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the high-flux regime: a numerical study

G. M. D’Ariano, R. Seno, and N. Sterpi

Dipartimento di Fisica “A, Volta,” Universitd degh Studi di Pavia. via Bassi 6, 27100 Pavia, Italy

Received March 18, 1994; accepted August 31, 1994

We present a numerical study of the regularly injected one-atom maser in the high-flux regime, namely, when
the time spacing between two consecutive injected atoms is comparable with the atom—field interaction time.
Gain and losses are treated simultaneously in a general master equation that takes into account atomic
ineoherent deeay. At stroboscopic times the dynamies of photon-number probability distribution is given by
a suitably reduced Green operator, which has the form of a Markoff matrix. We perform a spectral analysis
of the Green operator, showing the influence of photon traps on the eigenvalues. A comparison with the
opposite case of Poissonian injection and low flux is given for a wide range of the pumping parameter 6.
Regular injection leads o larger gain than Peissonian, but for high values of @ the opposite resull can be
found. Anomalous behaviors occur in which the normalized field fluctuations are increased by regularization
of pumping and decreased by atomic decay: these features confirm similar anomalies found by ather authors
and are ascribed to the occurrence of nonclassical multiple-peak photon distributions and to different responses

of the peaks to dissipation and gain.  Atomic elastic collisions destroy any signature of trapping states on the
stationary field. A comparison with a previously studied semiclassical model is given.

PACS numbers; 42.50.Dv, 4250 Ar, 42,52, +x.

1. INTRODUCTION

The role of pumping statisties in the quantum dynamies
of radiation in the one-atom maser'™® has been discussed
by several authors.®! In most of these papers™® the
limiting case of low atomic flux is considered; that is, the
average time spacing 7y between two consecutively in-
jected atoms is much larger than the flying time 7, in
the cavity. This situation allows field decay to be ne-
glected during the interaction with the atom. On the
other hand, the case of high flux (ry = T} is physically
interesting also, because it approaches the situation that
lies between those for the microscopic maser and the ordi-
nary many-atom maser. There is, however, no theoreti-
cal treatment analogous to the case of low tlux, because
of the impossibility of separating the loss from the gain
part of the density matrix evolution. In the research re-
ported in Ref. 12 numerical results for the field dynamies
were obtained in the framewark of a semiclassical model.
Reference 13 reports solutions for quasi-probability dis-
tributions in the Jaynes—Cummings model with photon
damping, whereas in Ref. 14 an analytical solution of the
micromasger master equation, based on direct diagonal-
ization of the Liouvillian eperator (with photon and atom
damping) was presented.

In this paper we numerically evaluate the microscopic
dynamies for the photon-number distribution of a quan-
tized cavily mode in interaction with a beam of two-
level atoms regularly injected into the cavity. We con-
sider the high-flux regime, treating gain and dissipation
simultaneously. The present approach is based on the
evaluation of the joint radiation—atom Green operator
that solves the microscopic master equation. The stro-
boscopic evolution of the field is then obtained from a
suitably reduced Green operator, which has the form of
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a Markoff matrix. We give a spectral analysis of this
matrix, emphasizing the influence of photon traps on
the eigenvalues. Iirst we study the dependence of the
eigenvalues of the reduced Green operator on the param-
eters that characterize the system: the mean number
of thermal photons 7, the number N; = 1/2y.7, of ex-
cited atoms crossing the cavity during the photon life-
time (2y,)7!, and the pumping parameter ¢ = g7,/ Ny,
where g is the atom—radiation coupling constant (the in-
teraction time is assumed to be equal to the time spac-
ing between two consecutive excited atoms in the beam,
namely, Tie = 7p). Then we focus attention on the sta-
tionary state of radiation, presenting numerical results in
terms of mean photon numbers (1) and normalized fluctu-
ations o = [{An?)/(n)|¥? for a wide range of the pumping
parameter &,

In the regime of negligible atomic decay the present
regular-injection/high-flux case is compared with that of
the standard one-atom maser, where the atomic beam is
Poissonian and the flux is very low (1 == 7, ) {within this
paper the two regimes are referred to as the RIHF and the
PILF regimes, respectively). At very low temperatures
we find some sizable differences hetween the fields ob-
tained by the two schemes (for low-flux regularly injected
masers, the same differences with respeet to the standard
one-atom maser were found®). For example, the fluctua-
tions of radiation emitted in the RIHF regime are gen-
erally lower than those in the PILF case. However, for
special ranges of @, an anomalous increase in the normal-
ized variance ¢ may be produced by regular pumping.
For increasing temperature, quantitative differences are
apparent for high values of 6, where, depending on the
actual values of N.. and ¢, regular injection may lead to
either higher or lower gain than does Poissonian injec-
tion. In both regimes, however, the threshold locations
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do not depend on injection: these and other similarities
between the two injection schemes are ascribed to the fact
that in both models the radiation interacts with no more
than one atom at a time.

Regarding atomic decay, here we examine only pro-
cesses involving two masing levels, neglecting decays to-
ward other levels. Both coherence decay (decay of off-
diagonal atomic matrix elements) at rate y, and popu-
lation decay at rate y) are considered. Physically these
processes correspond to atomie collisions—either elastic
or inelastic—with undesired atoms of different kinds that
are present in the cavity without interacting with the ra-
diation mode. In the radiative limit (2y = yy) atomic
decay produces an enhancement of the photon distribu-
tion p(n) at low n, and a corresponding reduction at high
n, with an overall decrease of the mean photon number
at steady state. For double-peaked photon distributions
this mechanism may reduce ¢, depending on the relative
heights of the two peaks. This behavior is anomalous
with respect to the customary probability broadening in-
duced by atomic decay. The signature of trapping states
on p(n) is not affected by the atomic decay in the radiative
limit, whereas it is washed out when elastic collisions are
considered (2y, > y), because such collisions can pro-
duce hopping through the traps. In general, however,
atomic decay produces sizable effects only for rates ¥
and y that are much greater than the cavity-damping
constant,

After presenting the details of the microscopic ap-
proach, in Section 2 we perform a spectral analysis of
the reduced Green operator. In Section 3 a compari-
son with the standard one-atom maser at steady state
is given. In Section 4 the effects that are due to atomic
decay are examined. A brief discussion of the present
quantum model in comparison with a former semiclassical
treatment'? is presented in Section 5, where we show that
agreement is found between conditionally stable classical
fixed points and maxima of the quantum photon distri-
bution. Section 6 concludes the paper, summarizing the
results.

2. MASTER EQUATION

The evolution of the joint atom-radiation matrix £ is de-
scribed by the master equation in the interaction picture:

d_f;’ = LR=-L[H, R+ LR+ LR, @
[ (3
where

H; =téala - ibglac, —ala), (2)

.EIR = —y (7 + La'alk + Rata — 2aRa)
— yelaal R + Raa' = 2a'Ra), (3)

LR=-Yyloio-R+ Ro,o- —20_Re.,]
- Y42y, = WIR - 0.Ro.]. (4)
The first texm in Eq. (1) is the gain that is due to the

atom—field interaction, here represented by the custom-
ary Jaynes—Cummings Hamiltonian [Eq. (2)] with cou-
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pling constant g and atom-field detuning 8; o, , . are the
Pauli spin matrices, o = (o, * i7,)/2; a and al are
the annihilation and creation operators, respectively, for
the field mode. The second contribution, given in Eq. (3),
describes the damping of the field in the cavity to a ther-
mal distribution with average photon number 7 The
term in Eq. (4) models atomic incoherent processes, i.e.,
population decay from the upper to the lower masing level
with rate y, and polarization decay with rate y,(2y, =
v = 0). In presence of atomic collisions one has y) =
Yspoot T Vinel and y, =2 Y+ Vel (Yiner and ye are the
contributions that are due to inelastic and elastic colli-
sions, respectively; y.pon is the spontaneous decay rate).
In the one-atom maser spontaneous emission is sup-
pressed; however, there is still the possibility of colli-
sions with undesired atoms of different kinds in the cav-
ity, and in addition Stark shifts that are due to electric
fields at the borders of the cavity holes are also respon-
sible for transverse decay. The case 2y_ = v is usually
referred to as the radiative limit, even though it oceurs
in the presence of inelastic collisions. Note that in our
model the decay to atomic levels different from those of
the masing couple is not taken into account: this mecha-
nism would exclude the atom from the interacting dynam-
ics, preventing it from reabsorbing radiation after decay-
ing during the flying time.

At t = 0, namely, when the first atom enters the cavity,
the joint density matrix is written in the factorized form

R(0) = 4(0) @ IN I, (5)

where |[){I| denotes the upper masing state of the atom
and g(0) is the initial state of the field. During the
atom—field interaction the evolution of R(f) is governed
by the Green operator exp(L {) associated with Eq. (1)

Ry =exp(LORO) (©=t<m). (6)
When the atom leaves the cavity, at t = 7, one obtains the
state of the field by tracing R(¢) over the atomic Hilbert
space. At the same time (more precisely, at the time
{ = 1y + 0" immediately after) a new atom enters the
cavity in the excited state, and correspondingly a new
initial condition is imposed:

R(r) = Trolexp(L)R(0)} ® D] = plra) @ I1)(T]. (7)

If all forthecoming atoms are entering the cavily at stro-
boscopic times ¢, = n7y, one has

Ring) = Tr fexp(Lro)R[(n — Drol} @ NI, ®)
and, at a generic time ¢ (a7 < ¢ < (n + 1)),

R(t) = exp[L{t — nro)]R(n7y). (9

One obtaing the reduced density matrix that describes

the field G(2) on partially tracing R() over the atomic
variables:

5(t) = Tr,[R()]. (10)

It is convenient to decompose the density matrix R#(¢) as
follows:
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Rir)= > X

k== p=maxl0.k]
+ Y@y n — Rl @ 114
+ Y Z®P ) nyin — B+ 1 @ D]+ Hed. (11

XWlnyin — &l [

The index # in Eq. (11) is left invariant under the action
of the Liouvillian operator in Eq. (1). The matrix repre-
sentation Ly of the Liouvillian £ for fized k is delined
aceording to the equation

d i : V. B h k) =
a[- e g e, Yorry Bl

Sy XL PR 20 2, W0 2 I KR
where T indicates a vertical (transposed) vector. If the
initial state A(0) of the field is diagonal in the number
representation, the dynamics takes place only in the see-
tor with & = 0, and the matrix Ly is given by Eg. (13)
(page 351), where we have in troduced the scaled quanti-
fies

W =v/2v.. vy =7v./2v.. (14
A. Reduced Green Operator

In what follows, we examine only the strobscopic evolu-
tion of the field density matrix: Eg. (8) can be written
in terms of a reduced Green operator exp(R 7g), which di-
reetly gives the field density matrix as follows:

exp(Rro)plin — Lirg] = flnmol. (15)

From Egs. (8) and (10} it follows that the reduced Green
aperator can be written in form of a partial trace over the
atomic Hilbert space:

exp(Rr) = Tr dexp(Lro) (1 @ [T (T (16)

The Green operator exp{L) is evaluated in the sector
with £ = 0 when the matrix L, is diagonalized numeri-
cally, and then the reduced operator exp{R ) is obtained
after the partial trace [Eq. (16)]. It should be empha-
sized that the present approach is numerically efficient,
especially if compared with more time-consuming algo-
rithms, for example, direct integration of the master equa-
tion. 1In fact, one should note that the Green operator
contains all the information about the stroboscopic field
evolution and the stationary state itself, and any prop-
erty of the field can be evaluated quickly after the matrix
representation of exp(R7y}is saved. There are, however,
precision limits that arise from the faet that the matrix
Ly is not Hermitian, and some eigenvectors hecome too
close to ane another for increasing dimensions of trun-
cated Hilbert space (analogous precision problems arise
in the analytical approach of Ref. 14). In practice, we
obiain acceptable results for no more than 60 photons in
the cavity, using standard doubl e-precigion algorithms.
The stationary states are, by definition, the eigenvee-
tors corresponding to unit eigenvalues of expiRr). At
this point some remarks are in order regarding the de-
generacy of the unit eigenvalue and, more generally, the
spectrum of the reduced Green operator. The operator
exp(’R o) propagales the photon probability distribution
{ml|g[nollm), and hence it is a Markoff matrix; that is,
the sum of elements on each column is unity. TFor any
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generic Markoff matrix the moduli of all eigenvalues A;
are |A;] = 1. The unit eigenvalue can be degenerate:
moreover, some eigenvalues can be equal to complex Toots
of unity. For a degenerate unit eigenvalue the station-
ary state is not unigue; that is, the long-time solution
depends on the initial condition. On the other hand, if
there are complex roots of unity, then the corresponding
eigenvectors represent eyclic or quasi-peri odic states, de-
pending on whether the root is rational or irrational. In
the finite-dimensional case there is a simple theorem!®
that guarantees the existence and uniqueness of the sta-
tionary state for strictly positive Markoff matrices. In
our case, however, the matrix is infinite, and the neces-
sary dimensional truncation affects the normalization, so
that exp(Rro) is actually a quasi-Markoff matrix. For
y. = 0 an extensive numerical analysis shows that eigen-
values that are complex roots of unity never oceur. The
complex eigenvalues of a large set of Markoff matrices
are plotted in Fig. 1 for ¢ € [0, 20], N, = 20,7 =0, and
W = y = 0 (we verified that the unit eigenvalue is always
nondegenerate). From the above observations one con-
cludes that there are no stroboscopically oscillating pho-
ton states—neither cyclic nor quasi-periodic—and that
the stationary state is independent of the initial condition.
Tt is clear that this quantum situation is quite different
from the semiclassical one, in which all kinds of oscillat-
ing states are possible and the stationary field depends
on Lhe initial condition (see Ref. 12 for regular injection
and Refs. 16 and 17 for Poissonian injection).

B. Trapping States

For v. = y; = 7. = 0, unlike for the lossy case, the unit
eigenvalue of the Markoff matrix may be degenerate, in
correspondence to the so-called trapping states.'®'® The
trapping states are number eigenstates |{) such that the
atom undergoes an integer number of Rabi flops, namely,

gw =6l + Gy (17}
o
o | i o P e ST ) T oalel =t o]
o | -
o
—
~ J
H
o
o - -
|
=
o T e T (A U S ] L O L L |
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Re(\)

Fig. 1. Eigenvalues of a sample of Markofl matrices with
1_9 e [0, 20], Ney = 20, m =0, and W = y = 0 (the regolution
in #is 0.01). No cigenvalue falls out of the plotted window.
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If there is a couple of integers (g, [) that satisfy Eq. (17}
for some ¢ and N, then there exists an infinite set
of integer couples {(g, I)} that satisfy Eq. (17} for the
same fixed 8 and N,.: all states {|I}} are trapping states
corresponding to degenerate eigenvectors for A=1. In
this situation the stationary field iz a mixture of trap-
ping states, with probabilities depending on the initial
condition.

For nonvanishing v, the degeneracy is removed. How-
ever, there is reminiscence of the trapping states, because
for the same special values® of # in Bq. (17) some eigen-
values now become nearly degenerate with A = 1. This
is evident from Fig. 2(a), where the same cigenvalues of
Fig. 1 are now plotted versus ¢. The quasi-degeneracy
is interpreted as follows: For y. = 0 the trapping in-
tegers [ remain barriers in Hilbert space (hercafter re-
forred to as traps): becaunse of damping the traps can be
crossed in the direction of lower photon numbers. Pho-
ton probability flow acress the barriers in the increas-
ing pholon-number direction can oceur as a consequence
of thermal hopping for 7 = 0. As a consequence of the
crogsing mechanisms the trapping eigenvectors now be-
come nonprobabilistic states (nonpositive-definite eigen-
vectors), whose eigenvalues remain close (but not equal}
to 1. Increasing the temperature [see Fig. 2(b}] removes
this quasi-degeneracy. From the above considerations
one concludes that the traps will also influence the sta-
tionary state for nonvanishing damping, the effect being
more sizable near the trapping condition and for low ther-
mal photons 7.

3. REGULAR VERSUS POISSON INJECTION

In this section we analyze the cavily photen statisties
at stroboscopic steady state for vanishing atomic decay.
The results are compared with those from the standard
one-atom maser 2 for the same values of @ and Nex. The
shapes of the photon probability distributions pin) are in-
fluenced by the presence of traps, which depend not on
injection but just on the condition that there is only one
atom in the cavity at a time. In spite of this common
feature, sizable differences between the normalized vari-
ances of the two schemes are found.

A. Zero Temperature

In Fig. 3(a) we show the normalized average number
of photons (n)/N., in the RIHF regime as a funetion
of the pumping parameter § for 7 =0 and N,y = 20.
The photon distribution pln) is superimposed in gray
scale. It is apparent that the cavity field presents fea-
tures very similar to those obtained in the regularly in-
jected low-flux regime previously studied hy Guerra et al.?
This happens even though, for low atomic flux, gain
and loss are factorized during the atom—field interaction.
One can see that the mean photon number exhibits a
highly singular behavior, presenting sharp drops where
the photon probability distribution is abruptly truncated.
The reason for the ptr) truncation is easily explained in
terms of traps, i.e., barriers in the Fock space that cor-
respond to trapping states that for zero thermal photons
can be crossed only toward lower pheton numbers and
hence abruptly truncate the photon probability distribu-
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tion. Figure 3(h) shows the phaton probability distri-
bution that corresponds to the case in Fig. 3(a) but in
the PILF regime. One can nole strong similarities in
the mean photon number, even though the physical situ-
ations and the theoretical treatments are widely differ-
ent. The location of traps is shifted by the value Af/¢ =
1/[32N.%(ny + 1)] as a result of damping shift of the
Rabi frequeney?®; however, for our choice of parameters,
A#/8 ig very small and is not visible in the plots (for ex-
ample, AB/6 = 10 ¢ for N, = 20, § = & at a two-photon
trap; the shift would become more relevant for decreasing
N,y and #).

With regard to the photon normalized variance ver-
sus #, quick alternation between sub-Poissonian and
super-Poissonian photon statistics is found, as in the

Re(A)

Re(A)

S T e V] D

Te}
d Y i V] A L S
¢ 5 1 15 20

Tig. 2. Real parts of the eigenvalues of the Markoll matrix
versus the pumping parameter ¢ for (a) the same parameters
as in Fig. 1 and (b} for the same parameters as in (a) bul with
Bl
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Fig. 3. Normalized mean photon number {n}/N.x as a function
of 8 for Noy = 20,771 = 0, and W = 3 = 0, in (a) the RIHF and {b)
the PILF regimes. The photon probability distribution p(n) is
superimposed in gray scale (the black maximum and the white
minimum correspond to the extremal values caleulated in the
whole interval of #s). (The resolution in # is 0.01.)

regime of low flux and either Poissonian or regular
pumping. When this situation is compared with that of
Poissonian injection, one expects that regularization of
pumping should reduce fluctuations of radiation. From
Fig. 4 one can see that this is generally true, but there
are some spikes where op > op (hereafter we use the
subscript R for the RIHF regime and P for the standard
PILF case). These resulls are in agreement with ana-
Iytical evaluations in Ref. 11. Physically one can inter-
pret the spikes on the basis of the following mechanism.
Let us consider, for example, the case with 8 = 7.99 in
Figs. 5(a) and 5(b). For Poiszon injection [Fig. 5(b)] the
photon probability distribution p(n) presents two peaks of
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comparable height. In the RIHF regime the gain mech-
anism is more efficient; thus p(n) is still double peaked,
but the peak for nine photons is much higher than that
for two photons, leading to higher (n) and lower An® so
that o < ap. An opposite result is obtained when the
first peak is much higher than the second one. This is
the case for 6 = 8.09 in Figs. 5(c) and 5(d). As a result of
regular injection, the peak for nine photons is higher than
in the Poissonian case, so that the photon uncertainty is
larger. The mean photon number is larger too, but now
op > op, because number fluctuations are more sensi-
tive to the second peak. Hence the anomalous behavior

0] 5 10

Fig. 4. Ratio of the normalized variances or/op for the zame
parameters as in Fig. 3.

(@)

S W)

(b.)

p(n)
o 0.2 0.4 0.6 08

,-.JTl..l Cad ..(.al)

n

Fig. 5. Hntcgrqu of the stationary photon distributions for
¢ = 7.99 in (a) the RIHF and (b) the PILF regimes and for
# = 8.09 in (c) the RTHF and (d) the PILF regimes. The other
parameters are Noy = 20, =0, and W = y = 0.



354 J. Opt. Soc. Am. B/Vol, 12, No. 2/February 1995

0 50 100 150 200

Fig. 6. Normalized mean photon number (n}/Nex versus # in
the RIHF and the PILF regimes for Ng = 20, @ = 1, and
W= pu=10;
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Fig. 7. Normalized mean photon number (n)/N.y versus ¢ in
the RIHF and the PILF regimes for No,x = 50, = — 1, and
W=y=0

of op/ep iz due to a different response of the peaks of
pln) to dissipation and gain: this happens both in the
high-flux and in the low-flux® regimes.

B. Nonzero Temperature

The main features of the stationary field ehange dras-
tically with increasing temperature. In fact, all singu-
lar behaviors of (n) and o are washed out by thermal
hopping. There are quantitative differences between the
RIHF and the PILF regimes: regular pumping with high
flux may lead to either larger or lower radiation intensi-
ties. In particular, it originates higher gain in a range
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of # that increases with N. (see Figs. 6 and 7). How-
ever, for 8 = N, the mean photon number versus f
presents high amplitude oscillations that are much less
pronounced in the RIHF than in the PILF regime, espe-
cially for Ny = 20. This produces a lower mean photon
number in the RIHF regime. We have no intuitive un-
derstanding of the less efficient gain mechanism, which
is apparent in Fig. 6.

As regards the oscillations of {n) versus #, we notice
a muliiple structure of collapses with revivals. Thizis a
different behavior with respect to the PILF regime, where
only one collapse with a nondecaying revival® is observed.
The multiple structure of collapses with revivals is more
apparent with increasing N, (see Fig. 7), and in this case
the oscillations are more regular. The values of & at
which multiple collapses with revivals occur depend on
N., and 7i:  at fixed temperature the revivals are delayed
in @ if N, is increased, whereas for fixed Ny, the revivals
merge into one another for decreasing temperature. In
the case presented, the first collapse is at 0 = N,/2, and
the revival occurs at # = N.,. It is remarkable that the
period of oscillation of {n) versus ¢ is the same for both
the RIHF and the PILF regimes. In other words, the
threshold locations do not depend either on the injection
or on the flux. In particular, for # = 5 (i.e., up to the
second threshold) the average field intensity also has the
same value.

The normalized variance is shown in Fig. 8. Because
of the relatively high thermal fluctuations, « is super-
Poissonian in almost the whole range of ¢. Regulariza-
tion of pumping always reduces o for low 6, even though,
for large 6, o may be increased in some small intervals
(see, for example, ¢ = 65).

4. EFFECT OF ATOMIC DECAY

We now congider the effects of atomic decay [Eq. (4)]
on the stroboscopic stationary state. We recall that the
term proportional to y; describes spontaneocus emission

Fig. 8. Normalized variances in the RIHF and the PILF regimes
for the same parameters as for Fig. 6.
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Fig. 9. (a) Normalized mean photon number (n}/N.. and (b}
normalized variance o for Nox = 20, % = 1, and different values

of the atomic decay constants 2y = W =0, 1, 9 at the radiative
limit.

and inelastie collisions, whereas the term proportional to
2y, — vy is originated by elastic eollisions, which only re-
duce atomie coherence without changing the population.

A. Radiative Limit (2y, = y)

In Fig. 9a) the normalized photon number {n)/Nex 1s
shown for three diffsrent values of W = v,/2y, and for
fixed Noy = 20,7 = 1. One can see that, as expected, the
net amount of energy released by the atomic beam to the
field is reduced by atomic damping for any value of the
pumping parameter. As is shown in Fig. 9(b), for most
values of ¢ the normalized photon variance o is inereased
for larger W. However, it is remarkable that, for some
values of the pumping parameter, the oppesite situation
may oceur, namely, o is reduced for increasing W. This
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happens because atomic decay produces a spread of the
photon distribution toward lower photon numbers, As
an example, in Fig. 10 we show the photon distributions
for 8 =5and W =10,9. For vanishing decay p(n) is dou-
ble peaked, and the second peak iz lower than the first
one: atomic losses reduce the high-n probabilities, lead-
ing to a decrease of the normalized variance as an overall
effect.

B. Elastic Collisions (2y, > )

For elastic eollisions [see the second term in Eq. (4}] the
main features of p(n) are drastically modified. This situ-
ation is shown in Fig. 11{a) for N., = 20, 7 = 0, and
W =y =6.28. This plot should be compared with that
in Fig. 11(b) for the same values of N,., #, and W but at
the radiative limit v = 3.14. It is evident that, even for
zero temperature, no signature of trapping states is left
on the field. The different behavior of the field in the
presence or absence of elastic collisions is explained in
the following subsection.

C. Effect of Atomic Decay on Traps

In this subsection we briefly illustrate the different kinds
of atomic decay mechanism and their effect on photon
traps.

Let us suppose that the atomic decay is turned ofl and
that a trapping condition is satisfied. In absence of ther-
mal hepping the barriers for probability flow in Fock space
can be crossed only from high to low photon numbers,
because of cavity dissipation. If atomic decay is turned
on in the radiative limit, an atom entering the cavity in
the excited state can decay to the lower level before emit-
ting a photon. If this case occurs, no energy is released
to the maser mode, and the photon distribution does not
change, apart from cavity dissipation. In addition, the
same atom can absorb no more than one photon from the
field before leaving the rescnator. Thus the overall of
fect of this process is at most a shift of p(n) toward lower
values of n; that is, the barrier is not crossed. On the

p(n)
015 02

0.1

0.05

Fig, 10. Photon probability distributions for § — B, Ny = 20,
=1 and (al W =9 and (b) W = 0 at the radiative limit.
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L (a)

Fig. 11. Normalized mean photon number versus # superim-
posed upon the photon probability distribution (in gray) for
Nex =20, 7 =0, and (a) W = 6.28, y = 6.28 (elastic collisiong)
and (b) W = 6.28, v = 3.14 (radialive limit).

olher hand, for elastic collisions it may happen that an
atom entering the cavity emits a photon and later is sub-
Ject to a collision, changing the atomic coherence. If this
oceurs, il may happen that the atom is prevented from
reabsorbing a photon belore leaving the cavity. In this
process the barrier for the photon probability is crossed to-
ward higher photon numbers, and this basically explaina
why no trace of trapping states is left on the field, These
results are in agreement with those in Ref. 11.

5. QUANTUM VERSUS
SEMICLASSICAL DYNAMICS

A strict comparison between semiclassical quantities and
the corresponding quantum averages is meaningful only

D’Ariano et al.

for single-peaked probability distributions and for short
interaction times. At steady state a comparison is still
possible only if a small number of Rabi turns is consid-
ered. In fact, for long times or large Rahi angles the
quantum atom—field eorrelation becomes relevant in de-
termining the final features of the field. Moreover, we
emphasize that the quantum model always leads to a
unique steady state, whereas semiclassically there are
many different long-time salutions, depending on the ini-
tial condition. With the above considerations in mind,
in this section we compare the steady state of the present
model with that of & previous semiclassical analysis'? in
the RIHF regime. We consider zero temperature and
vanishing atomic damping,

In Ref. 12 the dynamics of the field amplitude a(¢) is de-
scribed by an integrodifferential equation that resembles
a kicked, damped pendulum equation. At stroboscopic
steady state, when the time fluctuations of a(¢) are ne-
glected, the temporal average @ in a fly-time interval =,
satisfies the following relation?!:

sin®(gro@) — =0, (19

ex

The roots of Eq. (18) can be either unstable or condition-
ally stable.’®" The conditionally stable Toots are fixed
points of the evolution; that is, they represent the classieal
stroboscopic steady states. These points are condition-
ally stable because they are replaced by chaotic attractors
by an increase in the pumping parameter. When this
replacement oceurs, the field in the cavity is stroboscopi-
cally oscillating, and one can have either cyclie or quasi-
periodie states, the actual long-time solution depending
on the initial condition.

In Fig. 12 we show the stationary photon probability
distribution p(n) for N,, = 20 along with the condition-
ally stable fixed points of Eq. (18). One can see that
the fixed-point solutions of the semiclassical model are

T

0.8
i

ex
0.6
T

n/N
0.4

Fig. 12. Conditionally stable fixed points of the semiclassical
evolution (dots) superimposed upon the stationary photon prob-
ability distribution (in gray) for Ney — 20,7 =0, and W = 3 = 0.
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close to the maxima of the photon distribution, even for
multiple-peaked probabilities. Thus, when p(n) has only
one peak, the quantum mean photon number ean be re-
produced well by the semiclassical intensity for a proper
choice of the initial condition. However, when p(n) has
two peaks of comparable height the value of the mean
photen number lies between the peaks, and the semiclas-
sical intensity cannot fit the stationary quantum average
[compare Fig. 3(a)} with Fig. 12]. Similar results were
obtained in the research reported in Ref. 22 in the frame-
work of a Fokker—Planck approach to the PILF one-atom
maser.

6. CONCLUSIONS

In this paper we have presented numerical results for the
stationary photon distribution in a regularly injected mi-
cromaser for high flux, namely, when the time spacing
between two consecutive excited atoms is constant and
comparable with the atom—field interaction time. Inour
approach both gain and losses are treated simultaneously
in a dynamical evolution governed by a general micro-
scopic master equation, which alse takes into account
incoherent decay processes for the atom. We evaluated
the stroboscopic steady state by diagonalizing the reduced
Green operator, and we analyzed the dependence of the
eigenvalues on the pumping parameter.

In comparison with the standard one-atom maser, we
find that the micromaser in the RIHF regime generally
originates a more efficient gain mechanism, but it also
may lead to lower gain, depending on the actual values
of N., and 6. For the dependence of the mean photon
number on the pumping parameter, a multiple structure
of collapses with revivals is found. Traps are destroyed
by atemic elastic collisions.

The normalized intensity fluctuations are generally
lower in the RTHF than in the PILF regime. However,
anomalous behaviors can be found for special ranges of
the pumping parameter, where fluctuations are decreased
by atomic decays. Such features are due to highly non-
classical mutiple-peaked photon distributions with differ-
ent sensitivities of the peaks to gain and decay processes.

Similarities between the RIHF and PILF micromasers,
for example, in the threshold locations, are ascribed to the
fact that in both schemes the radiation interacts with no
more than one atom at a time.

In the end, a comparison with the results of a semiclas-
gical model, corresponding to the same physical situation,
shows agreement between classical conditionally stable
fixed points and quantum maxima of the stationary pho-
ton distribution for not-too-large Rahi angles.
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