Reprinted from Journal of the Optical Society of Ameriea B

Regularly injected one-atom maser in
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We present a numerical study of the regularly injected one-atom maser in the high-flux regime, namely, when
the time spacing between two consecutive injected atoms is comparable with the atom—field interaction time.
Gain and losses are treated simultaneously in a general master equation that takes into account atomic
ineoherent deeay. At stroboscopic times the dynamies of photon-number probability distribution is given by
a suitably reduced Green operator, which has the form of a Markoff matrix. We perform a spectral analysis
of the Green operator, showing the influence of photon traps on the eigenvalues. A comparison with the
opposite case of Poissonian injection and low flux is given for a wide range of the pumping parameter 6.
Regular injection leads o larger gain than Peissonian, but for high values of @ the opposite resull can be
found. Anomalous behaviors occur in which the normalized field fluctuations are increased by regularization
of pumping and decreased by atomic decay: these features confirm similar anomalies found by ather authors
and are ascribed to the occurrence of nonclassical multiple-peak photon distributions and to different responses

of the peaks to dissipation and gain.  Atomic elastic collisions destroy any signature of trapping states on the
stationary field. A comparison with a previously studied semiclassical model is given.

PACS numbers; 42.50.Dv, 4250 Ar, 42,52, +x.

1. INTRODUCTION

The role of pumping statisties in the quantum dynamies
of radiation in the one-atom maser'™® has been discussed
by several authors.®! In most of these papers™® the
limiting case of low atomic flux is considered; that is, the
average time spacing 7y between two consecutively in-
jected atoms is much larger than the flying time 7, in
the cavity. This situation allows field decay to be ne-
glected during the interaction with the atom. On the
other hand, the case of high flux (ry = T} is physically
interesting also, because it approaches the situation that
lies between those for the microscopic maser and the ordi-
nary many-atom maser. There is, however, no theoreti-
cal treatment analogous to the case of low tlux, because
of the impossibility of separating the loss from the gain
part of the density matrix evolution. In the research re-
ported in Ref. 12 numerical results for the field dynamies
were obtained in the framewark of a semiclassical model.
Reference 13 reports solutions for quasi-probability dis-
tributions in the Jaynes—Cummings model with photon
damping, whereas in Ref. 14 an analytical solution of the
micromasger master equation, based on direct diagonal-
ization of the Liouvillian eperator (with photon and atom
damping) was presented.

In this paper we numerically evaluate the microscopic
dynamies for the photon-number distribution of a quan-
tized cavily mode in interaction with a beam of two-
level atoms regularly injected into the cavity. We con-
sider the high-flux regime, treating gain and dissipation
simultaneously. The present approach is based on the
evaluation of the joint radiation—atom Green operator
that solves the microscopic master equation. The stro-
boscopic evolution of the field is then obtained from a
suitably reduced Green operator, which has the form of
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a Markoff matrix. We give a spectral analysis of this
matrix, emphasizing the influence of photon traps on
the eigenvalues. Iirst we study the dependence of the
eigenvalues of the reduced Green operator on the param-
eters that characterize the system: the mean number
of thermal photons 7, the number N; = 1/2y.7, of ex-
cited atoms crossing the cavity during the photon life-
time (2y,)7!, and the pumping parameter ¢ = g7,/ Ny,
where g is the atom—radiation coupling constant (the in-
teraction time is assumed to be equal to the time spac-
ing between two consecutive excited atoms in the beam,
namely, Tie = 7p). Then we focus attention on the sta-
tionary state of radiation, presenting numerical results in
terms of mean photon numbers (1) and normalized fluctu-
ations o = [{An?)/(n)|¥? for a wide range of the pumping
parameter &,

In the regime of negligible atomic decay the present
regular-injection/high-flux case is compared with that of
the standard one-atom maser, where the atomic beam is
Poissonian and the flux is very low (1 == 7, ) {within this
paper the two regimes are referred to as the RIHF and the
PILF regimes, respectively). At very low temperatures
we find some sizable differences hetween the fields ob-
tained by the two schemes (for low-flux regularly injected
masers, the same differences with respeet to the standard
one-atom maser were found®). For example, the fluctua-
tions of radiation emitted in the RIHF regime are gen-
erally lower than those in the PILF case. However, for
special ranges of @, an anomalous increase in the normal-
ized variance ¢ may be produced by regular pumping.
For increasing temperature, quantitative differences are
apparent for high values of 6, where, depending on the
actual values of N.. and ¢, regular injection may lead to
either higher or lower gain than does Poissonian injec-
tion. In both regimes, however, the threshold locations
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do not depend on injection: these and other similarities
between the two injection schemes are ascribed to the fact
that in both models the radiation interacts with no more
than one atom at a time.

Regarding atomic decay, here we examine only pro-
cesses involving two masing levels, neglecting decays to-
ward other levels. Both coherence decay (decay of off-
diagonal atomic matrix elements) at rate y, and popu-
lation decay at rate y) are considered. Physically these
processes correspond to atomie collisions—either elastic
or inelastic—with undesired atoms of different kinds that
are present in the cavity without interacting with the ra-
diation mode. In the radiative limit (2y = yy) atomic
decay produces an enhancement of the photon distribu-
tion p(n) at low n, and a corresponding reduction at high
n, with an overall decrease of the mean photon number
at steady state. For double-peaked photon distributions
this mechanism may reduce ¢, depending on the relative
heights of the two peaks. This behavior is anomalous
with respect to the customary probability broadening in-
duced by atomic decay. The signature of trapping states
on p(n) is not affected by the atomic decay in the radiative
limit, whereas it is washed out when elastic collisions are
considered (2y, > y), because such collisions can pro-
duce hopping through the traps. In general, however,
atomic decay produces sizable effects only for rates ¥
and y that are much greater than the cavity-damping
constant,

After presenting the details of the microscopic ap-
proach, in Section 2 we perform a spectral analysis of
the reduced Green operator. In Section 3 a compari-
son with the standard one-atom maser at steady state
is given. In Section 4 the effects that are due to atomic
decay are examined. A brief discussion of the present
quantum model in comparison with a former semiclassical
treatment'? is presented in Section 5, where we show that
agreement is found between conditionally stable classical
fixed points and maxima of the quantum photon distri-
bution. Section 6 concludes the paper, summarizing the
results.

2. MASTER EQUATION

The evolution of the joint atom-radiation matrix £ is de-
scribed by the master equation in the interaction picture:

d_f;’ = LR=-L[H, R+ LR+ LR, @
[ (3
where

H; =téala - ibglac, —ala), (2)

.EIR = —y (7 + La'alk + Rata — 2aRa)
— yelaal R + Raa' = 2a'Ra), (3)

LR=-Yyloio-R+ Ro,o- —20_Re.,]
- Y42y, = WIR - 0.Ro.]. (4)
The first texm in Eq. (1) is the gain that is due to the

atom—field interaction, here represented by the custom-
ary Jaynes—Cummings Hamiltonian [Eq. (2)] with cou-
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pling constant g and atom-field detuning 8; o, , . are the
Pauli spin matrices, o = (o, * i7,)/2; a and al are
the annihilation and creation operators, respectively, for
the field mode. The second contribution, given in Eq. (3),
describes the damping of the field in the cavity to a ther-
mal distribution with average photon number 7 The
term in Eq. (4) models atomic incoherent processes, i.e.,
population decay from the upper to the lower masing level
with rate y, and polarization decay with rate y,(2y, =
v = 0). In presence of atomic collisions one has y) =
Yspoot T Vinel and y, =2 Y+ Vel (Yiner and ye are the
contributions that are due to inelastic and elastic colli-
sions, respectively; y.pon is the spontaneous decay rate).
In the one-atom maser spontaneous emission is sup-
pressed; however, there is still the possibility of colli-
sions with undesired atoms of different kinds in the cav-
ity, and in addition Stark shifts that are due to electric
fields at the borders of the cavity holes are also respon-
sible for transverse decay. The case 2y_ = v is usually
referred to as the radiative limit, even though it oceurs
in the presence of inelastic collisions. Note that in our
model the decay to atomic levels different from those of
the masing couple is not taken into account: this mecha-
nism would exclude the atom from the interacting dynam-
ics, preventing it from reabsorbing radiation after decay-
ing during the flying time.

At t = 0, namely, when the first atom enters the cavity,
the joint density matrix is written in the factorized form

R(0) = 4(0) @ IN I, (5)

where |[){I| denotes the upper masing state of the atom
and g(0) is the initial state of the field. During the
atom—field interaction the evolution of R(f) is governed
by the Green operator exp(L {) associated with Eq. (1)

Ry =exp(LORO) (©=t<m). (6)
When the atom leaves the cavity, at t = 7, one obtains the
state of the field by tracing R(¢) over the atomic Hilbert
space. At the same time (more precisely, at the time
{ = 1y + 0" immediately after) a new atom enters the
cavity in the excited state, and correspondingly a new
initial condition is imposed:

R(r) = Trolexp(L)R(0)} ® D] = plra) @ I1)(T]. (7)

If all forthecoming atoms are entering the cavily at stro-
boscopic times ¢, = n7y, one has

Ring) = Tr fexp(Lro)R[(n — Drol} @ NI, ®)
and, at a generic time ¢ (a7 < ¢ < (n + 1)),

R(t) = exp[L{t — nro)]R(n7y). (9

One obtaing the reduced density matrix that describes

the field G(2) on partially tracing R() over the atomic
variables:

5(t) = Tr,[R()]. (10)

It is convenient to decompose the density matrix R#(¢) as
follows:
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+ Y@y n — Rl @ 114
+ Y Z®P ) nyin — B+ 1 @ D]+ Hed. (11

XWlnyin — &l [

The index # in Eq. (11) is left invariant under the action
of the Liouvillian operator in Eq. (1). The matrix repre-
sentation Ly of the Liouvillian £ for fized k is delined
aceording to the equation

d i : V. B h k) =
a[- e g e, Yorry Bl

Sy XL PR 20 2, W0 2 I KR
where T indicates a vertical (transposed) vector. If the
initial state A(0) of the field is diagonal in the number
representation, the dynamics takes place only in the see-
tor with & = 0, and the matrix Ly is given by Eg. (13)
(page 351), where we have in troduced the scaled quanti-
fies

W =v/2v.. vy =7v./2v.. (14
A. Reduced Green Operator

In what follows, we examine only the strobscopic evolu-
tion of the field density matrix: Eg. (8) can be written
in terms of a reduced Green operator exp(R 7g), which di-
reetly gives the field density matrix as follows:

exp(Rro)plin — Lirg] = flnmol. (15)

From Egs. (8) and (10} it follows that the reduced Green
aperator can be written in form of a partial trace over the
atomic Hilbert space:

exp(Rr) = Tr dexp(Lro) (1 @ [T (T (16)

The Green operator exp{L) is evaluated in the sector
with £ = 0 when the matrix L, is diagonalized numeri-
cally, and then the reduced operator exp{R ) is obtained
after the partial trace [Eq. (16)]. It should be empha-
sized that the present approach is numerically efficient,
especially if compared with more time-consuming algo-
rithms, for example, direct integration of the master equa-
tion. 1In fact, one should note that the Green operator
contains all the information about the stroboscopic field
evolution and the stationary state itself, and any prop-
erty of the field can be evaluated quickly after the matrix
representation of exp(R7y}is saved. There are, however,
precision limits that arise from the faet that the matrix
Ly is not Hermitian, and some eigenvectors hecome too
close to ane another for increasing dimensions of trun-
cated Hilbert space (analogous precision problems arise
in the analytical approach of Ref. 14). In practice, we
obiain acceptable results for no more than 60 photons in
the cavity, using standard doubl e-precigion algorithms.
The stationary states are, by definition, the eigenvee-
tors corresponding to unit eigenvalues of expiRr). At
this point some remarks are in order regarding the de-
generacy of the unit eigenvalue and, more generally, the
spectrum of the reduced Green operator. The operator
exp(’R o) propagales the photon probability distribution
{ml|g[nollm), and hence it is a Markoff matrix; that is,
the sum of elements on each column is unity. TFor any
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generic Markoff matrix the moduli of all eigenvalues A;
are |A;] = 1. The unit eigenvalue can be degenerate:
moreover, some eigenvalues can be equal to complex Toots
of unity. For a degenerate unit eigenvalue the station-
ary state is not unigue; that is, the long-time solution
depends on the initial condition. On the other hand, if
there are complex roots of unity, then the corresponding
eigenvectors represent eyclic or quasi-peri odic states, de-
pending on whether the root is rational or irrational. In
the finite-dimensional case there is a simple theorem!®
that guarantees the existence and uniqueness of the sta-
tionary state for strictly positive Markoff matrices. In
our case, however, the matrix is infinite, and the neces-
sary dimensional truncation affects the normalization, so
that exp(Rro) is actually a quasi-Markoff matrix. For
y. = 0 an extensive numerical analysis shows that eigen-
values that are complex roots of unity never oceur. The
complex eigenvalues of a large set of Markoff matrices
are plotted in Fig. 1 for ¢ € [0, 20], N, = 20,7 =0, and
W = y = 0 (we verified that the unit eigenvalue is always
nondegenerate). From the above observations one con-
cludes that there are no stroboscopically oscillating pho-
ton states—neither cyclic nor quasi-periodic—and that
the stationary state is independent of the initial condition.
Tt is clear that this quantum situation is quite different
from the semiclassical one, in which all kinds of oscillat-
ing states are possible and the stationary field depends
on Lhe initial condition (see Ref. 12 for regular injection
and Refs. 16 and 17 for Poissonian injection).

B. Trapping States

For v. = y; = 7. = 0, unlike for the lossy case, the unit
eigenvalue of the Markoff matrix may be degenerate, in
correspondence to the so-called trapping states.'®'® The
trapping states are number eigenstates |{) such that the
atom undergoes an integer number of Rabi flops, namely,

gw =6l + Gy (17}
o
o | i o P e ST ) T oalel =t o]
o | -
o
—
~ J
H
o
o - -
|
=
o T e T (A U S ] L O L L |
L0.5 0 0.5 1

Re(\)

Fig. 1. Eigenvalues of a sample of Markofl matrices with
1_9 e [0, 20], Ney = 20, m =0, and W = y = 0 (the regolution
in #is 0.01). No cigenvalue falls out of the plotted window.
























