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operational axioms. This is not just for the sake of establishing more general and
irreducible foundations, but also to understand the intimate relations between general
epistemic issues—such as locality, causality, probability interpretations, holism versus
reductionism, and growth of experimental complexity with the “size” of the measured
system.

In the present work the starting point for axiomatization is a very comprehensive defi-
nition of physical experiment. As I have shown in Ref. [1], the adoption of such a general
definition of experiment constitutes a very seminal point for axiomatization, entailing a
thorough series of notions that are usually considered of quantum nature—such as the
same probabilistic notion of state, and the notions of conditional state, local state, pure
state, faithful state, instrument, propensity (i. e. "effect"), dynamical and informational
equivalence, dynamical and informational compatibility, predictability, discriminability,
programmability, locality, a-causality, and even many notions of dimensionality, orthog-
onality of states, rank of a state, etc: for more details the interested reader is addressed
to Ref. [1]. Here we will see how, assuming experimental accessibility and simplic-
ity in terms of five simple operational axioms, the present conception of experiment
brings his own Hilbert-space formulation, which in turns entails the Quantum Mechan-
ical one. The possibility of deriving the Hilbert-space formulation from experimental
simplicity/accessibility was first conjectured in the earlier attempt [1]. As we will see,
very interesting roles are played by Postulates numbered as 2, 3, and 5 in the following,
namely: (2) the assumed existence of informationally complete measurements, (3) the
local observability principle, and (5) the existence of symmetric faithful states. Postulate
2 minimizes the number of different apparatuses that are needed to retrieve any different
kind of information. Postulate 3 makes it possible to make joint observations using only
the same local measuring apparatuses used for measurements on single systems. This
also reconciles the holism of nonlocality with the reductionism of local observation.
Postulate 5 (in conjunction with the other two) allows one to calibrate any experimental
apparatus by just a single input state preparation. It also allows one to introduce an op-
erational definition for the "real adjoint"—i. e. the transposition—from which one can
derive a real Hilbert space structure via either the Mackey-Kakutani [2] (see also Ref.
[3]), or the Gelfand-Naimark-Segal [4] constructions. Moreover, the Postulates entail
general dimensionality theorems, which are in agreement with the quantum mechan-
ical rule of tensor product of Hilbert spaces for composition of independent systems,
and show that the derived real Hilbert space is isomorphic to the real Hilbert space of
Hermitian complex matrices representing selfadjoint operators over a complex Hilbert
space, which is the Hilbert space formulation of Quantum Mechanics. In deriving one
of the dimensionality theorems I have made, however, the implicit assumption that the
relation between the affine dimension and the informational dimension for a convex set
of state is the same for all physical systems—a sort of informational universality (see
the discussion at the end of the paper).

The present research has been stimulated by the recent noteworthy works on axioma-
tization of Quantum Mechanics by L. Hardy [5, 6] and by C. Fuchs [7]. However, apart
from a prominent role played by the informationally complete measurements, the rel-
ative implications and connections with these works remain rather obscure to me, and
will be object of future studies. Some expert readers will recognize strong affinities of
the present work with the program of G. Ludwig [8], who sought operational principles
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to select the structure of quantum states from all possible convex structures (see also
papers collected in the book [9]). These works didn’t have a followup mostly because
the convex structure by itself is quite poor mathematically. Here we use new crucial
concepts that were almost unknown in those years, concepts originated from the field of
Quantum Tomography [10]. In particular, recently it has been shown that it is possible
to make a complete quantum calibration of a measuring apparatus [11] or of a quantum
operation [12] by using a single pure bipartite state, and, more generally, using a faithful
state [13]. This gives us a unique opportunity for deriving the Hilbert space structure
from the convex structure in terms of calibrability axioms, relying on the special link
between the convex set of transformations and the convex set of states which occurs in
Quantum Mechanics, and which make the transformations of a single system closely
resemble the states of a bipartite system [14, 15].

THE OPERATIONAL AXIOMATIZATION

General Axiom 1 (On experimental science) In any experimental science we make
experiments to get information on the state of a objectified physical system. Knowledge
of such a state will allow us to predict the results of forthcoming experiments on the
same object system. Since we necessarily work with only partial a priori knowledge of
both system and experimental apparatus, the rules for the experiment must be given in
a probabilistic setting.

General Axiom 2 (On what is an experiment) An experiment on an object system
consists in having it interact with an apparatus. The interaction between object and
apparatus produces one of a set of possible transformations of the object, each one
occurring with some probability. Information on the “state” of the object system at
the beginning of the experiment is gained from the knowledge of which transformation
occurred, which is the "outcome" of the experiment signaled by the apparatus.

Postulate 1 (Independent systems) There exist independent physical systems.

Postulate 2 (Informationally complete observable) For each physical system there
exists an informationally complete observable.

Postulate 3 (Local observability principle) For every composite system there exist in-
formationally complete observables made only of minimal local informationally com-
plete observables.

Postulate 4 (Informationally complete discriminating observable) On every com-
posite system made of two identical physical systems there exists a discriminating
observable that gives a minimal informationally complete observable for one of the
components, for some preparations of the other component.

Postulate 5 (Symmetric faithful state) For every composite system made of two iden-
tical physical systems there exist a symmetric joint state that is both dynamically and
preparationally faithful.
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The General Axioms 1 and 2 entail a very rich series of notions, including those
used in the Postulates—e. g. independent systems, observable, informationally complete
observable, etc. Starting from the two General Axioms in the first sections of the paper, I
will introduce step by step such notions, starting from the pertaining definitions, and then
giving the logically related rules. For a discussion on the General Axioms the reader is
addressed to the publication [1], where also the generality of the definition of experiment
given in the General Axioms 1 is analyzed in some detail.

TRANSFORMATIONS, STATES, INDEPENDENT SYSTEMS

Performing a different experiment on the same object obviously corresponds to the use
of a different experimental apparatus or, at least, to a change of some settings of the ap-
paratus. Abstractly, this corresponds to change the set {A j} of possible transformations,
A j, that the system can undergo. Such change could actually mean really changing the
"dynamics" of the transformations, but it may simply mean changing only their probabil-
ities, or, just their labeling outcomes. Any such change actually corresponds to a change
of the experimental setup. Therefore, the set of all possible transformations {A j} will
be identified with the choice of experimental setting, i. e. with the experiment itself—or,
equivalently, with the action of the experimenter: this will be formalized by the follow-
ing definition

Definition 1 (Actions/experiments and outcomes) An action or experiment on the
object system is given by the set A ≡ {A j} of possible transformations A j having
overall unit probability, with the apparatus signaling the outcome j labeling which
transformation actually occurred.

Thus the action/experiment is just a complete set of possible transformations that can
occur in an experiment. As we can see now, in a general probabilistic framework the
action A is the "cause", whereas the outcome j labeling the transformation A j that
actually occurred is the "effect". The action has to be regarded as the “cause”, since
it is the option of the experimenter, and, as such, it should be viewed as deterministic (at
least one transformation A j ∈ A will occur with certainty), whereas the outcome j—i.
e. which transformation A j occurs—is probabilistic. The special case of a deterministic
transformation A corresponds to a singleton action/experiment A≡ {A }.

In the following, wherever we consider a nondeterministic transformation A by itself,
we always regard it in the context of an experiment, namely for any nondeterministic
transformation there always exists at least a complementary one B such that the overall
probability of occurrence of one of them is always unit. According to General Axiom
1 by definition the knowledge of the state of a physical system allows us to predict
the results of forthcoming possible experiments on the system, or, more generally, on
another system in the same physical situation. Then, according to the General Axiom 2 a
precise knowledge of the state of a system would allow us to evaluate the probabilities of
any possible transformation for any possible experiment. It follows that the only possible
definition of state is the following
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Definition 2 (States) A state ω for a physical system is a rule that provides the proba-
bility for any possible transformation, namely

ω : state, ω(A ) : probability that the transformation A occurs. (1)

We assume that the identical transformation I occurs with probability one, namely

ω(I ) = 1. (2)

This corresponds to a kind of interaction picture, in which we do not consider the
free evolution of the system (the scheme could be easily generalized to include a
free evolution). Mathematically, a state will be a map ω from the set of physical
transformations to the interval [0,1], with the normalization condition (2). Moreover,
for every action A= {A j} one has the normalization of probabilities

∑
A j∈A

ω(A j) = 1 (3)

for all states ω of the system. As already noticed in Ref. [1], in order to include also non-
disturbing experiments, one must conceive situations in which all states are left invariant
by each transformation.

The fact that we necessarily work in the presence of partial knowledge about both
object and apparatus requires that the specification of the state and of the transformation
could be given incompletely/probabilistically, entailing a convex structure on states and
an addition rule for coexistent transformations. The convex structure of states is given
more precisely by the rule

Rule 1 (Convex structure of states) The possible states of a physical system comprise
a convex set: for any two states ω1 and ω2 we can consider the state ω which is
the mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with
probability 1−λ . We will write

ω = λω1 +(1−λ )ω2, 0≤ λ ≤ 1, (4)

and the state ω will correspond to the following probability rule for transformations A

ω(A ) = λω1(A )+(1−λ )ω2(A ). (5)

Generalization to more than two states is obtained by induction. In the following the
convex set of states will be denoted by S. We will call pure the states which are the
extremal elements of the convex set, namely which cannot be obtained as mixture of any
two states, and we will call mixed the non-extremal ones. As regards transformations,
the addition of coexistent transformations and the convex structure will be considered in
Rules 4 and 6.
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Rule 2 (Transformations form a monoid) The composition A ◦B of two transforma-
tions A and B is itself a transformation. Consistency of compostion of transformations
requires associativity, namely

C ◦ (B ◦A ) = (C ◦B)◦A . (6)

There exists the identical transformation I which leaves the physical system invariant,
and which for every transformation A satisfies the composition rule

I ◦A = A ◦I = A . (7)

Therefore, transformations make a semigroup with identity, i. e. a monoid.

Definition 3 (Independent systems and local experiments) We say that two physical
systems are independent if on each system we can perform local experiments that do
not affect the other system for any joint state of the two systems. This can be expressed
synthetically with the commutativity of transformations of the local experiments, namely

A (1) ◦B(2) = B(2) ◦A (1), (8)

where the label n = 1,2 of the transformations denotes the system undergoing the
transformation.

In the following, when we have more than one independent system, we will denote local
transformations as ordered strings of transformations as follows

A ,B,C , . . .
.= A (1) ◦B(2) ◦C (3) ◦ . . . (9)

where the list of transformation on the left denotes the occurrence of local transformation
A on system 1, B on system 2, etc.

CONDITIONED STATES AND LOCAL STATES

Rule 3 (Bayes) When composing two transformations A and B, the probability
p(B|A ) that B occurs conditional on the previous occurrence of A is given by the
Bayes rule

p(B|A ) =
ω(B ◦A )

ω(A )
. (10)

The Bayes rule leads to the concept of conditional state:

Definition 4 (Conditional state) The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation
A has occurred, namely

ωA (B) .=
ω(B ◦A )

ω(A )
. (11)
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In the following we will make extensive use of the functional notation

ωA
.=

ω(· ◦A )
ω(A )

, (12)

where the centered dot stands for the argument of the map. Therefore, the notion of
conditional state describes the most general evolution.

Definition 5 (Local state) In the presence of many independent systems in a joint state
Ω, we define the local state Ω|n of the n-th system the state that gives the probability
for any local transformation A on the n-th system, with all other systems untouched,
namely

Ω|n(A ) .= Ω(I , . . . ,I , A︸︷︷︸
nth

,I , . . .). (13)

For example, for two systems only, (which is equivalent to group n− 1 systems into a
single one), we just write Ω|1 = Ω(·,I ). Notice that generally commutativity of local
transformations (i. e. Definition 3) does not imply that a transformation on system 2 does
not affect the conditioned local state on system 1. We also emphasize that acausality of
local actions is not logically entailed by system independence (for a discussion about
acausality see Ref. [1]).

Remark 1 (Linearity of evolution) At this point it is worth noticing that the present
definition of “state”, which logically follows from the definition of experiment, leads to
a notion of evolution as state-conditioning. In this way, each transformation acts linearly
on the state space. In addition, since states are probability functionals on transforma-
tions, by dualism (equivalence classes of) transformations are linear functionals over
the state space.

For the following it is convenient to extend the notion of state to that of weight,
namely nonnegative bounded functionals ω̃ over the set of transformations with 0 ≤
ω̃(A ) ≤ ω̃(I ) < +∞ for all transformations A . To each weight ω̃ it corresponds the
properly normalized state

ω =
ω̃

ω̃(I )
. (14)

Weights make the convex cone S̃ which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of
weight to that of negative weight, by taking differences. Such generalized weights span
the affine linear space W of the convex cone of weights.

Remark 2 The transformations A act as linear transformations over the space of
weights as follows

A ω̃ = ω̃(B ◦A ). (15)
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We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map
OpA : S−→ S̃, which sends a state ω into the unnormalized state ω̃A

.= OpA ω ∈ S̃,
defined by the relation

OpA ω .= ω̃A , ω̃A (B) = ω(B ◦A ). (16)

Similarly to a state, the linear form ω̃A ∈ S̃ for fixed A maps from the set of transfor-
mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < ω̃A (I ) ≤ 1. The operation Op gives the conditioned state through the state-
reduction rule

ωA =
ω̃A

ω(A )
≡ OpA ω

OpA ω(I )
. (17)

DYNAMICAL AND INFORMATIONAL STRUCTURE

From the Bayes rule, or, equivalently, from the definition of conditional state, we see
that we can have the following complementary situations:

1. There are different transformations which produce the same state change, but
generally occur with different probabilities;

2. There are different transformations which always occur with the same probability,
but generally affect a different state change.

The above observation leads us to the following definitions of dynamical and informa-
tional equivalences of transformations.

Definition 8 (Dynamical equivalence of transformations) Two transformations A
and B are dynamically equivalent if ωA = ωB for all possible states ω of the system.
We will denote the equivalence class containing the transformation A as [A ]dyn.

Definition 9 (Informational equivalence of transformations) Two transformations
A and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of
the system. We will denote the equivalence class containing the transformation A as
[A ].

Definition 10 (Complete equivalence of transformations/experiments) Two trans-
formations/experiments are completely equivalent iff they are both dynamically and
informationally equivalent.

Notice that even though two transformations are completely equivalent, in principle
they can still be different experimentally, in the sense that they are achieved with
different apparatus. However, we emphasize that outcomes in different experiments
corresponding to equivalent transformations always provide the same information on the
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state of the object, and, moreover, the corresponding transformations of the state are the
same. The concept of dynamical equivalence of transformations leads one to introduce
a convex structure also for transformations. We first need the notion of informational
compatibility.

Definition 11 (Informational compatibility or coexistence) We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

ω(A )+ω(B)≤ 1, ∀ω ∈S, (18)

The fact that two transformations are coexistent means that, in principle, they can occur
in the same experiment, namely there exists at least an action containing both of them.
We have named the present kind of compatibility "informational" since it is actually
defined on the informational equivalence classes of transformations.

We are now in position to define the "addition" of coexistent transformations.

Rule 4 (Addition of coexistent transformations) For any two coexistent transforma-
tions A and B we define the transformation S = A1 +A2 as the transformation cor-
responding to the event e = {1,2}, namely the apparatus signals that either A1 or A2
occurred, but does not specify which one. By definition, one has the distributivity rule

∀ω ∈S ω(A1 +A2) = ω(A1)+ω(A2), (19)

whereas the state conditioning is given by

∀ω ∈S ωA1+A2 =
ω(A1)

ω(A1 +A2)
ωA1 +

ω(A2)
ω(A1 +A2)

ωA2. (20)

Notice that the two rules in Eqs. (19) and (20) completely specify the transformation
A1 +A2, both informationally and dynamically. Eq. (20) can be more easily restated in
terms of operations as follows:

∀ω ∈S OpA1+A2
ω = OpA1

ω +OpA2
ω. (21)

Addition of compatible transformations is the core of the description of partial knowl-
edge on the experimental apparatus. Notice also that the same notion of coexistence can
be extended to "propensities" as well (see Definition 12).

Rule 5 (Multiplication of a transformation by a scalar) For each transformation A
the transformation λA for 0≤ λ ≤ 1 is defined as the transformation which is dynam-
ically equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Notice that according to Definition 10 two transformations are completely characterized
operationally by the informational and dynamical equivalence classes to which they
belong, whence Rule 5 is well posed.

Remark 3 (Algebra of generalized transformations) Using Eqs. (19) and (21) one
can extend the addition of coexistent transformations to generic linear combinations: the
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generalized transformations. The generalized transformations constitute a real vector
space, which is the affine space of the convex space T. Composition of transformations
can be extended via linearity to generalized transformations, making their space a real
algebra A, the algebra of generalized transformations. Notice that every generalized
transformation belongs to the dynamical equivalence class of a physical transformation,
since the conditioned state is always defined.

It is now natural to introduce a norm over transformations as follows.

Theorem 1 (Norm for transformations) The following quantity

||A ||= sup
ω∈S

ω(A ), (22)

is a norm on the set of transformations. In terms of such norm all transformations are
contractions.

Proof. We remind the axioms of norm: i) Sub-additivity ||A + B|| ≤ ||A ||+ ||B||; ii)
Multiplication by scalar ||λA || = λ ||A ||; iii) ||A || = 0 implies A = 0. The quantity in
Eq. (22) satisfy the sub-additivity relation i), since

||A +B||= sup
ω∈S

[ω(A )+ω(B)]≤ sup
ω∈S

ω(A )+ sup
ω ′∈S

ω ′(B) = ||A ||+ ||B||. (23)

Moreover, it obviously satisfies axiom ii). Finally, axiom iii) corresponds to identify all
transformations that never occur (occur with zero probability) with the zero transfor-
mation A = 0. It is also clear that, by definition, for each transformation A one has
||A || ≤ 1, namely transformations are contractions.¥

We remind that the multiplication of a transformation A by a scalar is still a transfor-
mation only for scalar 0≤ λ ≤ ||A ||−1.

Theorem 2 The norm in Eq. (22) satisfies the following inequality

iv) ||B ◦A || ≤ ||B||||A ||.
Proof. Using the definition of conditional state in Eq. (11) we have

||B ◦A ||= sup
ω∈S

ω(B ◦A ) = sup
ω∈S

ωA (B)ω(A )≤ sup
ω∈S

ωA (B) sup
ζ∈S

ζ (A )

≤ sup
ω∈S

ω(B) sup
ζ∈S

ζ (A ) = ||B||||A ||. (24)

¥
The linear space of generalized weights W can also be equipped with a norm. For this

we need to introduce the following notion of experimentally sufficient set of transfor-
mations.

Theorem 3 (Norm over generalized weights) The following is a norm over general-
ized weights

||ω̃||= sup
A ∈T

|ω̃(A )|. (25)

110

Downloaded 20 Nov 2006 to 193.206.67.109. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



Proof. The quantity in Eq. (25) satisfies the sub-additivity relation ||ω̃ + ζ̃ || ≤ ||ω̃ ||+ ||ζ̃ ||,
since

||ω̃ + ζ̃ ||= sup
A ∈T

[|ω̃(A )+ ζ̃ (A )|]≤ sup
A ∈T

[|ω̃(A )|+ |ζ̃ (A )|]

≤ sup
A ∈T

|ω̃(A )|+ sup
A ∈T

|ζ̃ (A )]|= ||ω̃||+ ||ζ̃ ||.
(26)

Moreover, it obviously satisfies the identity

||λω̃||= |λ |||ω||. (27)

Finally, ||ω̃|| = 0 implies that ω̃ = 0, since either ω̃ is a positive linear form, i. e. it is
proportional to a true state, whence at least ω̃(I ) > 0, or ω̃ is the difference of two
positive linear forms, whence the two corresponding states must be equal by definition,
since their probability rules are equal, which means that, again, ω̃ = 0. ¥

Remark 4 (Banach space of generalized weights) Closure with respect to the norm
(25) makes the real vector space of generalized weights W a Banach space, which we
will name the Banach space of generalized weights. The norm closure correspond to
assume the possibility of preparing states with probabilities close to that of a given one,
with the approximability criterion defined by the norm.

Remark 5 (Norms, approximability criteria, and norm closure) Norms defined as
in Eq. (22) or Eq. (25) (see also other norms in the following) operationally correspond
to approximability criteria. The norm closure is not operationally required, but, as any
other kind of extension, it is mathematically convenient. Therefore, in the following we
should remind that if norm closure is not operationally assumed in terms of a separate
postulate (clearly not of operational nature), then the Banach space element—e. g. the
limit of a Cauchy sequence—does not necessarily correspond to a physically achievable
quantity.

In terms of the norm (22) for transformations one can equivalently define coexistence
(informational compatibility) using the following corollary

Corollary 1 Two transformations A and B are coexistent iff A +B is a contraction.

Proof. If the two transformations are coexistent, then from Eqs. (18) and (22) one has
that ||A + B|| ≤ 1. On the other hand, if ||A + B|| ≤ 1, this means that Eq. (22) is
satisfied for all states, namely the transformations are coexistent.¥

Corollary 2 The transformations λA and (1−λ )B are compatible for any couple of
transformations A and B.

Proof. Clearly ||λA +(1−λ )B|| ≤ λ ||A ||+(1−λ )||B|| ≤ 1.¥
The last corollary implies the rule
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Rule 6 (Convex structure of transformations) Transformations form a convex set,
namely for any two transformations A1 and A2 we can consider the transformation A
which is the mixture of A1 and A2 with probabilities λ and 1−λ . Formally, we write

A = λA1 +(1−λ )A2, 0≤ λ ≤ 1, (28)

with the following meaning: the transformation A is itself a probabilistic transforma-
tion, occurring with overall probability

ω(A ) = λω(A1)+(1−λ )ω(A2), (29)

meaning that when the transformation A occurred we know that the transformation
dynamically was either A1 with (conditioned) probability λ or A2 with probability
(1−λ ).

We have seen that the transformations form a convex set, more specifically, a spheri-
cally truncated convex cone, namely we can always add transformations or multiply a
transformation by a positive scalar if the result is a contraction. In the following we will
denote the spherically truncated convex cone of transformations as T.

Remark 6 The norm (22) can be extended to the whole algebra A of generalized
transformations as follows

||A ||= sup
ω∈S

|ω(A )|. (30)

It is then easy to check the axioms i), and ii) of norm. However, axiom iii) does not hold
anymore, since one has ||C ||= 0 for C = A −B with A and B informationally equiv-
alent transformations. Therefore, the norm extension in Eq. (30) is only a seminorm.
Also the bound (2) is not meaningful for the extension, since for the same A above one
would have ω(A ) = 0. We conclude that we cannot introduce the structure of Banach
algebra over A. A Banach space structure can, however, be introduced for the affine
space of propensities (see the following).

PROPENSITIES

Informational equivalence allows one to define equivalence classes of transformations,
which we may want to call propensities, since they give the occurrence probability of a
transformation for each state, i. e. its “disposition” to occur.

Definition 12 (Propensities) We call propensity an informational equivalence class of
transformations.

It is easy to see that the present notion of propensity corresponds closely to the notion
of "effect" introduced by Ludwig [8]. However, we prefer to keep a separate word,
since the "effect" has been identified with a quantum mechanical notion and a precise
mathematical object (i. e. a positive contraction). In the following we will denote
propensities with underlined symbols as A , B, etc., and we will use the notation [A ]
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for the propensity containing the transformation A , and also write A0 ∈ [A ] to say that
A0 is informationally equivalent to A . Thus, by definition one has ω(A ) ≡ ω([A ]),
and one can legitimately write ω(A ). Similarly, one has ω̃A (B) ≡ ω̃A ([B]) which
implies that ω(B ◦A ) = ω([B]◦A ) which gives the chaining rule

[B]◦A ⊆ [B ◦A ]. (31)

One also has the locality rule

[(A ,B)]⊇ ([A ], [B]), (32)

where we used notation (9). It is clear that λA and λB belong to the same equivalence
class iff A and B are informationally equivalent. This means that also for propensities
multiplication by a scalar can be defined as λ [A ] = [λA ]. Moreover, since for A0 ∈ [A ]
and B0 ∈ [B] one has A0 +B0 ∈ [A +B], we can define addition of propensities as
[A ] + [B] = [A + B] for any choice of representatives A and B of the two added
propensities. Also, since all transformations of the same equivalence class have the
same norm, we can extend the definition (22) to propensities as ||[A ]|| = ||A || for any
representative A of the class. It is easy to check sub-additivity on classes, which implies
that it is indeed a norm. In fact, one has

||[A ]+ [B]||= ||A +B|| ≤ ||A ||+ ||B||= ||[A ]||+ ||[B]||. (33)

Therefore, it follows that also propensities form a spherically truncated convex cone,
which we will denote by P.

Remark 7 (Banach space of generalized propensities) The norm for propensities can
be extended to the embedding affine space of P. One can see that in this case all
axioms of norm hold, and one can construct a Banach space, with the norm-closure
corresponding to an approximation criterion for propensities (see also Remark 5).

Remark 8 (Duality between the convex sets of states and of propensities) From the
Definition 2 of state it follows that the convex set of states S and the convex sets of
propensities P are dual each other, and the latter can be regarded as the set of positive
linear contractions over the set of states, namely the set of positive functionals l on S
with unit upper bound, and with the functional l[A ] corresponding to the propensity [A ]
being defined as

l[A ](ω) .= ω(A ). (34)

In the following we will often identify propensities with their corresponding functionals,
and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . .. Finally, notice that the
notion of coexistence (informational compatibility) extends naturally to propensities.

Definition 13 (Observable) We call observable a set of propensities L = {li} which is
informationally equivalent to an action L ∈ A, namely such that there exists an action
A= {A j} for which one has li ∈A j.
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Clearly, the generalized observable is normalized to the constant unit functional, i. e.
∑i li = 1.

Definition 14 (Informationally complete observable) An observableL= {li} is infor-
mationally complete if each propensity can be written as a linear combination of the of
elements of L, namely for each propensity l there exist coefficients ci(l) such that

l = ∑
i

ci(l)li. (35)

We call the informationally complete observable minimal when its propensities are
linearly independent.

Clearly, using an informationally complete observable one can reconstruct any state ω
from just the probabilities li(ω), since one has

ω(A ) = ∑
i

ci(lA )li(ω). (36)

Based on the notion of informationally complete observable, we can introduce the
following one

Definition 15 (Experimentally sufficient set of transformations) We call a set of
transformations t experimentally sufficient if it has a subset that is in correspondence
with an informationally complete observable.

Using the above notion we can introduce a norm || · ||t for generalized weights, generaliz-
ing the norm given in Eq. (25), by taking the supremum over t instead of T. The fact that
the set of transformations is experimentally sufficient guarantees that ||ω̃ ||t = 0 implies
that ω̃ = 0. The restriction to a set t of transformations may be operationally motivated.
An analogous restriction may be considered for the norm of generalized transformations,
by restricting the set of states S.

Definition 16 (Predictability and resolution) We will call a transformation A —and
likewise its propensity—predictable if there exists a state for which A occurs with
certainty and some other state for which it never occurs. The transformation (propensity)
will be also called resolved if the state for which it occurs with certainty is unique—
whence pure. An action will be called predictable when it is made only of predictable
transformations, and resolved when all transformations are resolved.

The present notion of predictability for propensity corresponds to that of "decision
effects" of Ludwig [8]. For a predictable transformation A one has ||A || = 1. Notice
that a predictable transformation is not deterministic, and it can generally occur with
nonunit probability on some state ω . Predictable propensities A correspond to affine
functions fA on the state space S with 0 ≤ fA ≤ 1 achieving both bounds. Their set
will be denoted by Pp.

Definition 17 (Perfectly discriminable set of states) We call a set of states {ωn}n=1,N
perfectly discriminable if there exists an action A = {A j} j=1,N with transformations
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A j ∈ l j corresponding to a set of predictable propensities {ln}n=1,N satisfying the
relation

ln(ωm) = δnm. (37)

Definition 18 (Informational dimensionality) We call informational dimension of the
convex set of states S, denoted by idim(S), the maximal cardinality of perfectly dis-
criminable set of states in S.

Definition 19 (Discriminating observable) An observable L = {l j} is discriminating
for S when it discriminates a set of states with cardinality equal to the informational
dimension idim(S) of S.

FAITHFUL STATE

Definition 20 (Dynamically faithful state) We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A results in an (unnormalized) conditional state that is in one-to-one correspon-
dence with the dynamical equivalence class [A ]dyn of A , namely the following map is
one-to-one:

Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn, (38)

where in the above equation the transformation A acts locally only on the nth compo-
nent system.

¶

µ

³

´
-

-
Φ

A
ΦA ,I

FIGURE 1. Illustration of the notion of dynamically faithful state: the conditioned state ΦA ,I is in
one-to-one correspondence with the dynamical equivalence class of the transformation A .

In the following for simplicity we restrict attention to two component systems, and
take the first one for the nth. Using the definition 4 of conditional state, we see that the
state Φ is dynamically faithful when the map Φ(· ◦ [A ,I ]dyn) is invertible over the set
of dynamical equivalence classes of transformations, namely when

∀B, Φ(B ◦ (A1,I )) = Φ(B ◦ (A2,I )) ⇐⇒ A1 ∈ [A2]dyn. (39)

Definition 21 (Preparationally faithful state) We will call a state Φ of a bipartite sys-
tem preparationally faithful if all local states of one component can be achieved by a
suitable local transformation of the other, namely for every state ω of the first party
there exists a local transformation Tω of the other party for which the conditioned local
state coincides with ω , namely

∀ω ∈S ∃Tω : ω = ΦTω ,I |2 .=
Φ(Tω , ·)

Φ(Tω ,I )
. (40)
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In Postulate 5 we also use the notion of symmetric joint state, defined as follows.

Definition 22 (Symmetric joint state of two identical systems) We call a joint state
of two identical systems symmetric if for a particular choice of local informationally
complete measurements one has

Φ(X i,X j) = Φ(X j,X i), ∀i, j. (41)

We clearly have
Φ(A ,B) = Φ(B,A ), (42)

for any couple of propensities A and B. Therefore, the choice of the local information-
ally complete measurement is irrelevant. Moreover, for a symmetric faithful state we
have

Φ|1(A ) = Φ|1(A ′) = Φ|2(A ) = Φ|2(A ′), (43)

and for a symmetric preparationally faithful state we have

ω = ΦTω ,I |2 = ΦI ,Tω |1. (44)

THE BLOCH REPRESENTATION

In this section we introduce an affine-space representation based on the existence of a
minimal informational complete observable. Such representation generalizes the popular
Bloch representation used in Quantum Mechanics.

Let’s fix a minimal informationally complete observable, denoted by {n j}, in terms
of which we can expand (in a unique way) any propensity as follows

lA = ∑
j

m j(A )n j. (45)

It is convenient to replace one element of the informationally complete observable {n j}
with the normalization functional n0 defined as

n0(ω̃) = ω̃(I ), ∀ω̃ ∈ S̃, (46)

[n0(ω) = 1 for normalized states ω]. We will then use the Minkowskian notation

n .= (n0,n), m .= (m0,m), mn .= ∑
j

m jn j = m ·n+m0n0. (47)

In the following we will also denote q .= m0. Therefore, for any propensity A , we will
write

lA (ω) = m(A )n(ω)≡ m(A ) ·n(ω)+q(A ). (48)

Clearly one can extend the convex set of propensities P to the complexification CP of
the underlying affine space, by keeping the coefficients m j of the expansion as complex,
namely a generic element l ∈ CP will be given by

l = ∑
j

m jn j, m j ∈ C. (49)
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Notice that n(ω) gives a complete description of the state ω , since for any transformation
A one can write

ω(A ) = m(A ) ·n(ω)+q(A ). (50)

On the other hand, by denoting with X j and l j the propensity such that [m(X j)]l = δ jl
we have

n j(ω) = lX j
(ω) .= l j(ω). (51)

Notice that X 0 ≡I . We will call n(ω) the Bloch vector representing the state ω . The
Bloch representation is faithful (i. e. one-to-one), since the informationally complete
observable {l j} is minimal, namely the functionals l j are linearly independent. We
also emphasize that the representation is trivially extended to generalized weights,
transformations and propensities.

We now recover the linear transformation describing conditioning, given in terms of
the operation, which we remind is given in terms of the unnormalized state OpA ω ≡
ω̃A defined as follows

OpA ω(B)≡ ω̃A (B) = ω(B ◦A ) = ω(B ◦A )≡ lB(ω̃A ). (52)

From linearity of transformations (see Eq. (21) and Remark 3), upon introducing a
matrix {M jl(A )}, one can write

ω(X j ◦A ) = ∑
l

M jl(A )ll(ω)+M j0(A ), (53)

and, in particular,

ω(X0 ◦A )≡ ω(A ) = ∑
l

M0l(A )nl(ω)≡ m(A ) ·n(ω)+q(A ), (54)

from which we derive the identities

M0l(A )≡ [m(A )]l, M00(A )≡ q(A ). (55)

The real matrices M jl(A ) are a representation of the real algebra of transformations A.
The first row of the matrix is a representation of the propensity A (see Fig. 2).

In the Bloch-vector notation, one has

n j(ω̃A ) = lX j
(ω̃A ) = ω(X j ◦A ), n0(ω̃A ) = lX 0

(ω̃A ) = ω(A ). (56)

n(ω̃A ) =M(A )n(ω)+ k(A ),
k j(A ) .=q(X j ◦A ), n0(ω̃A ) = m(A ) ·n(ω)+q(A ),

(57)

ω̃A (B) = m(B) ·n(ω̃A )+q(B)n0(ω̃A ) (58)

The matrix representation of the transformation is synthesized in Fig. 2. Since the
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Mi j(A ) =




q(A ) m(A )

k(A ) M(A )




FIGURE 2. Matrix representation of the real algebra of transformations A. The first row
represents the propensity A of the transformation A . It gives the transformation of the zero-
component of the Bloch vector n0(ω̃A )≡ω(A ) = m(A ) ·n(ω)+q(A ), namely the probability
of the transformation. The following rows represent the affine transformation of the Bloch vector
n(ω) corresponding to the quantum operation OpA , the first column giving the translation k(A ),
and the remaining square matrix M(A ) the linear part. Overall, the Bloch vector of the state ω
is transformed as n(OpA ω) = Mn(ω)+ k(A ).

Bloch representation is faithful, then the dimension of the affine space of the Bloch
vector n(ω) is just the affine dimension adm(S) of the convex set of states S.

Therefore, summarizing we have the following conditioning transformation

n(ω)−→ n(ωA ) =
M(A )n(ω)+ k(A )
m(A ) ·n(ω)+q(A )

, (59)

with the transformation occurring with probability given by

p(A ;ω) = m(A ) ·n(ω)+q(A ). (60)

Using a joint local informationally complete observable, we can build a Bloch repre-
sentation of joint states and of transformations of the composed system. We introduce
the dual tensor notation n¯n with the following meaning

(n¯n)i j(Φ)≡ ni¯n j(Φ) .= lX i,X j
(Φ), i, j = 0,1, . . . (61)

and with the matrix composition rule

(M(A )¯M(B))(n¯n)(Φ) = (M(A )n¯M(A )n)(Φ), (62)

corresponding to the probability rule

Φ(X i ◦A ,X j ◦B) = (M(A )n¯M(B)n)i j(Φ) (63)

which follows from Eq. (53) along with the conditioning rule and the notion of local
state. For example, more explicitely for i, j = 1,2, . . ., one has

Φ(X i ◦A ,X j ◦B) =(M(A )n¯M(B)n)i j(Φ)+(k(A ))n0¯M(B)n)i j(Φ)
+(M(A ))n¯ k(B)n0)i j(Φ)+ ki(A )k j(B)

(64)
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where we used the identity (n0¯n0)(Φ) = 1. It is easy to see that the representation of
the local states Ω|1 = Ω(·,I ) and Ω|2 = Ω(I , ·) are simply given by

n(Ω|1) = (n¯n0)(Ω), n(Ω|2) = (n0¯n)(Ω). (65)

OPERATIONAL ADJOINT AND REAL HILBERT SPACE
STRUCTURE

In this section we will see how it is possible to define operationally a real adjoint map (i.
e. a transposition) using a symmetric faithful state, and how using such adjoint one can
introduce a Hilbert space structure via two different constructions: the Mackey-Kakutani
and the Gelfand-Naimark-Segal constructions.

Twin involution

We now define the twin involution over transformations.

Definition 23 For a faithful bipartite state Φ, the twin A ′ of the transformation A is
that transformation which when applied to the second component system gives the same
conditioned state and with the same probability than the transformation A operating
on the first system. In equations, one has

Φ̃A ,I = Φ̃I ,A ′ (66)

¶

µ
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´
-

-
Φ

A
ΦA ,I ¶

µ

³

´
-

-

Φ
A ′

ΦI ,A ′ ≡ΦA ,I

FIGURE 3. Illustration of the concept of twin involution.

Notice that, by definition, independently on the faithful state Φ we always have trivially

I ′ = I . (67)

We now derive the Bloch matrix representation of the twin involution. The bipartite state
in the Bloch form is represented by the matrix

Fi j
.= ni¯n j(Φ). (68)

The matrix F is real and invertible, as a consequence of faithfulness of state Φ (by
definition the correspondence Φ̃A ,I ↔ A is one-to-one). Indeed, a transformation A
on the first system is described by the matrix multiplication

ni¯n j(Φ̃A ,I ) = ∑
k

AikFk j = (AF)i j, (69)
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where A .= M(A ). On the other hand, a transformation A on the second system is
represented as

ni¯n j(Φ̃I ,A ) = ∑
k

A jkFik = (FAτ)i j. (70)

One can also check the composition rules

ni¯n j(Φ̃B◦A ,I ) = (BAF)i j, (71)

ni¯n j(Φ̃I ,B ◦A ) = (FAτBτ)i j ≡ (F(BA)τ)i j. (72)

Also, if one considers another faithful state Ψ which is obtained by applying an invertible
deterministic transformation M to the first system in the joint state Φ, namely

Ψ = ΦM ,I , (73)

then the matrix F in Eqs. (71) and (72) is substituted by the matrix MF . The defining
identity (66) now corresponds to the matrix identity

AF = F(A′)τ
, (74)

namely the twin involution is given by

A′ = FτAτFτ−1. (75)

If the faithful state Φ is also symmetric, the twin involution satisfies all four axioms of
generalized adjoint:

Definition 24 (Generalized adjoint) 1. (A+B)′ = A′+B′, 2. (A′)′ = A, 3. (AB)′ = B′A′,
4. A′A = 0 =⇒ A = 0.

Indeed, a faithful symmetric state has a Bloch representation in terms of a symmetric
matrix F in Eq. (68). Therefore, the first three axioms are obvious. We just need to
check the last axiom. For this purpose we need the following simple lemma

Lemma 1 The following implication holds

AτA = 0 =⇒ A = 0. (76)

Proof. Using the real polar decomposition A = PR, with P ≥ 0 positive symmetric and
RRτ = RτR = I (rotation matrix), one has that AτA = RτP2R has all positive eigenvalues,
each one is the square of the corresponding eigenvalue of P, whence AτA = 0 if all
eigenvalues of P are zero, namely P = 0, or, equivalently, A = PR = 0, since R is
invertible.¥

We can now check that axiom 4. for the real adjoint holds for symmetric F , namely
Postulate 5 implies the existence of a transposition (the real equivalent of the adjoint),
which can be operationally defined via the twin involution on a faithful symmetric state.

Theorem 4 (Operational adjoint) The existence of a symmetric faithful bipartite states
guarantees the existence of a transposition on the real algebra A of transformations.

120

Downloaded 20 Nov 2006 to 193.206.67.109. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



Proof. Suppose that there exists a symmetric faithful state Φ. Its matrix F is symmetric
invertible. Then also F−1 is symmetric. By real polar decomposition of A, we write

A′A = FτRτPF−1/2F−1/2PR, (77)

and invertibility of F implies that A′A = 0 is equivalent to

RτPF−1/2F−1/2PR = 0, (78)

and using Lemma 1 one has
F−1/2PR = 0, (79)

namely A = PR = 0. This proves identity 4. of Definition 24, completing the list of
requirements that the twin involution must satisfy in order to be a generalized adjoint.¥

Lemma 2 For a faithful symmetric state Φ the following identities hold

Φ̃A ,B = Φ̃I ,B◦A ′ = Φ̃A ◦B′,I . (80)

Proof.
Φ̃A ,B = (Φ̃A ,I )I ,B = (Φ̃I ,A ′)I ,B = Φ̃I ,B◦A ′ = Φ̃A ◦B′,I . (81)

¥

Definition 25 (Real positive form) A linear form ϕ over the algebra of transformations
A is called real positive (with respect to the real adjoint A →A ′) if ∀A ∈A it satisfies
the following identities

a) ϕ(A ′) = ϕ(A ),
b) ϕ(A ′ ◦A )≥ 0.

Theorem 5 The local state Φ|1 = Φ|2 of a symmetric faithful state Φ is a real positive
form over A.

Proof. From identity (43) we have that Φ|1 = Φ|2. Condition a) also follows from the
same identity. On the other hand, the condition b) holds also for generalized transforma-
tions, since a generalized transformation is always a multiple of a physical one by a real
scalar. ¥

Mackey-Kakutani (MK) construction of real Hilbert space structure

In the following we will show how the existence of a generalized adjoint over trans-
formations allows us to derive a structure of real Hilbert space over generalized weights.
For this purpose we need the following two theorems by Mackey and Kakutani[2].

Theorem 6 (Mackey-Kakutani I) [Ref. [2]]. Let B be a real Banach space, and R
the ring of continuous linear transformations of B into itself. Then B is isomorphic to
a (generally non separable) real Hilbert space H if and only if there is an operation
T →T ′ from R to R which has the properties of definition (24).
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Theorem 7 (Mackey-Kakutani II) [Ref. [2]]. The isomorphism in Theorem 6 may
be set up in such a manner that the correspondence T → T ′ goes over into the
correspondence between its operator and its adjoint. In other words, B may be provided
with a positive definite symmetric bilinear inner product (x,y) such that the new norm
|||x||| in B defined by the equation |||x|||=

√
(x,x) is equivalent to the given norm ||x|| and

such that for all x and y in B (T (x),y) = (x,T ′(y)).

Theorems 6 and 7 entail the following Hilbert space formulation:

Remark 9 (Hilbert space structure for the Banach space of generalized weights)
Take for B the Banach space of generalized weights W and for R the ring of linear
transformations of W according to Eq. (15). Then Theorems 6 and 7 assert that the
space of generalized weights W is isomorphic to a real Hilbert space H, and that it
is possible to choose the scalar product in such a way that the twin transform corre-
sponds to the real-adjoint—i. e. the transposition—and the norm is equivalent to the
one induced by the scalar product. The Riesz theorem implies that the affine space of
generalized propensities (linear real forms over states or, equivalently, over generalized
weights) is itself a real Hilbert space isomorphic to H.

Gelfand-Naimark-Segal (GNS) construction of real Hilbert space
structure

With the introduction of a generalized adjoint given in Definition in 24 corresponding
to the operational concept of twin involution, the real algebra A of generalized trans-
formations becomes a real ∗-algebra. Then each real positive form ϕ over the ∗-algebra
A—e. g. the local state ϕ .= Φ|1 of a faithful symmetric state Φ—defines a Hilbert space
Hϕ and a representation πϕ of A by linear operators acting on Hϕ . Indeed, A is a linear
space over R and ϕ defines a symmetric (positive semi-definite) scalar product on A as
follows

ϕ〈A |B〉ϕ .= ϕ(A ′ ◦B)≡Φ(A ′,B′), A ,B ∈A, (82)

where we remind the use of notation defined in Eq. (9). Indeed, condition a) of Definition
25 implies the symmetry ϕ〈B|A 〉ϕ = ϕ〈A |B〉ϕ , whereas condition b) implies the
positivity ϕ〈A |A 〉ϕ ≥ 0. Also, it is easy to check that

ϕ〈C ′ ◦A |B〉ϕ = ϕ〈A |C ◦B〉ϕ , (83)

as it can be derived from the definition (82) as follows

ϕ〈C ′ ◦A |B〉ϕ =Φ(A ′ ◦C ,B′) = Φ̃C ,I (A ′,B′) = Φ̃I ,C ′(A ′,B′)
=Φ(A ′,B′ ◦C ′) = ϕ〈A |C ◦B〉ϕ

(84)

Symmetry and positivity imply the bounding

ϕ〈A |B〉ϕ ≤
√

ϕ〈A |A 〉ϕ ϕ〈B|B〉ϕ . (85)
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Using the bounding (85) for the scalar product ϕ〈A ′ ◦A ◦X |X 〉ϕ we can easily see
that the set I⊆A consisting of all elements X ∈A with ϕ(X ′ ◦X ) = 0 is a left ideal,
i. e. a linear subspace of A which is stable under multiplication by any element of A
on the left (i. e. X ∈ I, A ∈ A implies A ◦X ∈ I). The set of equivalence classes
A/I thus becomes a real pre-Hilbert space equipped with a symmetric scalar product,
an element of the space being an equivalence class. Notice that the scalar product does
not depend on the algebraic representatives chosen for classes, namely

ϕ〈{A }|{B}〉ϕ = ϕ〈A |B〉ϕ , ∀A ∈ {A }, ∀B ∈ {B}, (86)

{A } denoting the equivalence class containing A . For the equivalence classes we can
define the norm

||X ||2ϕ .= ϕ〈X |X 〉ϕ , X ∈A/I. (87)

We keep the subindex ϕ for the norm in order to distinguish it from the previously
defined norm (22). The Hilbert space is then obtained by completion of A/I in the
norm topology (the Hilbert space closure is not operationally relevant: see Remark 5).
The product in A defines the action of A on the vectors in A/I, by associating to each
element A ∈ A the linear operator πϕ(A ) defined on the dense domain A/I ⊆ Hϕ as
follows

πϕ(A )|X 〉ϕ .= |{A ◦B}〉ϕ , X = {B}. (88)

The norm (87) can be extended to a seminorm on the whole A as follows

||A ||ϕ .= ||{A }||ϕ =
√

ϕ〈{A }|{A }〉ϕ . (89)

On the other hand, on A/I one can easily verify that || · ||ϕ indeed satisfies all axioms of
norm, since clearly ||A ||ϕ = 0 implies that A ∈ I, corresponding to the null vector, and

||{λA }||ϕ = ||λ{A }||ϕ = λ ||{A }||ϕ ,

||{A +B}||ϕ = ||{A }+{B}||ϕ ≤ ||{A }||ϕ + ||{B}||ϕ .
(90)

If A were a Banach ∗-algebra the domain of definition of πϕ(A ) could be easily
extended to the whole Hϕ by continuity, since to a Cauchy sequence Xn ∈ A/I there
correspond Cauchy sequences A Bn, Bn ∈Xn as a consequence of the norm bounding

||πϕ(A )Xn−πϕ(A )Xm||ϕ =||{A (Bn−Bm)}||ϕ = ||A (Bn−Bm)||ϕ
≤||A ||ϕ ||Bn−Bm||ϕ .

(91)

However, the last step is not necessarily true, since conditions ||B◦A ||ϕ ≤ ||B||ϕ ||A ||ϕ ,
and ||A ′||ϕ = ||A ||ϕ do not necessarily hold, whence the possibility of representing
generalized transformations as operators over Hϕ remains an open problem for the
infinite dimensional case. Also, the use of the seminorm (30) closure is not of much
help, since one can just prove that

||A ||ϕ ≤ ||A ′||, ||A ||2ϕ ≤ ||A ′||||A ||, (92)
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but we cannot prove a bounding ||B|| ≤ ||X ||ϕ , B ∈X . The first bound in Eq. (92) can
be derived as follows

||A ||ϕ = Φ(A ′,A ′) = ΦI ,A ′(A ′,I )Φ(I ,A ′) = ΦI ,A ′|1(A ′)Φ|2(A ′)≤ ||A ′||2,
(93)

where Φ is any faithful state corresponding to ϕ . The second bound in Eq. (92) is implied
by the inequality

||A ||2ϕ = ϕ(A ′ ◦A )≤ ||A ′A || ≤ ||A ′||||A ||. (94)

Also we do not have that ||A ′||= ||A ||, not even ||A ′|| ≤ ||A ||.
In terms of the faithful state Φ and of its Bloch representation the scalar product (82)

rewrites as

ϕ〈A |B〉ϕ = Φ(A ′,B′) = (A′FB′τ)00 = (FτAτFτ−1BF)00. (95)

Remark 10 (Pairing between states and propensities) From the definition (82) of the
scalar product we have

ϕ〈A ′|B〉ϕ = ϕB(A )ϕ(B) = ΦI ,B′|1(A ), (96)

and if we assume that the state Φ is preparationally faithful, then for every state ω there
exists a transformation Tω such that ω = ΦTω ,I |2 = ΦI ,Tω |1 = ϕT ′

ω with ϕ(Tω) 6= 0.
Then one has

ω(A ) = ϕ〈A ′|T̃ω〉ϕ = ϕ〈A ′|T̃ω〉ϕ , T̃ω =
T ′

ω
ϕ(Tω)

, (97)

and we recover the pairing between states and propensities in terms of the scalar
product.

Notice that state ϕ is cyclic. Eq. (97) along with the bounds in Eq. (92) imply the
following theorem

Theorem 8 Two (bounded) generalized transformations belong to the same equivalence
class in A/I if and only if they are informationally equivalent, namely A ∈ {B}⇔A ∈
B.

Proof. If A is informational equivalent to B, then ω(A −B) = 0 ∀ω ∈ S, which
implies that ||A −B|| = 0, whence, according to the second bound in Eq. (92), ||A −
B||ϕ = 0 if both A and B are bounded (for any generalized transformation with
bounded norm ||A || one has ||A ′|| < ∞, since one can write A = λT , with T a
true transformation and |λ | < ∞, and T ′ bounded, being T ′ a true transformation
by definition of the real adjoint). This means that A = B +X , with X ∈ I, namely
A ∈ {B}. Reversely, if A ∈ {B}, then one has A = B +X , with ϕ〈X |X 〉ϕ = 0.
Using Eq. (97) we have the bounding

ω(X ) = ϕ〈X ′|T̃ω〉ϕ ≤ ||X ||ϕ ||T̃ω ||ϕ , (98)
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whence if ||X ||ϕ = 0, then ω(A −B) = ω(X ) = 0 for all states ω , namely A is
informationally equivalent to B. ¥

Therefore, the vectors of the Hilbert space Hϕ are in one-to-one correspondence with
generalized propensities. From the bounding (98) we can also see that if the state ϕ
satisfies ||T̃ω ||ϕ ≤Cϕ for some constant Cϕ ≥ 0 depending only on ϕ , then one can also
reversely bound the two inequivalent norms || · || and || · ||ϕ as follows

||A || ≤Cϕ ||A ||ϕ . (99)

In such case one the domain of definition of πϕ(A ) can be extended to the whole Hilbert
space Hϕ .

DIMENSIONALITY THEOREMS

We will now consider the consequences of Postulates 3 and 4. We will see that they
entail dimensionality theorems that agree with the tensor product rule for Hilbert spaces
for composition of independent systems in Quantum Mechanics. Moreover, Postulate
4, in particular, shows that the real Hilbert space Hϕ is isomorphic to the real Hilbert
space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions equal to idim(S), finally leading to the Hilbert space
formulation of Quantum Mechanics.

The local observability principle 3 is operationally crucial, since it reduces enor-
mously the complexity of informationally complete observations on composite systems,
by guaranteeing that only local (although jointly executed!) experiments are sufficient
for retrieving a complete information, also any correlations between the component sys-
tems. This principle directly implies the following upper bound for the affine dimension
of a composed system

adm(S12)≤ adm(S1)adm(S2)+ adm(S1)+ adm(S2). (100)

In fact, if the number of outcomes of a minimal informationally complete observable on
S is N, the affine dimension is given by adm(S) = N−1 (since the number of outcomes
must equal the dimension of the affine space embedding the convex set of states S plus
another dimension for the normalization functional n0). Now, consider a global infor-
mationally complete measurement made of two local minimal informationally complete
observables measured jointly. It has number of outcomes [adm(S1)+1][adm(S2)+1].
However, we are not guaranteed that the joint observable is itself minimal, whence the
bound (100) follows.

We now translate the concept of dynamically faithful state in the Bloch representation.
If the state Φ is (dynamically) faithful, then the output state ΦA ,I (conditioned that the
transformation A occurred locally on the first system) is in one-to-one correspondence
with the transformation A . Therefore, one can completely determine the transformation
by determining the output state. We need to determine the matrix M(A ) plus the vec-
tors k(A ) and m(A ), plus the parameter q(A ), namely adm(S)2 + 2adm(S)+ 1 pa-
rameters. However, one parameter, say q(A ) is determined by the overall probability of
occurrence of A on the state Φ, from which the conditioned state is independent. There-
fore, in order to have a joint faithful state we need to have at least adm(S)[adm(S)+2]
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independent parameters for the joint state, namely we have the lower bound for the affine
dimension of the joint system

adm(S×2)≥ adm(S)[adm(S)+2]. (101)

If we put the two bounds (100) and (101) together, for a bipartite system made of two
identical systems we obtain

adm(S×2) = adm(S)[adm(S)+2], (102)

which agrees with the dimensionality of composite systems in Quantum Mechanics
coming from the tensor product. The Bloch representation can be obtained experimen-
tally by performing a joint informationally complete measurement on both systems at
the output, and then:

1. determining the probability of occurrence of the transformation A on the state Φ,
which is given by

Φ(A ,I ) = Φ(X 0 ◦A ,X 0) = (m(A ) ·n¯n0)(Φ)+q(A ); (103)

2. determining the following probabilities

Φ(X j ◦A ,X k) =
[(M(A )n) j¯nk](Φ)+ k j(A )(n0¯nk)(Φ)

Φ(A ,I )
,

Φ(X 0 ◦A ,X j) =(m(A ) ·n¯n j)(Φ)+q(A ), j = 1, . . .adm(S),
k = 0,1, . . .adm(S);

(104)

3. invert the above equations in terms of M(A ), k(A ), m(A ), and q(A ).

Assuming now Postulate 4 gives a bound for the informational dimension of the infor-
mational dimension of convex sets of states. In fact, if for any bipartite system made
of two identical components and for some preparations of one component there exists
a discriminating observable that is informationally complete for the other component,
this means that adm(S) ≥ idim(S×2)− 1, with the equal sign if the informationally
complete observable is also minimal, namely

adm(S) = idim(S×2)−1. (105)

By comparing this with the affine dimension of the bipartite system, we get

adm(S×2) =adm(S)[adm(S)+2] = [idim(S×2)−1][idim(S×2)+1]

= idim(S×2)2−1,
(106)

which, generalizing to any convex set gives the identification

adm(S) = idim(S)2−1, (107)

corresponding to the dimension of the quantum convex sets S originated from Hilbert
spaces. Moreover, upon substituting Eq. (105) into Eq. (107) one obtain

idim(S×2) = idim(S)2, (108)
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which is the tensor product rule for informational dimensionalities.
According to Theorem 8 we have the identity

dim(Hϕ) = adm(S)+1, (109)

since Hϕ is identified with the vector space of the generalized propensities, namely the
space of the linear functionals over states which has one more dimension than the convex
set of states corresponding to normalization. From Eqs. (107) and (109) we now have

dim(Hϕ) = idim(S)2. (110)

Then, for finite dimensions the real Hilbert space Hϕ is isomorphic to the real Hilbert
space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = idim(S), with scalar product corresponding to
the trace pairing used in the Born rule, and with the convex cones of propensities and
states corresponding to the convex cone of positive matrices. This is the Hilbert space
formulation of Quantum Mechanics. In infinite dimensions the selfadjoint operators are
generally unbounded, since norm || · || is not necessarily bounded, and boundedness of
probabilities is provided by the faithful state Φ.

In deriving Eq. (107) I have implicitly assumed that the relation between the affine
dimension and the informational dimension which holds for bipartite systems must hold
for any system. Indeed, one can prove independently that

idim(S×2)≥ idim(S)2, (111)

since locally perfectly discriminable states are also jointly discriminable, and the ex-
istence of a preparationally faithful state guarantees the existence of idim(S)2 jointly
discriminable states, the bound in place of the identity coming from the fact that we are
not guaranteed that the set of jointly discriminable states made of local ones is max-
imal. At the present stage of this research in progress it is still not clear if the men-
tioned implicit assumption is avoidable, and, if not, how relevant it is. One may need to
add another postulate requiring a kind of universality of informational laws— such as
adm(S) = idim(S)2−1—independently on the physical system, i. e. on the convex set
of states S. It is also possible that in this way Postulate 4 can be avoided. These issues
will be analyzed in detail in a forthcoming publication.
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