do not have any bearing on the issue of
the measurement disturbance, since it can be experimentally tested by measuring each of the observables
separately: at most one of the two root mean squares, say ∆p can be considered as the precision of the
preparation, e.g. by a collimator of particle momentum, and then ∆q will results from the statistics of
measuring only q. In other words, both ∆p and ∆q are a priori uncertainties according to the Born rule, and
neither will result as a consequence of the disturbance due to the measurement. As a matter of fact, since both
∆p and ∆q are intrinsical to the wave function before the measurement, they cannot be logically connected
to the interaction with apparatus. And in fact, a measurement model was provocatively proposed by Ozawa
[20] in which the position of the particle can be measured leaving it in a eigenstate of the momentum.
With no proper distinction between preparation and measurement (this issue is extensively analyzed in
the recent paper by Muynck [21]) the two forms of complementarity amalgamated, leading to another
erroneous interpretation of the Heisenberg principle as related to joint measurements (see for example the
Bohm book [22]). Although in quantum mechanics of Dirac and von Neumann joint measurement of only
compatible observables are allowed – in full logical contradiction with the last interpretation – however, there
are precise indirect models [23,24] describing approximate joint measurements (which are actually achieved
in a heterodyne apparatus [25]), and the resulting minimum uncertainty product in principle is double than
the Heisenberg bound [25, 26] – the socalled 3dB of added noise in the optimal joint measurement.

There is an extensive literature on the various misinterpretations of the principle, starting since from
the origins. Bohr himself disagreed with Heisenberg on the gedanken experiment of the γ-ray microscope,
as quoted in the original paper [2]. Lamb [27] criticized the γ-ray microscope as unsuitable for position
measurements. Historical reviews can be found, for example, in the Jammer books [19,28], and in the Beller
book [29]. A serious criticism to the use of the classical definition of resolving power due to diffraction in the
gedanken experiment is made in [30], where Heisenberg’s microscopes with super-resolutions violating the
principle are devised. Criticisms to the use of root mean square as measures of uncertainty and disturbance
are made in various papers (see, for example, [31]). As regards the “uncertainty relations”, there have been
many alternative derivations and generalization since from the origins (see [28] for a detailed history).
The general formulation for any pair of non commuting observables is due to Robertson [32], after some
relevant remarks of Condon [33]. Schröedinger [34] then recognized that the uncertainty product is not
invariant under unitary transformations, and found “tighter” uncertainty relations. More recently “entropic”
generalizations of the uncertainty relations were given [35, 36], noise-dependent relations in [37], higher-
order uncertainty relations also involving more than two operators [38], only to quote some work known to
the present author.

Coming back to the original problem of the Heisenberg gedanken experiment, even though it is clear that
the “uncertainty relations” do not have any bearing on the issue of the measurement disturbance, and there
is no in-principle “uncontrollable disturbance during the operation of measurement”, however, the issue of
the minimum disturbance in-principle from a quantum measurement in relation with the information gained
from the measurement is still an unsolved problem. That a kind of Heisenberg principle must exist in form of
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information-disturbance trade-off is evident, for example, from the impossibility of determining the wave-
function of a single system from any sequence of measurements on the same quantum system [39]. Such
possibility has recently intrigued several authors [40–44], which explored concrete measurement schemes
based on vanishingly weak quantum nondemolition measurements [40], weak measurements on “protected”
states [41], “logically reversible” [42], and “physically reversible” [43,44] measurements. In each of these
schemes the conclusion is that it is practically impossible to measure the wave function of a single system,
either because the weakness of the measuring interaction prevents one from gaining information on the wave
function [40], or because the method of protecting the state [41] actually requires some a priori knowledge
on the state (this is suggested in [44] and [40]), or because quantum measurements can be physically
reverted only with vanishingly small probability of success [44]. The impossibility of determining the
wave-function of a single quantum system is dictated by the no-cloning theorem [45], which is just a direct
consequence of unitarity of quantum mechanics [46]. Therefore, as a consequence of the general laws of
quantum mechanics, there must be a detailed balance between information and disturbance, which makes
impossible to determine the state of a single quantum system from any sequence of measurements on it.

Despite the relevance of the problem of the information-disturbance trade-off at the foundational level
– although a consequence quantum laws – very little literature can be found on this issue, maybe due
to the difficulty of the problem. The issue also recently became of practical relevance for posing general
limits in information eavesdropping in quantum cryptographic communications. For such purpose, for
example, in [47] Fuchs and Peres analyzed some trade-offs for the two-state discrimination. A part from
this work, only few studies are known to the present author: the very interesting analysis by Fuchs [48]
and by Barnum [49], and, only very recently, a definite result by Banaszek [50] on a general trade-off
between the quality of a single state estimation and the fidelity between the input and the output states of
the measurement. Also Ozawa [51] has recently proposed a general trade-off, which will be mentioned
in more details in the following. Finally, Belavkin [52] has given a Heisenberg principle for continuous
measurement of the position in the framework of filtering theory.

In this paper some results will be presented in the attempt to give general a information-disturbance
trade-off which holds for any quantum measurement. The tradeoff must be valid “in-principle”, whence at
the single-outcome level, not only in average over outcomes, as those considered in [47–51]. Also, since it
should be valid for a general context, the tradeoff has to be independent on the particular analytical form of
information and disturbance, which is suited to the particular problem at hand (in the analysis [47–49] the
fidelity between input and output has been considered as a measure of the “disturbance”). This requirement
of generality has led us to consider trade-offs in form of majorization “orderings” [53, 54] between the
conditional probability from the measurement and quantities related to the measurement effect on the input
state, the former being the variables from which one can evaluate any kind of “information”, the latter
being the source of the “disturbance”. The disturbance of the measurement will be related to the possibility
in-principle of undoing its effect, and for this reason we will previously analyze in general the occurrence
of probabilistically reversible measurements. We will see that when the measurement effect is undone, also
the information retrieved from it is erased, and from this we will argue that in a cascade of measurements
the disturbance can also be decreased, however, at the expense of losing the previously gained information.
The case of measuring an “observable” will be analyzed in some detail. The majorization trade-off will then
be applied to the common case of the mutual information retrieved from the measurement: this will lead us
to a trade-off in a form of a bound tighter than the Holevo bound [1], with the disturbance in the form of a
Shannon entropy versus the singular values of the measurement “contraction” (the operator describing the
effect of the single outcome of the measurement). As we will see, the generality of the majorization relation
turns out to be a weakness when a specific case of information/disturbance is considered, since it proves
the tradeoff validity in a more limited situation than the actual one, depending on the relation between the
measurement and the ensemble of input states. Finally, we will see that the disturbance obtained in this way
agrees with the “decrease of entanglement” due to the measurement when it acts locally on an entangled
state.
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2 Information-disturbance trade-offs

Since we are looking for an in-principle trade-off which should account for the impossibility of determining
the state of a single quantum system for no a priori knowledge, we need to consider the general measurement
scenario, in which a sequence of measurements on a single quantum system is performed, with the possibility
of changing the measuring apparatus at each measuring step, e. g. depending on the outcome from the
previous step. Therefore, our information-disturbance trade-off must be valid at the single-outcome level,
not just in average over outcomes. Moreover, to be true “in-principle”, we must consider a situation of
perfect control on the measurement, namely the apparatus is perfectly known, and we are able to perform
any measurement and any unitary transformation at will, according to the rules of quantum mechanics. In
the following we will refer to such in-principle situation as perfect technology.

Notation

Throughout this paper, we will use boldfaced letter and square brackets to denote arrays/vectors, e.g.
x = [xi] = (x1, x2, . . .). For any operator A on the Hilbert space H with d = dim(H), by Ker(A)
we will denote the kernel of A, by Rng(A) its range, by rnk(A) its rank, and by PA the orthogo-
nal projector on Rng(A). We will write the singular value decomposition of A as A = XAΣAY

†
A,

where ΣA = diag{σ1(A), σ2(A), . . . , σr(A), 0, . . . , 0} is the diagonal matrix of singular values of A
ordered decreasingly (including also the vanishing ones), and XA and YA are unitary operators of left

and right eigenvectors respectively. By ||A||p .=
[∑

i σi(A)p
] 1

p we will denote the p-Shatten norm of A,
with ||A||1 the trace-norm, ||A||2 the Hilbert-Schmidt norm, and with ||A|| ≡ ||A||∞ the usual operator
norm. The symbol A‡ will denote the Moore-Penrose pseudoinverse of A, i.e. A‡ = YAΣ‡

AX
†
A, with

Σ‡
A = diag{σ−1

1 (A), σ−1
2 (A), . . . , σ−1

r (A), 0, . . . , 0}, i.e. A‡ is the same as A† but with the inverse of
the non-vanishing singular values. The Moore-Penrose pseudoinverse is completely characterized by the
properties AA‡A = A, A‡AA‡ = A‡, (A‡A)† = A‡A, and (AA‡)† = AA‡. It follows that PA = AA‡

and PA† = A‡A. We will denote by E = (S,a) the ensemble of states S = {ψ} distributed with a priori
probability a = [a(ψ)] using the abbreviate notations ψ ∈ E for ψ ∈ S(E), S(E) and a(E) to denote
the set of states and the probability distribution of the ensemble E , respectively, and |E| the cardinality
of S(E). The singleton set with the state ϕ will be denoted by the state itself ϕ. We will call universal
ensemble the uniform ensemble of all possible (pure) input states. With ρE =

∑
ψ∈E a(ψ)|ψ〉〈ψ| we will

denote the a priori density operator of the ensemble E . The Shannon entropy of the probability vector
a = [ai] will be denoted by H(a) .= − ∑

i ai log ai and for the ensemble E we will also write equivalently
H(E) ≡ H(a(E)) = − ∑

ψ∈E a(ψ) log a(ψ). Finally we will write E = pE1 + (1 − p)E2 for the union
ensemble with S(E) = S(E1) ∪ S(E2) in which a state is picked from S(E1) or S(E2) with probability
p and (1 − p), respectively, corresponding to the density operator ρE = pρE1 + (1 − p)ρE2 , and write
E = pE1 ⊕ (1 − p)E2 when S(E1) ⊥ S(E2).

2.1 Pure measurements

A measurement with perfect technology means that we have a precise quantum description of the apparatus.
Such a measurement is pure, namely it preserves purity of states. A pure measurement for a single outcome
is described by a contractionM , namely an operator with bounded norm ||M || ≤ 1, to guarantee occurrence
probability not greater than unit for any input state. The output state |ψM 〉 after the measurement and the
probability p(M |ψ) that M occurs on the input state |ψ〉 are given by

|ψM 〉 =
M |ψ〉
||Mψ|| (state reduction), p(M |ψ) = ||Mψ||2 (Born rule). (1)

We will also regard the case of unitaryM as a limiting case of “measurement”, which gives no information
on |ψ〉, since p(M |ψ) = 1 independently on |ψ〉. This will also corresponds to no in-principle disturbance
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for any state, since with perfect technology we can deterministically reverse the effect ofM without knowing
|ψ〉.

2.2 Information from a single measurement outcome

We can always regard the quantum measurement as a problem of discriminating between a set of hypotheses
corresponding to an ensemble E = (S,a) of states S = {ψ} distributed with a priori probability a = [a(ψ)].
The Shannon entropy H(E) quantifies our a priori “ignorance” on which-state of the ensemble. When the
outcome corresponding to the contraction M occurred, then our ignorance is reduced, since now the a
priori probability distribution a = [a(ψ)] is upgraded to the a posteriori probability aM = [a(ψ|M)] that
the state was ψ given that we know that M has occurred [the corresponding ensemble will be denoted by
EM = (S,aM )]. The probability a(ψ|M) is given by the Bayes rule a(ψ|M) = a(ψ)P (M |ψ)/pE(M),
where pE(M) .= Tr[ρM†M ] denotes the overall occurrence probability for M . The information ∆IE(M)
on which-state ψ ∈ E gained from the occurrence ofM is just the difference between our ignorances before
and after the occurrence of M , namely

∆IE(M) = H(E) −H(EM ) = −
∑

ψ∈E
a(ψ) log a(ψ) +

∑

ψ∈E
a(ψ|M) log a(ψ|M). (2)

2.3 Knowingly reversible measurements

We say that the effect of a measurement outcome corresponding to the contractionM is knowingly reversible
on a set S = {ψ} of input states if for any a priori unknown input state ψ ∈ S we can perform another
measurement on the output stateψM ofM such that for some outcome – say corresponding to the contraction
M̃ – we know for sure that the new output state is the originalψ, for allψ ∈ S. In other words, the contraction
M is knowingly reversible on S if there is another contraction M̃ such that

M̃M |ψ〉 ∝ |ψ〉, ∀ψ ∈ S. (3)

This means that with some probability we can undo the effect of M with another measurement contraction
M̃ . The squared modulus of the proportionality constant in Eq. (3) is the overall probability of achieving
M and knowingly reversing it with M̃ . If rnk(M) = d (M full rank), then M is knowingly reversible for
any input state, since it is invertible as an operator. It is easy to check that, apart from an overall phase
factor, the most efficient reversion M̃ (i.e. maximizing the reversing probability on any input state) is given
by M̃ = M−1/||M−1||. In fact, by taking M̃ = ωM−1, the overall probability of achieving M̃ on |ψM 〉
multiplied by the probability P (M |ψ) of achieving M on |ψ〉 is just |ω|2 and the maximum |ω| in order
to have M̃ as a contraction is |ω| = ||M−1||−1. For the most efficient reversion M̃ the probability prev of
reversion is bounded as κ−2(M) ≤ prev ≤ 1, with κ(M) = ||M ||||M−1|| the condition number of M , and
the bounds are achieved by the left vectors of the singular value decomposition ofM corresponding toσ1(M)
and σd(M), respectively. We see that the smaller the condition number κ(M) ofM , the higher the chance of
reversing M , i.e. the “more reversible” is M . Since the condition number of an operator gives also an error
estimate under small perturbations of the linear action of the operator [54], this means that more reversible
is M , the more “amplified” an input perturbation will result at the output. Also, notice that the probability
p(M̃M |ψ) of the cascade of M and its successful reversion is p(M̃M |ψ) = |ω|2, independently on the

input state |ψ〉, and for the most efficient reversion is p(M̃M) = σ2
d(M) ≤ [∏

n σ
2
n(M)

]1/d ≤ 1
d ||M ||22.

The bound
[∏

n σ
2
n(M)

]1/d
generalizes the Bhattacharyya overlap given in [55] for the case in which the

measurement corresponds to an observable X (see Subsect. 2.5).
WhenM is not full rank, i.e. rnk(M) < d, it is still possible to have situations in whichM is knowingly

reversible. The first case is when the set S is orthogonally split by M , namely it can be written as the union
of two orthogonal subsets S = S

‖
M ⊕ S

⊥
M of which S

⊥
M ⊆ Ker(M) and S

‖
M ⊆ Ker(M)⊥ ≡ Rng(M†).
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In fact, in this case we know a priori that M cannot occur on an input state |ψ〉 ∈ Ker(M), whereas if M
occurred, then |ψ〉 ∈ Rng(M†), and we can reverse M with some probability using a contraction M̃ such
that M̃M ∝ PM† , namely

M̃ = ωM‡ + Z(I − PM ), (4)

where Z is any complex operator. Since M̃ must be itself a contraction, from ||M̃ || = max{ω||M‡||, ||Z(I−
PM )||} we obtain the general parametrization of the most efficient M̃ (a part from a phase factor)

M̃ =
M‡

||M‡|| + Z(I − PM ), (5)

with Z(I − PM ) a contraction.
As regards the case in which the set S is not orthogonally split by M , the contraction can be knowingly

reversible only in the degenerate situation in which S is the disjoint union S = S
⊥
M ∪ ϕ of S

⊥
M ⊆ Ker(M)

with the single state ϕ �∈ Ker(M). Since this case is not very interesting (since it is essentially equivalent
to reverse M only on a single state), we will not consider it in the following.

2.4 Negative informations: undoing a measurement erases its information

In [44] Royer found an example of knowingly reversible measurement on a two-dimensional space, and
supposed that a sequence of successfully reverted measurements could be used to determine the state of single
quantum system with some probability, without any a priori knowledge of the state. However, thereafter
in [56] he admitted that in fact this was not true. From Eq. (4) we can easily see that in the most general case
in which we are able to revert a contractionM , the probability of achievingM and then reverting it is given
by |ω|2, independently on the input state, whence any succession of successfully reverted measurements
provides only the information that the input state was in Rng(M†), e.g. for an ensemble E orthogonally
split by M as E = pE‖

M ⊕ (1 − p)E⊥
M such information would be

∆IE(M̃M) = H(E) −H(E‖
M ). (6)

For uniform E‖
M Eq. (6) gives ∆IE(M̃M) = H(E) − log(|E‖|), and for uniform E one has ∆IE(M̃M) =

− log p = log(|E|/|E‖
M |). For the input universal ensemble necessarilyM is reversible only if Rng(M†) ≡

H, and the information (6) is then exactly zero. Since the occurrence ofM must have given some information
on which-state of E anyway, this means that undoing the measurement must also erase the information from
it. In fact, the information from a single measurement outcome in Eq. (2) can be negative: the reader
unfamiliar with negative informations should notice that the informations considered in the literature are
always positive, since they are averaged over all outcomes, whereas generally the contribution from a single
outcome can be negative. What does it mean to have a negative information? From Eqs. (2) we see that
negative informations occur when the a posteriori probability distribution aM = [a(ψ|M)] is less “peaked”
around some ψ ∈ S than the a priori probability a = [a(ψ)]. In practice, this means that the measurement
result contradicts our previous knowledge (see the amusing example by Uffink quoted in the Peres book [18]).
And in fact, the information ∆IEM

(M̃) from the reversion M̃ (now with a priori probability given by the
posterior probability aM from the previous measurement M ) is negative, and cancels exactly the previous
information ∆IE(M). However, it is not always possible to erase the information from a measurement with
another one, and, in common situations the information is permanent, i.e. it cannot be erased as in the case
of a customary von Neumann measurement. From the above considerations we learn the general lesson:
1) in some cases the “disturbance” of two measurement outcomes in cascade can be lower than that from
a single measurement outcome, since, at least, there are cases in which we can revert the measurement –
i.e. with no overall disturbance – whence, more generally, we can partially undo the disturbance from a
previous measurement; 2) when some disturbance is undone, then necessarily some information is lost.
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2.5 The case of measuring an observable

When the quantum measurement is the measurement of an observable? This is the case in which the
positive operator valued measure (POVM) of the measurement is commutative, namely the POVM is
jointly diagonalized on the same orthonormal basis, say |x〉. In fact, let’s denote by {Py} with Py ≥ 0 and∑
y Py = I the POVM of the measurement. We can conveniently write the joint diagonalization as follows

Py|x〉 = p(y|x)|x〉, (7)

where the eigenvalue p(y|x) of Py on the eigenvector |x〉 is denoted as a conditional probability, since we
must have p(y|x) ≥ 0, and

∑
y p(y|x) = 1 – and, in fact, we can interpret the eigenvalue p(y|x) as the

conditional probability of getting y when the “true” value was x instead. It is clear that the measurement
of an observable corresponds to our state-discriminating framework when the input ensemble is the set
of orthogonal states {|x〉}. A pure measurement that corresponds to the observable X

.= {|x〉} must be
made of contractions My with M†

yMy ≡ Py with singular value decomposition My = XMyΣ(My)Π†
yY

†

with right unitary operators Yy = YΠy giving Y †
y |x〉 = Π†

y|n〉, namely giving the same orthonormal basis
{|n〉} on which Σ(My) = diag[σ1(My), σ2(My), . . . , σd(My)] is diagonal, apart from a permutation Πy

of the basis {|n〉}. This is equivalent to say that the most general form of the contraction My is My =
Wy

∑
x

√
p(y|x)|x〉〈x|, withWy unitary: in other words, there is a unitaryWy such that [W †

yMy, |x〉〈x|] =
0 ∀x. The measurement is complete – i.e. it scans the whole spectrum σ(X) .= {x} of the observable X
with |σ(X)| = d – when rnk(M) = d. The measurement is non degenerate – namely each outcome y
corresponds unambiguously to a unique most probable value x – if σ1(My) > σ2(My), which means that
p(y|x) for eachy has a non degenerate maximum versusx. The optimal probabilityprev(My)of reversing the
contraction My is given by σ2

d(My) and can be conveniently bounded as prev(My) ≤ [
∏
n σ

2
n(My)]1/d.

Upon rewriting the singular values in terms of the conditional probabilities and after summing over all
outcomes y we get the bound for the average reversion probability prev ≤ B(X : Y ) where B(X : Y ) =∑
y[

∏
x∈σ(X) p(y|x)]1/|σ(X)| is the Bhattacharyya overlap bound derived in [55]. We see that 0 ≤ B(X :

Y ) ≤ 1, with B(X : Y ) = 0 when p(y|x) is vanishing for some values of x, y, and B(X : Y ) = 1 when
p(y|x) is independent on x for every y. Therefore, the measurement has more chance of being reverted – i.e.
it makes “less disturbance” – when the conditional probability distribution is more “flat” versus x, namely
the information on x is smaller.

The repeated application of a complete non degenerate measurement of an observableX provides another
instructive example of the information-disturbance trade-off. In fact, we can apply the measurement many
times on the same quantum system prepared in the ensemble of orthogonal states {|x〉}, compensating the
measurement back-action with the conditional unitary transformation W †

y . In this way we will make no
disturbance on the quantum system – which will always remain in its original state – and, at the same time,
from the statistics of the outcomes we can also have perfect discrimination in the limit of infinitely many
repetitions. However, since a cascade made of more repetitions will correspond to an overall conditioned
probability more and more sharply peaked around the “right” value x, the contraction corresponding to the
cascade will also have a decreasingly smaller chance of reversion, and in the limit of infinite repetitions it
will approach a rank-one von Neumann measurement. Here we see that in principle it is possible to extract
perfect non erasable information even by using a knowingly reversible measurement, however, performing
the measurement infinitely many times on the same quantum system. It is clear that the information retrieved
from the measurement on the input state can be perfect only when the input ensemble is {|x〉}, otherwise
it will be lower than the maximum value (given by the Holevo bound [1]), and, in particular, it is zero
when the input ensemble corresponds to the observable Y “conjugated” to X , namely the input states
{|yk〉, k = 1, . . . d} are of the form |yk〉 = d− 1

2
∑d−1
l=0 eikl2π/d |xl〉 where the spectrum of X has been

labeled with xl.
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2.6 What is disturbance?

We cannot give a definition of disturbance that can be good for all situations, since its definition must be
suited to the particular problem at hand. For example, a definition in terms of the fidelity between input and
output [47] can be suited to some quantum crypto-analysis: however, we cannot consider it as a measure of
the in-principle disturbance on the measured system, since we would have disturbance also from a unitary
transformation, which can be reversed at will on any unknown input state. As another example, when we
want to account for the possibility of reversing the measurement approximately by a unitary transformation,
a suitable definition of the disturbance D(M) from a contraction M should seize how much the output
|ψM 〉 in Eq. (1) is unitarily uncorrelated with the input |ψ〉, since we would say that there is no disturbance
if |ψ〉 and |ψM 〉 are connected by a fixed unitary transformation – say V – independently on |ψ〉. Then
we would define the “disturbance” as D(M) = 1 − C(M), where C(M) is the input-output unitary
correlation of M defined as the fidelity between |ψM 〉 and V |ψ〉 for unitary V , averaged over all |ψ〉 [with
the joint probability p(M,ψ)], and then maximized over V , namely C(M) = maxV |〈ψ|V †|ψM 〉|2. A
straightforward calculation gives C(M) = 1

d(d+1) [||M ||21 + ||M ||22]. We can see that C(M) approaches its
maximum C(M) = 1 for contraction M close to a unitary (all singular values approach 1), whereas it is
minimum C(M) = 2/d(d+ 1) for a rank-one M . Notice that here D(M) = 1 −C(M) is a Schur-convex
function of the vector [σ2

i (M)] of squared singular values of M .
The “disturbance” D(M) = 1 − C(M) sizes our inability of approximately revert M by a unitary

transformation. More generally, if we want to define D(M) in a way which is related to our ability in-
principle of reversing M , we must consider that reversion is generally achieved by another measurement.
Then, the definition of disturbance must satisfy the following requirements:

1. The disturbance D(M) due to M must be a function only of the probabilities of reversing its effect,
not on how the reversion is performed. Therefore, we must have D(M) = D(UM), for all unitary U ,
namely the disturbance is a function only of the POVM element M†M of the measurement.

2. If we look for a definition ofD(M) which is a property ofM only, independently on the input state, then
in addition to the requirement 1 we must also haveD(M) = D(MV ) for all unitaryV . This means that
the disturbance must be a function of the singular values of M only, namely D(M) = f({σl(M)}).
Therefore, our definition of D(M) should be of this form at least for the input universal ensemble.

3. We expect that the disturbance will be minimum for unitary M , and maximum for rnk(M) = 1
(Gordon-Louisell measurement [24], e.g. von Neumann): since in general the definition of D(M)
should also depend on the input ensemble, these two extreme cases at least should hold for the case of
the input universal ensemble.

2.7 Majorization trade-offs

In the search for general trade-offs between “information” and “disturbance” for a quantum measurement
at the single-outcome level we will try to accomplish the following aim. While satisfying the above require-
ments 1–3, we look for general inequalities which will guarantee the trade-off independently on the specific
quantities that will be used for both “information” and “disturbance”, to be suited to the particular problem
at hand. Notice that the usual information in Eq. (2) is the sum of two contributions, of which the first one
H(E) is independent on M , whereas the second −H(EM ) is a Schur convex function of the conditioned
probabilities a(M |ψ). Therefore, if we want our trade-off to be true also for the usual information (2),
we should look for a majorization relation aM ≺ zM between the vector aM = [a(ψ|M)] and a vector
zM = z(σi(M), E) having components that depend on the singular values σi(M) of M along with quan-
tities related to the ensemble E , and such that for the input universal ensemble will be a function of σi(M)
only [for majorization theory see [53,54]]. This will guarantee the trade-off by just taking for zM the same
Schur-convex function f = −H(aM ) that we have in the information, namely f(zM ) ≡ −H(zM ). More-
over, the majorization relation will guarantee the trade-off for any other choice of Schur-convex function,
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depending on the problem, in which the “information” is a function of aM , and the “disturbance” is the
same function of zM . Notice, however, that the power of the majorization approach, is also its weakness.
In fact, since a majorization relation will guarantee the trade-off for all Schur-convex functions, it may be
possible that for a given function (f = −H in our case) the trade-off could be true more generally than for
aM ≺ zM . Finally, we want to emphasize that the convexity of the function f is unrelated with the assertion
that “the disturbance from a set of M randomly chosen is always lower than their averaged disturbance”,
since in our case the definition of disturbance is given only for pure contractions, as we are concerned only
with pure measurements. On the other hand, as we will see in the following, when we consider the complete
measurement with all possible outcomes, we can easily average the trade-off over the outcomes with their
probabilities of occurrence.

Looking for a majorization relation involving aM is equivalent to look for a majorization relation for the
joint probabilities a(M,ψ), since the two are related by a fixed normalization constant given by the overall
probability pE(M) of occurrence of M . It is easy to derive a weak majorization relation as follows

a(M,ψj) = a(ψj)a(M |ψj) = a(ψj)〈ψj |YMΣ2
MY

†
M |ψj〉

=
d∑

i=1

σ2
i (M)a(ψj)|〈i|Y †

M |ψj〉|2 .=
d∑

i=1

Wjiσ
2
i (M), (8)

where M = XMΣMY
†
M is the singular value decomposition of M , and {|i〉} is an orthonormal basis on

which ΣM has the canonical diagonal form. The rectangular matrix Wji
.= a(ψj)〈i|Y †

M |ψj〉|2 is double
sub-stochastic, since

∑
iWji = a(ψj) Tr[Y †

M |ψj〉〈ψj |YM ] = a(ψj), and
∑
jWji = 〈i|Y †

MρEYM |i〉 ≤ 1.
This means that the following weak majorization relation (symbol ≺w) holds

[a(M,ψj)] ≺w [σ2
i (M)]. (9)

However, the weak majorization relation ≺w will guarantee trade-offs for a choice of Schur-convex function
that is also increasing on its domain [54] [again, this does not mean that the trade-off cannot hold for some
particular Schur-convex function].

A majorization relation between the vector [a(M,ψj)] and a vector containing the singular values of M
can be obtained by expanding the probability a(M,ψj) as follows

a(M,ψj) = a(ψj)〈ψj |YMΣ2
MY

†
M |ψj〉 =

∑

i

a(ψj)|〈ψj |YM |i〉|2σ2
i (M) =

∑

i

Sjiλiσ
2
i (M), (10)

where

λi = 〈i|Y †
MρEYM |i〉, Sji = a(ψj)|〈ψj |YM |i〉|2λ−1

i . (11)

Notice that λi =
∑
j a(ψj)|〈i|Y †

M |ψj〉|2 and λi = 0 if and only if |〈ψj |YM |i〉|2 = 0,∀j, and the sum in
Eq. (10) is extended only to those terms for which λi > 0 – say for i = 1, . . . r ≤ rnk(M). It follows that
the |E| × r matrix S has the following rows and column sums

∑

i

Sji = a(ψj)〈ψj |YMζ−1Y †
M |ψj〉 .= sj ,

∑

j

Sji = 1, (12)

where ζ =
∑
i λi|i〉〈i|. Notice that generally ζ �= ρE and we have ζ = ρE when ρE is diagonal withM†M ,

namely when [ρE ,M†M ] = 0, in which case we are guaranteed that sj ≤ 1,∀j, whereas in general sj
can be greater than unit. We will call the ensemble E parallel to M when ρE commutes with M†M , and
quasi-parallel to M when sj ≤ 1,∀j. Ensembles that are parallel to any M are obviously the maximally
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chaotic ones, for which ρE = d−1I . For ensembles quasi-parallel toM the |E|× r matrix S in Eq. (11) can
be augmented to a (|E| + r) × (|E| + r) stochastic matrix as follows

S̃ =

S diag{1 − sj}

0 Sτ

(13)

By padding the vectors [a(M,ψj)] and [λiσ2
i (M)] with r and |E| additional zeros, respectively, Eqs. (10)

and (13) guarantee the following majorization relation

[a(M,ψj)] ≺ [λiσ2
i (M)], (14)

and upon normalizing both vectors we have

aM ≺ zM , (15)

with

(zM )i = p−1
E (M)λiσ2

i (M). (16)

For ensembles E that are not quasi-parallel to M we can always build a squashed ensemble Ẽ that is
quasi-parallel to M by replicating the state |ψj〉 corresponding to sj > 1 in sufficiently many identical

copies |ψ(j)
l 〉 ≡ |ψj〉 distributed with probabilities a(ψ(j)

l ) = q
(j)
l a(ψj), with

∑
l q

(j)
l = 1, such that

sj max{q(j)l } ≤ 1.

2.8 Information disturbance trade-offs

From Eq. (15) it follows that for ensembles quasi-parallel to M we have −H(aM ) ≤ −H(zM ), and for
the information on which-state retrieved from the occurrence of M we have

∆IE(M) ≤ H(E) −H(zM ). (17)

If the ensemble is not quasi-parallel to M , by considering any squashed ensemble Ẽ we obtain

∆IE(M) ≤ H(E) −H(zM ) −
∑

j

[a(ψj) − p(ψj |M)]H(q(j)), (18)

but, unfortunately, the last quantity in Eq. (18) has no definite sign. For this reason, in the following we will
focus attention only on ensembles that are quasi-parallel to M .

When considering a complete pure measurement M = [M1,M2, . . .Mn] with
∑
iM

†
iMi = I we can

average both sides of Eq. (17) on outcomes i with the probability of occurrence pE(Mi), and obtain

∆IE(M) ≤ H(E) − 〈H(zMi)〉, (19)

where 〈. . .〉 denotes the averaging over outcomes i. The quantity −H(zM ) can be regarded as a kind of
“disturbance” due to M . Notice that

− log rnk(M) ≤ −H(zM ) ≤ 0, (20)
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The disturbance is minimum when σ2
i (M) ∝ λ−1

i , and maximum for rank-one M (Gordon-Louisell
measurements) or when there is only one right-vector Y |i〉 of M in the range of ρE . Notice that for general
ensemble the disturbance is not minimum for unitary M : this is a phenomenon due to the occurrence
of negative informations analyzed previously, e.g. a measurement reverting a previous one undoes its
disturbance, namely it makes “less disturbance” than a unitary transformation. In particular, when the
ensemble is orthogonally split by M and E‖

M is itself orthogonal, then the minimum disturbance will be

exactly equal to the information gain −H(E‖
M ) in Eq. (6) from a successfully reverted measurement. For

orthogonal ensembles (generally not split) we have in average over outcomes

∆IE(M) ≤ S(ρE) − 〈H(zM )〉 ≤ χ(E), (21)

where S(ρ) = − Tr[ρ log ρ] denotes the von Neumann entropy, and χ(E) = S(ρE) − ∑
j ajS(ρj) is the

Holevo bound for the ensemble with density operator ρE =
∑
j ajρj for a priori probabilities and states aj

and ρj , respectively. Eq. (21) gives a bound for the information retrieved from the single outcome that is
tighter than Holevo bound [in our case the a priori states ρj = |ψj〉〈ψj | are pure, and χ(E) = S(ρE)]. The
information disturbance trade-off (21) asserts that we can make less disturbance at the price of retrieving
less information than the available one. Also notice that in the present case of orthogonal input ensemble
a measurement M made of random unitary transformations will give minimum disturbance and zero
information.

We want to focus now on the simplest case in which the ensemble E is parallel to M . Here we have

−H(zM ) = −S((ρE)M ), (22)

namely our disturbance is equal to the opposite of the von Neuman entropy of the “reduced” density operator
(ρE)M

(ρE)M =
MρEM†

Tr[MρEM†]
. (23)

From Eqs. (22) and (23) we also see that for ensembles parallel to M our “disturbance” is also exactly
equal to the “reduction of entanglement” that M would produce locally on any entangled state |Ψ〉 that is
a purification of ρE , namely, for

|ΨM 〉 .=
M ⊗ I|Ψ〉

||M ⊗ I|Ψ〉|| , Tr2[|Ψ〉〈Ψ|] = ρE (24)

we will have −H(zM ) = −S(Tr2[|ΨM 〉〈ΨM |]). Notice that in general, M can also probabilistically
increase the entanglement of |Ψ〉: this situation corresponds to the occurrence of negative informations
mentioned above, with disturbance less than that from a unitary transformation. In the special case in which
the ensemble is also maximally chaotic (e.g. for the universal ensemble), our disturbance will be given by

−H(zM ) =
∑

i

σ2
i

||M ||2 log
σ2
i

||M ||2 , (25)

and the less disturbing isM , the “more flat” are its singular values, with the largest mutual information being
achievable with rank-one measurements. This situation is depicted in Fig. 1. From Eq. (25) we see that our
disturbance “interpolates” the definition of disturbanceD(M) = − log rnk(M) proposed by Ozawa [51] for
the trade-off I(X|ρ) ≤ S(ρ)− log rnk(Mx) for the “information gain” I(X|ρ) .= S(ρ)−∑

x p(x|ρ)S(ρx)
[57] from a pure quantum measurement made of contractions Mx all with the same rank rnk(Mx), with ρ
the input state, p(x|ρ) = Tr[M†

xMxρ], and ρx = MxρM
†
x/Tr[M†

xMxρ] the output state.
We conclude this section by noticing that the present definition of disturbance explains the information-

disturbance trade-off in quantum teleportation [58], between the Alice’s information on the transmitted



Fortschr. Phys. 51, No. 4–5 (2003) 329

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

1 2 3 4 5 6 7

σ(Μ)

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������

������
������
������
������

1 2 3 4 5 6 7

σ(Μ)

Fig. 1 (online colour at: www.interscience.wiley.com) More and less disturbing measurement contraction
M (for input universal ensemble): the less disturbing M (on the left) has “more flat” singular values.

state and the disturbance at Bob on the received state, the trade-off being tuned by switching on-off the
entanglement of the shared resource. Indeed, it is easy to see that in any teleportation scheme in which Alice
performs a generic Bell measurement [58], the disturbance is just the opposite of the entanglement of the
state |Ψ〉 of the shared resource.

3 Concluding remarks

In this paper we have considered an ideal in-principle quantum measurement at the single-outcome level,
which is then described by a single contraction. We have analyzed the possibility of measurements that
are knowingly reversible, showing that measurement reversion necessarily erases the information from the
reverted measurement. This also clarifies that it is possible in principle to undo the effect of a measurement,
however, at the expense of losing some previously retrieved information. Information-disturbance trade-offs
have been presented, where the “disturbance” depends on the probabilities of reverting the measurement.
Two majorization relations have been given: the weak majorization (9), which holds for any ensemble,
and the majorization (15), which hold for ensembles “quasi-parallel” to the measurement contraction M .
These relations represent trade-offs that are independent on the particular analytical form of information
and disturbance. When considering the customary mutual information, the majorization (15) leads us to
consider the quantity −H(zM ) as a “disturbance”, with the vector zM depending on the singular values of
M and on the input ensemble E as given in Eq. (16). Such quantity satisfies all the requirements that we
gave for a general disturbance, and behaves as expected in all known cases. Even though the information-
disturbance trade-off (17) has been proved for ensemble quasi-parallel toM (since it has been derived from
the majorization relation (15)) Eq. (17) can have a more general validity, and an alternative derivation will
be the subject of a forthcoming work.
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