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Abstract. The mathematical formulation of QuantumMechanics in terms of complex Hilbert space
is derived for finite dimensions, starting from a general definition of physical experiment and from
five simple Postulates concerning experimental accessibility and simplicity. For the infinite dimen-
sional case, on the other hand, a C∗-algebra representation of physical transformations is derived,
starting from just four of the five Postulates via a Gelfand-Naimark-Segal (GNS) construction. The
present paper simplifies and sharpens the previous derivation in Ref. [1]. The main ingredient of
the axiomatization is the postulated existence of faithful states that allows one to calibrate the ex-
perimental apparatus. Such notion is at the basis of the operational definitions of the scalar product
and of the transposed of a physical transformation.What is new in the present paper with respect to
Ref. [1], is the operational deduction of an involution corresponding to the complex-conjugation for
effects, whose extension to transformations allows to define the adjoint of a transformation when
the extension is composition-preserving. The existence of such composition-preserving extension
among possible extensions is analyzed.
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1. INTRODUCTION

QuantumMechanics has been universally accepted as a general law of nature that applies
to the entire physical domain, at any size and energy, and no experiment whatsoever has
shown the slightest deviation from what the theory predict. However, regardless such
unprecedented predicting power, the theory leaves us with a distasteful feeling that there
is still something missing. Indeed, QuantumMechanics provides us with a mathematical
framework by which we can derive the observed physics, and not—as we expect from
a theory—a set of physical laws or principles, from which the mathematical framework
is derived. Undeniably the axioms of Quantum Mechanics are of a highly abstract
and mathematical nature, and there is no direct connection between the mathematical
formalism and reality.
If one considers the universal validity of QuantumMechanics, its "physical" axioms—

if they exist—must be of very general nature: they must even transcend Physics itself,
moving to the higher level of Epistemology. Indeed Quantum Mechanics could be re-
garded itself as a miniature epistemology, being the quantum measurement the prototype
cognitive act of interaction with reality, the epistemic archetype. In this respect the ax-
ioms of Quantum Mechanics should be related to observability principles, which must
be satisfied regardless the specific physical laws that are object of the experiment. In
this search for operational axioms we are also motivated by the need of understanding
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the intimate relationships that are logically connecting epistemic issues such as local-
ity, causality, information-processing complexity, and experimental complexity. Which
features are really specific to Quantum Mechanics? Or is Quantum Mechanics a logical
necessity, without which we could not even experiment our world?
In a previous work [1] I showed how it is possible to derive the Hilbert space formu-

lation of Quantum Mechanics from five operational Postulates concerning experimental
accessibility and simplicity. There I showed that the generalized effects can be repre-
sented as Hermitian matrices over a complex Hilbert space, and I derived a Gelfand-
Naimark-Segal (GNS) representation [2] for transformations. The present paper simpli-
fies and sharpens that derivation, while fixing a subtle error (see Section 12 on errata).
The mathematical formulation of QuantumMechanics in terms of complex Hilbert space
is derived starting from the five Postulates, for finite dimensions. For the infinite dimen-
sional case, instead, a C∗-algebra representation of physical transformations is derived,
starting from just four of the five Postulates, via a Gelfand-Naimark-Segal (GNS) con-
struction
The starting point for the axiomatization is a seminal definition of physical experi-

ment, which, as first shown in Ref. [3], entails a thorough series of notions that lie at the
basis of the five Postulates. The postulated existence of a faithful state, which allows one
to calibrate the experimental apparatus, provides operational definitions for the scalar
product and for the transposed of a transformation. What is new in the present paper
is the operational deduction of the involution corresponding to the complex-conjugation
for effects, whose extension to transformations allows to define the usual adjoint when
the extension is composition-preserving. I will shortly discuss the existence of such
composition-preserving extension among all possible extensions: it is not clear yet if it
can be proved in the general case, or if it will actually require an additional postulate. The
operational definition of adjoint is the core of the derivation of the C∗-algebra represen-
tation of physical transformations via the Gelfand-Naimark-Segal (GNS) construction,
which is valid in the generally infinite dimensional case.
There is a strong affinity of the present work with the program of G. Ludwig [4] and

his school (see some papers collected in the book [5]). That program didn’t succeed in
being an operational axiomatization because it was mainly focused on the convex struc-
ture of quantum theory (which is mathematically quite poor), more than on aspects re-
lated to bipartite systems. In the present axiomatization some new crucial ingredients—
unknown to Ludwig—come from modern Quantum Tomography [6], and concern the
possibility of performing a complete quantum calibration of measuring apparatuses [7]
or transformations [8] by using a single pure bipartite state—a so-called faithful state
[9].

2. THE OPERATIONAL AXIOMATIZATION

General Axiom 1 (On experimental science) In any experimental science we make
experiments to get information on the state of a objectified physical system. Knowledge
of such a state will allow us to predict the results of forthcoming experiments on the
same object system. Since we necessarily work with only partial a priori knowledge of
both system and experimental apparatus, the rules for the experiment must be given in
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a probabilistic setting.

General Axiom 2 (On what is an experiment) An experiment on an object system
consists in having it interact with an apparatus. The interaction between object and
apparatus produces one of a set of possible transformations of the object, each one
occurring with some probability. Information on the “state” of the object system at
the beginning of the experiment is gained from the knowledge of which transformation
occurred, which is the "outcome" of the experiment signaled by the apparatus.

Postulate 1 (Independent systems) There exist independent physical systems.

Postulate 2 (Informationally complete observable) For each physical system there
exists an informationally complete observable.

Postulate 3 (Local observability principle) For every composite system there exist in-
formationally complete observables made only of local informationally complete ob-
servables.

Postulate 4 (Informationally complete discriminating observable) For every system
there exists a minimal informationally complete observable that can be achieved using a
joint discriminating observable on the system + an ancilla (i.e. an identical independent
system).

Postulate 5 (Symmetric faithful state) For every composite system made of two iden-
tical physical systems there exist a symmetric joint state that is both dynamically and
preparationally faithful.

The General Axioms 1 and 2 entail a very rich series of notions, including those
used in the Postulates—e. g. independent systems, observable, informationally complete
observable, etc. In Sections 3 to 9, starting from the two General Axioms, I will introduce
step by step such notions, giving the pertaining definitions and the logically related rules.
For a discussion on the General Axioms the reader is addressed to the publication [3],
where also the generality of the definition of the experiment given in the General Axiom
1 is analyzed in some detail.

3. TRANSFORMATIONS, STATES, INDEPENDENT SYSTEMS

Performing a different experiment on the same object obviously corresponds to use
of a different experimental apparatus or, at least, to change some apparatus settings.
Abstractly this corresponds to change the set {A j} of possible transformations,A j, that
the system can undergo. Such change in practice could mean to alter the "dynamics"
of the transformations, but it may simply mean changing only their probabilities, or,
just their labeling. Any such change actually corresponds to a modification of the
experimental setup. Therefore, the set of all possible transformations {A j} will be
identified with the choice of experimental setting, i. e. with the experiment itself—which
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can be equivalently regarded as the "action" of the experimenter. This will be formalized
by the following definition.

Definition 1 (Experiment) An experiment on the object system is identified with the set
A ≡ {A j} of possible transformationsA j having overall unit probability, the apparatus
signaling the outcome j labeling which transformation actually occurred.

Thus the experiment is just a complete set of possible transformations that can occur in
an experiment. In a general cause-and-effect probabilistic framework one shoud regard
the experiment A as the "cause" and the outcome j—or the corresponding transforma-
tions A j—as the "effect".1 The experiment has to be regarded as the “cause”—i. e. the
"action" of the experimenter—since he generally has no control on which transforma-
tion actually occurs, but can decide which experiment to perform, namely he can choose
the set of possible transformations A = {A j}. For example, in an Alice&Bob com-
munication scenario Alice will encode different characters by changing the set A. The
experimenter has control on the transformation itself only in the special case when the
transformationA is deterministic, corresponding to the singleton experimentA ≡ {A }.

In the following, wherever we consider a nondeterministic transformationA by itself,
we always regard it in the context of an experiment, namely assuming that there always
exists at least a complementary transformationB such that the overall probability ofA
and B is unit. Now, according to the General Axiom 1 by definition the knowledge of
the state of a physical system allows us to predict the results of forthcoming possible
experiments on the system—more generally, on another system in the same physical
situation. Then, according to the General Axiom 2 a precise knowledge of the state of
a system would allow us to evaluate the probabilities of any possible transformation
for any possible experiment. It follows that the only possible definition of state is the
following

Definition 2 (States) A state ω for a physical system is a rule that provides the proba-
bility for any possible transformation, namely

ω : state, ω(A ) : probability that the transformationA occurs. (1)

In the following for a given physical system we will denote by S the set of all possible
states and by T the set of all possible transformations.

We assume that the identical transformationI occurs with probability one, namely

ω(I ) = 1. (2)

This corresponds to an interaction picture a la Dirac, in which the free evolution is triv-
ial, corresponding to a special choice of the lab reference frame (the scheme, however,

1 The reader should not confuse this common usage of the word “effect” with the homonymous notion
used in Sect. 6.
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could be easily generalized to include a free evolution). Therefore, mathematically a
state will be a map ω from the set of physical transformations to the interval [0,1], with
Eq. (2) as a normalization condition. Moreover, for every experimentA = {A j} one will
have the completeness condition

∑
A j∈A

ω(A j) = 1 (3)

for all states ω ∈ S of the system. As already noticed in Ref. [3], in order to include
also non-disturbing experiments, we must conceive situations in which all states are left
invariant by each transformation.
The fact that we necessarily work in the presence of partial knowledge about both

object and apparatus corresponds to the possibility of a not completely determined
specification of both states and transformations, entailing the convex structure on states
and the addition rule for coexistent transformations. The addition rule for coexistent
transformations will be introduced in Rule 4 in Section 5. The convex structure of states
is given by the following rule

Rule 1 (Convex structure of states) The set of possible states S of a physical system
is a convex set: for any two states ω1 and ω2 we can consider the state ω which is
the mixture of ω1 and ω2, corresponding to have ω1 with probability λ and ω2 with
probability 1−λ . We will write

ω = λω1+(1−λ )ω2, 0! λ ! 1, (4)

and the state ω will correspond to the following probability rule for transformationsA

ω(A ) = λω1(A )+(1−λ )ω2(A ). (5)

Generalization to more than two states is obtained by induction. We will call pure the
states which are the extremal elements of the convex set, namely which cannot be
obtained as mixture of any two states, and we will call mixed the non-extremal ones.
As regards transformations, the addition of coexistent transformations and the convex
structure will be considered in Rules 4 and 6.

Rule 2 (Transformations form a monoid) The compositionA ◦B of two transforma-
tionsA andB is itself a transformation. Consistency of composition of transformations
requires associativity, namely

C ◦ (B ◦A ) = (C ◦B)◦A . (6)

There exists the identical transformationI which leaves the physical system invariant,
and which for every transformationA satisfies the composition rule

I ◦A = A ◦I = A . (7)

Therefore, transformations make a semigroup with identity, i. e. a monoid.
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Definition 3 (Independent systems and local experiments) We say that two physical
systems are independent if on each system we can perform local experiments that do
not affect the other system for any joint state of the two systems. This can be expressed
synthetically with the commutativity of transformations of the local experiments, namely

A (1) ◦B(2) = B(2) ◦A (1), (8)

where the label n = 1,2 of the transformations denotes the system undergoing the
transformation.

Notice that the above definition of independent systems is purely dynamical, i. e. it does
not contain any statistical requirement, such as the existence of factorized states. The
present notion of dynamical independence is so minimal that it can be satisfied not only
by the quantum tensor product, but also by the quantum direct sum. As we will see
in the following, it is the local observability principle of Postulate 3 which will select
the tensor product. It is also worth noticing that in this operational context appropriate
definitions of direct sum and product could be given in a category theory framework.
In the following, when dealing with more than one independent system, we will

denote local transformations as ordered strings of transformations as follows

A ,B,C , . . .
.= A (1) ◦B(2) ◦C (3) ◦ . . . (9)

4. CONDITIONED STATES AND LOCAL STATES

Rule 3 (Bayes) When composing two transformations A and B, the probability
p(B|A ) that B occurs conditional on the previous occurrence of A is given by the
Bayes rule

p(B|A ) =
ω(B ◦A )

ω(A )
. (10)

The Bayes rule leads to the concept of conditional state:

Definition 4 (Conditional state) The conditional state ωA gives the probability that a
transformationB occurs on the physical system in the state ω after the transformation
A has occurred, namely

ωA (B) .=
ω(B ◦A )

ω(A )
. (11)

In the following we will make extensive use of the functional notation

ωA
.=

ω(·◦A )
ω(A )

, (12)

where the centered dot stands for the argument of the map. Therefore, the notion of
conditional state describes the most general evolution.
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Definition 5 (Local state) In the presence of many independent systems in a joint state
Ω, we define the local state Ω|n of the n-th system as the probability rule of the joint
stateΩ with a local transformationA only on the n-th system and with all other systems
untouched, namely

Ω|n(A ) .= Ω(I , . . . ,I , A︸︷︷︸
nth

,I , . . .). (13)

For example, for two systems only, (or, equivalently, grouping n−1 systems into a single
one), we just write Ω|1 = Ω(·,I ).

Remark 1 (Linearity of evolution) The present definition of “state”, which log-
ically follows from the definition of experiment, leads to the identification state-
evolution≡state-conditioning, entailing a linear action of transformations on states,
apart from normalization. In addition, since states are probability functionals on trans-
formations, by dualism (equivalence classes of) transformations will be identified as
linear functionals over the state space.

It is convenient to extend the notion of state to that of weight, i. e. a nonnegative
bounded functionals ω̃ over the set of transformations with 0 ! ω̃(A ) ! ω̃(I ) < +∞
for all transformations A . To each weight ω̃ it corresponds the properly normalized
state

ω =
ω̃

ω̃(I )
. (14)

Weights make the convex coneW generated by the convex set of statesS.

Definition 6 (Linear real space of generalized weights) We extend the notion of
weight to that of negative weight, by taking differences. Such generalized weights span
the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of
weights as follows

A ω̃ = ω̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map
OpA : S−→W, which sends a state ω into the unnormalized state ω̃A

.=OpA ω ∈W,
with ω̃A (B) = ω(B ◦A ), namely

A ω := ω(·◦A ) ≡OpA ω ≡ ω̃A . (16)

This is the analogous of the Schrödinger picture evolution of states in QuantumMechan-
ics. One can see that in the present context linearity of evolution is just a consequence
of the fact that the evolution of states is pure state-conditioning: this will includes also
the deterministic case U ω = ω(· ◦U ) of transformations U with ω(U ) = 1 for all
statesω—the analogous of unitary evolutions or channels in QuantumMechanics. More
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generally, the operation Op gives both the conditioned state and the probability of the
transformation as follows

ωA ≡ OpA ω
OpA ω(I )

, ω(A ) ≡ OpA ω(I ). (17)

5. DYNAMICAL AND INFORMATIONAL STRUCTURE

From the Bayes rule, or, equivalently, from the definition of conditional state, we see
that we can have the following complementary situations:

1. There are different transformations which produce the same state change, but
generally occur with different probabilities;

2. There are different transformations which always occur with the same probability,
but generally affect a different state change.

The above observation leads us to the following definitions of dynamical and informa-
tional equivalences of transformations.

Definition 8 (Dynamical equivalence of transformations) Two transformations A
and B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

We will denote the equivalence class containing the transformation A as [A ]dyn.

Definition 9 (Informational equivalence of transformations) Two transformations
A and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of
the system.

We will denote the equivalence class containing the transformation A as [A ]eff, since,
as we will see in the following, such equivalence class will be identified with the notion
of effect.

Definition 10 (Identification of transformations/experiments) Two transformations
(or experiments) are completely equivalent iff they are both dynamically and informa-
tionally equivalent, and we will simply say that the two transformations are equal.

Theorem 1 (Identity of transformations) Two transformationsA1 and A2 are identi-
cal if and only if one has

ω(B ◦A1) = ω(B ◦A2), ∀ω ∈ S, ∀B ∈ T. (18)

Proof. Identity (18) for B = I is the informational equivalence of A1 and A2. On the
other hand, since ω(A1) = ω(A2) ∀ω ∈ S, Eq. (18) also implies that

ωA1 = ωA2 , ∀ω ∈ S, (19)
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namely the two transformations are also dynamically equivalent, whence they are com-
pletely equivalent."
Notice that even though two transformations are completely equivalent, in principle

they can still be experimentally different, in the sense that they are achieved with dif-
ferent apparatus. However, we emphasize that outcomes in different experiments corre-
sponding to completely equivalent transformations always provide the same information
on the state of the object, and, always produce the same conditioning of the state.
The notions of dynamical and informational equivalences of transformations leads

one to introduce a convex structure also for transformations. We first need the notion of
informational compatibility.

Definition 11 (Informational compatibility or coexistence) We say that two transfor-
mationsA and B are coexistent or informationally compatible if one has

ω(A )+ω(B) ! 1, ∀ω ∈ S, (20)

The fact that two transformations are coexistent means that, in principle, they can occur
in the same experiment, namely there exists at least an experiment containing both
of them. We have named the present kind of compatibility "informational" since it is
actually defined on the informational equivalence classes of transformations.
We are now in position to define the "addition" of coexistent transformations.

Rule 4 (Addition of coexistent transformations) For any two coexistent transforma-
tions A and B we define the transformation S = A1+A2 as the transformation cor-
responding to the event e = {1,2}, namely the apparatus signals that either A1 or A2
occurred, but does not specify which one. By definition, one has

∀ω ∈ S ω(A1+A2) = ω(A1)+ω(A2), (21)

whereas the state conditioning is given by

∀ω ∈ S ωA1+A2 =
ω(A1)

ω(A1+A2)
ωA1 +

ω(A2)
ω(A1+A2)

ωA2 . (22)

Notice that the two rules in Eqs. (21) and (22) completely specify the transformation
A1+A2, both informationally and dynamically. Eq. (22) can be more easily restated in
terms of operations as follows:

∀ω ∈ S (A1+A2)ω = A1ω +A2ω. (23)

It is easy to check that the composition "◦" of transformations is distributive with respect
to the addition "+". Addition of compatible transformations is the core of the description
of partial knowledge on the experimental apparatus. Notice also that the same notion of
coexistence can be extended to "effects" as well (see Definition 12). In the following we
will use the notation

S (A) := ∑
A j∈A

A j (24)
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to denote the deterministic transformation S (A) that corresponds to the sum of all
possible transformationsA j in A.

At first sight it is not obvious that the commutativity of local transformations in
Definition 3 implies that a local "action" on system 2 does not affect the conditioned
local state on system 1. Indeed, the occurrence of the transformation B on system 1
generally affects the local state on system 2, i. e.ΩB,I |2 (= Ω2. However, local "actions"
on a system have no effect on another independent system, as it is proved in the following
theorem.

Theorem 2 (No signaling, i. e. acausality of local actions) Any local "action" (i. e. ex-
periment) on a system does not affect another independent system. More precisely, any
local action on a system is equivalent to the identity transformation when viewed from
another independent system. In equations one has

∀Ω ∈ S×2,∀A, ΩS (A),I |2 = Ω|2. (25)

Proof. By definition, for B ∈ T one has Ω|2(B) = Ω(I ,B), and using Eq. (24)
according to Rule 4 one has

Ω(S (A),B) = ∑
A j∈A

Ω(A j,B) = Ω(I ,B) =:Ω|2(B). (26)

On the other hand, we have

ΩS (A),I |2(B) = Ω((I ,B)◦ (S (A),I ) = Ω(S (A),B), (27)

namely the statement."

Notice the consistency with Rule 4:

ΩS (A),I |2(B) =ΩS (A),I (I ,B) = ∑
A j∈A

ΩA j,I (I ,B)
Ω(A j,I )

∑A j∈A Ω(A j,I )

= ∑
A j∈A

Ω(A j,B)
Ω(A j,I )

Ω(A j,I )
Ω(I ,I )

= ∑
A j∈A

Ω(A j,B) = Ω(I ,B).
(28)

It is worth noticing that the no-signaling is a mere consequence of our minimal notion
of dynamical independence in Def. 3.

Rule 5 (Multiplication of a transformation by a scalar) For each transformation A
the transformation λA for 0! λ ! 1 is defined as the transformation which is dynam-
ically equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Notice that according to Definition 10 two transformations are completely characterized
operationally by the informational and dynamical equivalence classes to which they
belong, whence Rule 5 is well posed.
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Clearly λA1 and (1−λ )A2 are coexistent ∀A1,A2 ∈ T, λ ∈ [0,1]. We can therefore
pose a convex structure over the set of physical transformations T.

Rule 6 (Convex structure of physical transformations) The set T of physical trans-
formations is convex, namely for any two physical transformations A1 and A2 we can
consider the physical transformationA which is the mixture of A1 and A2 with proba-
bilities λ and 1−λ . Formally we write

A = λA1+(1−λ )A2, 0! λ ! 1, (29)

with the following meaning: the physical transformation A is itself a probabilistic
transformation, occurring with overall probability

ω(A ) = λω(A1)+(1−λ )ω(A2), (30)

meaning that when the transformation A occurred we know that the transformation
dynamically was either A1 with (conditioned) probability λ or A2 with probability
(1−λ ).

As we will see in Section 7, the convex set of physical transformations T has the form
of a truncated convex cone in the Banach algebra of generalized transformations.

Remark 3 (Algebra of generalized transformations) Using Eqs. (21) and (23) one
can extend the addition of coexistent transformations to generic linear combinations,
that we will call generalized transformations (to be contrasted with the original notion,
for which we will keep the name physical transformations). The generalized transfor-
mations constitute a real vector space—hereafter denoted as TR—which is the affine
space of the convex space T. Composition of transformations can be extended via lin-
earity to generalized transformations, making their space a real algebra, the algebra of
generalized transformations.

Remark 4 (Cone and double-cone of generalized transformations) The generalized
transformationsG of the form G = λA withA physical transformation and λ # 0make
a cone (denoted by T+

R), and for λ ∈R make a double cone (denoted by T±
R). Notice that

for TR * G (∈ T±
R i. e. out of the double cone the conditioning ωG is not necessarily a

state (e. g. there exist a physical transformationA for whichωG (A ) > 1 orωG (A )< 0,
even though ωG (I ) = 1. On the other hand, for generalized transformations in the
double cone ωG is always a true state.

Indeed, for a generalized transformation G = λA ∈ T±
R proportional to a physical

transformationA one has

ωG (B) =
ω(B ◦G )

ω(G )
=

ω(B ◦λG )
ω(λG )

=
ω(B ◦A )

ω(A )
. (31)

However, for a generalized transformation G = A1−A2 (∈ T±
R one has

ωA1−A2 =
ω(A1)

ω(A1)−ω(A2)
ωA1−

ω(A2)
ω(A1)−ω(A2)

ωA2 = λωA1 +(1−λ )ωA2, (32)
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and, generally one can have λ > 1, in which case consider e. g. a transformationB for
which ωA1(B) # λ−1 and ωA2(B) = 0. Then, one has ωA1−A2(B) > 1.

6. EFFECTS

Informational equivalence leads to the notion of effect, which corresponds closely to the
same notion introduced by Ludwig [4].2

Definition 12 (Effects) We call effect an informational equivalence class of transfor-
mations.

In the following we will denote effects with the underlined symbols A , B, etc., and
we will use the same notation to denote the effect containing the transformationA , i. e.
A0 ∈ A means "A0 is informationally equivalent to A " (depending on convenience we
will also keep the notation [A ]eff). Thus, by definition one has ω(A ) ≡ ω(A ), and we
will legitimately write ω(A ). Similarly, one has ω̃A (B) ≡ ω̃A (B) which implies that
ω(B ◦A ) = ω(B ◦A ) which gives the chaining rule

B ◦A ⊆ [B ◦A ]eff, (33)

corresponding to the "Heisenberg picture" version of Eq. (16), with the operation OpA
acting on effectsB, namely

OpA B := B ◦A . (34)

One also has the locality rule

[(A ,B)]eff ⊇ ([A ]eff, [B]eff). (35)

using notation (9). It is clear that λA and λB belong to the same equivalence class iff
A andB are informationally equivalent. This means that also for effects multiplication
by a scalar can be defined as λA = [λA ]eff. Moreover, we can naturally extend the
notion of coexistence from transformation to effects, and for A0 ∈ A andB0 ∈ B one
has A0+B0 ∈ [A +B]eff, we can define addition of coexistent effects as A +B =
[A + B]eff for any choice of representatives A and B of the two added effects. We
will denote the set of effects by P. We will also extend the notion of effect to that of
generalized effects by taking differences of effects (for the original notion, we will use
the name physical effects). The set of generalized effects will be denoted as PR.

Rule 7 (Convex set of physical effects) In a way completely analogous to Rule 6 the
set of physical effects P is convex.

2 In previous literature [3] I adopted the name "propensity" for the informational equivalence class of
transformations. The intention was to keep a separate word, since the world "effect" has already been
identified with the quantum mechanical notion, corresponding to a precise mathematical object (i. e. a
positive contraction). However, it turned out that the adoption of the world “propensity” has the negative
effect of linking the present axiomatic with the Popperian interpretation of probability.
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7. THE REAL BANACH SPACE STRUCTURE

Theorem 3 (Banach space of generalized effects) The generalized effects make a Ba-
nach space, with norm defined as follows

||A || = sup
ω∈S

|ω(A )|. (36)

Proof. We remind the axioms of norm: i) Sub-additivity ||A + B|| ! ||A ||+ ||B||; ii)
Multiplication by scalar ||λA || = |λ |||A ||; iii) ||A || = 0 impliesA = 0. The quantity in
Eq. (36) satisfy the sub-additivity relation i), since

||A +B|| = sup
ω∈S

|ω(A )+ω(B)|≤ sup
ω∈S

|ω(A )+ sup
ω ′∈S

|ω ′(B)| = ||A ||+ ||B||. (37)

Moreover, it obviously satisfies axiom ii). Finally, axiom iii) corresponds to a general-
ized effect that is the (multiple of a) difference of two informationally equivalent trans-
formations, namely the null effect. Closure with respect to the norm (36) makes the real
vector space of generalized effects a Banach space, which we will name the Banach
space of generalized effects. The norm closure corresponds to assume preparability of
effects by an approximation criterion in-probability (see also Remark 6)."

Theorem 4 (Banach space of generalized weights) The generalized weights make a
Banach space, with norm defined as follows

||ω̃|| := sup
A ∈PR,||A ||!1

|ω̃(A )|. (38)

Proof. The quantity in Eq. (38) satisfies the sub-additivity relation ||ω̃ + ζ̃ ||! ||ω̃||+ ||ζ̃ ||,
since

||ω̃ + ζ̃ || = sup
A ∈PR,||A ||!1

|ω̃(A )+ζ (A )| ! sup
A ∈PR,||A ||!1

[|ω̃(A )|+ |ζ̃ (A )|]

≤ sup
A ∈PR,||A ||!1

|ω̃(A )|+ sup
A ∈PR,||A ||!1

|ζ̃ (A )]| = ||ω̃||+ ||ζ̃ ||.
(39)

Moreover, it obviously satisfies the identity

||λω̃|| = |λ |||ω||. (40)

Finally, ||ω̃|| = 0 implies that ω̃ = 0, since either ω̃ is a positive linear form, i. e. it is
proportional to a true state, whence at least ω̃(I ) > 0, or ω̃ is the difference of two
positive linear forms, whence the two corresponding states must be equal by definition,
since their probability rules are equal, which means that, again, ω̃ = 0. Closure with
respect to the norm (38) makes the real vector space of generalized weights WR a
Banach space, which we will name the Banach space of generalized weights. The norm
closure corresponds to assume preparability of states by an approximation criterion in-
probability (see also Remark 6)."
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Remark 5 (Duality between the convex sets of states and of effects) From the Defi-
nition 2 of state it follows that the convex set of states S and the convex sets of effects
P are dual each other, and the latter can be regarded as the truncated convex cone
of positive linear contractions over the set of states, namely the set of bounded positive
functionals l ! 1 onS, and with the functional lA corresponding to the effectA defined
as follows

lA (ω) .= ω(A ). (41)

The above duality naturally extends to generalized effects and generalized weights.
Therefore, WR and PR are a dual Banach pair.

The above duality is the analogous of the duality between bounded operators and trace-
class operators in Quantum Mechanics. It is worth noticing that this dual Banach pair
is just a consequence of the probabilistic structure that is inherent in our definition of
experiment.
In the following we will often identify generalized effects with their corresponding

functionals, and denote them by lowercase letters a,b,c, . . ., or l1, l2, . . .
For generalized transformations, a suitably defined norm is the following.

Theorem 5 (Banach algebra of generalized transformations) The set of generalized
transformations make a Banach algebra, with norm defined as follows

||A || := sup
B∈PR,||B||!1

||B ◦A ||≡ sup
PR*||B||!1

sup
ω∈S

|ω(B ◦A )|. (42)

Proof. For x∈B in a generic Banach spaceB and T a map onB one has ||Tx||! ||T ||||x||,
with ||T || := sup||y||!1 ||Ty||, and applying the bound twice one has that for A and B maps
on B one has ||AB||! ||A||||B||. In our case this bound will rewrite ||B ◦A ||! ||B||||A ||,
whence the generalized transformations make a Banach algebra.
It is also clear that, by definition, for each physical transformationA one has ||A || !

1, namely physical transformations are contractions. The norm closure corresponds to
assume preparability of transformations by an approximation criterion in-probability
(see also Remark 6)."

Theorem 6 (Bound between the norm of a transformation and the norm of its effect)
The following bound holds

||A || ! ||A ||. (43)

and for transformationA ∈ T±
R one has the identity

||A || = ||A ||. (44)

Proof. One can easily check the bound

||A || = sup
ω∈S

|ω(A )| ! sup
ω∈S,C∈PR, ||C ||!1

|ω(C ◦A )| = ||A ||. (45)
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For A ∈ T±
R the generalized weight ωA is a physical state, and also the reverse bound

holds

||A || = sup
ω∈S,C∈P,||C ||!1

|ω(C ◦A )| = sup
ω∈S,C∈P,||C ||!1

|ωA (C )ω(A )|

! sup
ω∈S

|ω(A )| = sup
ω∈S

|ω(A )| = ||A ||,
(46)

which then implies identity (44). "

Corollary 1 Two physical transformations A and B are coexistent iff A + B is a
contraction.

Proof. If the two transformations are coexistent, then from Eqs. (20) and (42) one has
that ||A +B||! 1. On the other hand, if ||A +B||! 1, this means that for all states one
has ω(A )+ω(B) ! 1, namely the transformations are coexistent."

Corollary 2 Physical transformations are contractions, namely they make a truncated
convex cone.

Proof. It is an immediate consequence of Corollary 1."

Remark 6 (Approximability criteria and norm closure) The above defined norms
operationally correspond to approximability criteria in-probability. The norm clo-
sure may not be required operationally, however, as any other kind of extension, it is
mathematically convenient.

8. OBSERVABLES

Definition 13 (Observable) We call observable a complete set of effects L = {li} of an
experiment A, namely one has li = A j ∀ j.

Clearly, the generalized observable is normalized to the constant unit functional, i. e.
∑i li = 1.

Definition 14 (Informationally complete observable) An observableL = {li} is infor-
mationally complete if each effect can be written as a linear combination of the of ele-
ments of L, namely for each effect l there exist coefficients ci(l) such that

l = ∑
i
ci(l)li. (47)

We call the informationally complete observable minimal when its effects are linearly
independent.
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Remark 7 (Bloch representation) Using an informationally complete observable one
can reconstruct any state ω from just the probabilities li(ω), since one has

ω(A ) = ∑
i
ci(lA )li(ω). (48)

Definition 15 (Predictability and resolution) We will call a transformation A—and
likewise its effect—predictable if there exists a state for which A occurs with certainty
and some other state for which it never occurs. The transformation (effect) will be
also called resolved if the state for which it occurs with certainty is unique—whence
pure. An experiment will be called predictable when it is made only of predictable
transformations, and resolved when all transformations are resolved.

The present notion of predictability for effects corresponds to that of "decision effects"
of Ludwig [4]. For a predictable transformation A one has ||A || = 1. Notice that a
predictable transformation is not deterministic, and it can generally occur with nonunit
probability on some state ω . Predictable effectsA correspond to affine functions fA on
the state space S with 0! fA ! 1 achieving both bounds.

Definition 16 (Perfectly discriminable set of states) We call a set of states {ωn}n=1,N
perfectly discriminable if there exists an experiment A = {A j} j=1,N with transforma-
tions corresponding to predictable effects A j satisfying the relation

ωm(A n) = δnm. (49)

Definition 17 (Informational dimensionality) We call informational dimension of the
convex set of states S, denoted by dim#(S), the maximal cardinality of perfectly dis-
criminable set of states in S.

Definition 18 (Discriminating observable) An observable L = {l j} is discriminating
for S when |L|≡ dim#(S), i. e. L discriminates a maximal set of discriminable states.

9. FAITHFUL STATE

Definition 19 (Dynamically faithful state) We say that a stateΦ of a composite system
is dynamically faithful for the nth component system when for every transformation A
the following map is one-to-one

A ↔ (I , . . . ,I ,A ,I , . . .)Φ, (50)

where in the above equation the transformation A acts locally only on the nth compo-
nent system.

Notice that by linearity the correspondence is still one-to-one when extended to gen-
eralized transformations. Physically, the definition corresponds to say that the output
conditioned state (multiplied by the probability of occurrence) is in one-to-one corre-
spondence with the transformation.
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(A ,I )Φ

FIGURE 1. Illustration of the notion of dynamically faithful state for a bipartite system (see Definition
19). Physically, the state Φ is faithful when the output conditioned state (multiplied by the probability of
occurrence) is in one-to-one correspondence with the transformation.

In the following we restrict attention to bipartite systems. In equations a state is
dynamically faithful when

(A ,I )Φ = 0 ⇐⇒ A = 0, (51)

and according to Definition 7 this is equivalent to say that for every bipartite effect B
one has

Φ(B ◦ (A ,I )) = 0 ⇐⇒ A = 0. (52)

Definition 20 (Preparationally faithful state) We will call a state Φ of a bipartite sys-
tem preparationally faithful for system 1 if every joint bipartite state Ω can be achieved
by a suitable local transformationTΩ on system 1 occurring with nonzero probability.!

"
#
$ !

!
Φ

TΩ

Ω

FIGURE 2. Illustration of the notion of dynamically faithful state for a bipartite system (Definition 20).

Clearly a bipartite state Φ that is preparationally faithful for system 1 is also locally
preparationally faithful for system 1, namely every local state ω of system 2 can be
achieved by a suitable local transformation Tω on system 1.
In Postulate 5 we also use the notion of symmetric joint state, defined as follows.

Definition 21 (Symmetric joint state of two identical systems) We call a joint state of
two identical systems symmetric if for any couple of transformationsA and B one has

Φ(A ,B) = Φ(B,A ). (53)

10. THE COMPLEX HILBERT SPACE STRUCTURE FOR FINITE
DIMENSIONS

In this section I will derive the complex Hilbert space formulation of QuantumMechan-
ics for finite dimensions from the five Postulates. This will be done as follows. From
Postulates 3 and 4 I obtain an identity between the affine dimension of the convex set of
states and its informational dimension, corresponding to assess that the dimension of the
linear space of effects is the square of an integer number. Then from the bilinear symmet-
ric form over effects given by a faithful state—whose existence is postulated in Postulate
5—I derive a strictly positive real scalar product over generalized effects, which makes

95

Downloaded 12 Apr 2007 to 151.46.133.69. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



their linear space a real Hilbert space. Finally, since the dimension of such Hilbert space
is the square of an integer, one deduces that the Hilbert space of generalized effects is
isomorphic to a real Hilbert space of Hermitian complex matrices representing selfad-
joint operators over a complex Hilbert space, which is the Hilbert space formulation of
Quantum Mechanics.

10.1. Dimensionality theorems

We now consider the consequences of Postulates 3 and 4. We will see that they entail
dimensionality theorems that agree with the tensor product rule for Hilbert spaces for
composition of independent systems in Quantum Mechanics. Moreover, Postulate 4, in
particular, will have as a consequence that generalized effects can be represented as
Hermitian complex matrices over a complex Hilbert space H of dimensions equal to
dim#(S), which is the Hilbert space formulation of Quantum Mechanics.
The local observability principle 3 is operationally crucial, since it reduces enor-

mously the experimental complexity, by guaranteeing that only local (although jointly
executed!) experiments are sufficient to retrieve a complete information of a compos-
ite system, including all correlations between the components. The principle reconciles
holism with reductionism, in the sense that we can observe an holistic nature in a reduc-
tionistic way—i. e. locally. This principle implies the following identity for the affine
dimension of a composed system

dim(S12) = dim(S1)dim(S2)+dim(S1)+dim(S2). (54)

We can first prove that the left side of Eq. (54) is a lower bound for the right side. In-
deed, the number of outcomes N of a minimal informationally complete observable
is given by N = dim(S) + 1, since it equals the dimension of the affine space em-
bedding the convex set of states S plus an additional dimension for normalization.
Now, consider a global informationally complete measurement made of two local mini-
mal informationally complete observables measured jointly. It has number of outcomes
[dim(S1)+1][dim(S2)+1]. However, we are not guaranteed that the joint observable is
itself minimal, whence the bound. The opposite inequality can be easily proved by con-
sidering that a global informationally incomplete measurement made of minimal local
informationally complete measurements should belong to the linear span of a minimal
global informationally complete measurement.
It is worth noticing that identity (54) is the same that we have in Quantum Mechanics

for a bipartite system, due to the tensor product structure. Therefore, the tensor product
is not a consequence of dynamical independence in Def. 1, but follows from the local
observability principle.

Postulate 4 now gives a bound for the informational dimension of the convex sets of
states. In fact, if for any bipartite systemmade of two identical components and for some
preparations of one component there exists a discriminating observable that is informa-
tionally complete for the other component, this means that dim(S) # dim#(S×2)− 1,
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with the equal sign if the informationally complete observable is also minimal, namely

dim(S) = dim#(S×2)−1. (55)

By comparing this with the affine dimension of the bipartite system, we get

dim(S×2) =dim(S)[dim(S)+2] = [dim#(S×2)−1][dim#(S×2)+1]
=dim#(S×2)2−1,

(56)

which, generalizing to any convex set gives the identification

dim(S) = dim#(S)2−1, (57)

corresponding to the dimension of the quantum convex sets S due to the underlying
Hilbert space. Moreover, upon substituting Eq. (55) into Eq. (57) one obtain

dim#(S×2) = dim#(S)2, (58)

which is the quantum product rule for informational dimensionalities corresponding
to the quantum tensor product. To summarize, it is worth noticing that the quantum
dimensionality rules (57) and (58) follow from Postulates 3 and 4.
To conclude this section we notice that Postulate 5 immediately implies the following

identity
dim(T) = dim(S×2)+1. (59)

10.2. Derivation of the complex Hilbert space structure

The faithful state Φ naturally provides a bilinear form Φ(A ,B) over effects A ,B,
which is certainly positive over physical effects, since Φ(A ,A ) is a probability. How-
ever, unfortunately, the fact that the form is positive over physical effects doesn’t guar-
antee that it remains positive when extended to the linear space of generalized effects,
namely to their linear combinations with real (generally non positive) coefficients. This
problem can be easily cured by considering the absolute value of the bilinear form
|Φ| := Φ+ −Φ−, and then adopting |Φ|(A ,B) as the definition for the scalar product
betweenA andB. The absolute value |Φ| can be defined thanks to the fact thatΦ is real
symmetric, whence it can be diagonalized over the linear space of generalized effects.
Upon denoting byP± the orthogonal projectors over the linear space corresponding to
positive and negative eigenvalues, respectively, one has Φ± = Φ(·,P±·), namely

|Φ|(A ,B) = Φ(A ,ς(B)), ς(A ) = (P+−P−)(A ). (60)

The map ς is an involution, namely ς 2 = I . Notice that there is no non zero generalized
effect C with |Φ|(C ,C ) = 0. Indeed, the requirement that the state Φ is also prepara-
tionally faithful implies that for every state ω there exists a suitable transformation Tω
such that ω = ΦI ,Tω |1 with Φ(I ,Tω) > 0, whence

ω(C ) = ΦI ,Tω |1(C ) = Φ(C ,ς(T̃ ω)) = |Φ|(C , T̃ ω), T̃ ω =
ς(T ω)

Φ(I ,T ω)
, (61)
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and due to non-negativity of |Φ| one has

ω(C ) !
√

|Φ|(C ,C ) |Φ|(T̃ ω , T̃ ω), (62)

which implies that ω(C ) = 0 for all states ω , i. e. C = 0. Therefore, |Φ|(A ,B)
defines a strictly positive real symmetric scalar product, whence the linear space PR of
generalized effects becomes a real pre-Hilbert space. The Hilbert space is then obtained
by completion in the norm topology (for the operational relevance of norm closure see
Remark 6), and we will denote it by WΦ. Notice that WΦ is a real Hilbert space, since
both its linear space and the scalar product are real. For finite dimensional convex setS
one has

dim(WΦ) = dim(S)+1, (63)

since the linear space of generalized effectsPR is just the space of the linear functionals
over S, with one additional dimension corresponding to normalization. But from Eqs.
(57) and (63) it follows that

dim(WΦ) = dim#(S)2. (64)

The last identity implies that the real Hilbert spaceWΦ is isomorphic to the real Hilbert
space of Hermitian complex matrices representing selfadjoint operators over a complex
Hilbert space H of dimensions dim(H) = dim#(S): this is the Hilbert space formula-
tion of Quantum Mechanics. Indeed, this is sufficient to recover the full mathematical
structure of Quantum Mechanics, since once the generalized effects are represented by
Hermitian matrices, the physical effects will be represented as elements of the truncated
convex cone of positive matrices, the physical transformations will be represented as
CP identity-decreasing maps over effects, and finally, states will be represented as den-
sity matrices via the Bush version [10] of the Gleason theorem, or via our state-effect
correspondence coming from the preparationally faithfulness of Φ.

11. TOWARDS INFINITE DIMENSIONS: THE GNS
REPRESENTATION OF TRANSFORMATIONS

In the previous section I derived the Hilbert space formulation of QuantumMechanics in
the finite dimensional case. Such derivation does not hold for infinite dimension, since
we cannot rely on the dimensionality identities proved in Section 10. In the infinite
dimensional case we need an alternative way to derive Quantum Mechanics, such as the
construction of a C∗-algebra representation of generalized transformations. In order to
do that we need to extend the real Banach algebra TR to a complex algebra, and for this
we need to derive the adjoint of a transformation from the five postulates. This will be
the goal of the present section. It will turn out that only four of the five postulates are
needed.
, in which I will introduce the adjoint via an operational definition of the transposed of

a physical transformation, and of its complex conjugate (the latter will be an extension
to TR of the involution ς of Section 10). Both maps are just based on Postulate 5. I
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will then derive a Gelfand-Naimark-Segal (GNS) representation [2] for transformations,
with the future goal of either proving that is leads to a C∗-algebra, or that the above GNS
representation is exactly what one has in Quantum Mechanics.

11.1. The transposed transformation

For a symmetric bipartite state that is faithful both dynamically and preparationally,
for every transformation on system 1 there always exists a (generalized) transformation
on system 2 giving the same operation on that state. This allows us to introduce opera-
tionally the following notion of transposed transformation.

Definition 22 (Transposed transformation) For a faithful bipartite state Φ, the trans-
posed transformation A ′ of the transformation A is the generalized transformation
which when applied to the second component system gives the same conditioned state
and with the same probability as the transformation A operating on the first system,
namely

(A ,I )Φ = (I ,A ′)Φ (65)

!
"

#
$ !

!
Φ

A
(A ,I )Φ !

"
#
$ !

!

Φ
A ′

(I ,A ′)Φ ≡ (A ,I )Φ

FIGURE 3. Illustration of the operational concept of transposed transformation.

Eq. (65) is equivalent to the following identity

Φ(B ◦A ,C ) = Φ(B,C ◦A ′). (66)

Clearly one has I ′ = I . It is easy to check that A → A ′ satisfies the axioms of
transposition

1. (A +B)′ = A ′ +B′, 2. (A ′)′ = A , 3. (A ◦B)′ = B′ ◦A ′. (67)

Indeed, axiom 1 is trivially satisfied, whereas axiom 2 is proved as follows

Φ(B ◦A ′′,C ) =Φ(B,C ◦A ′) = Φ(C ◦A ′,B) = Φ(C ,B ◦A )
=Φ(B ◦A ,C ),

(68)

and, finally, for axiom 3 one has

Φ(C ◦ (B ◦A ),D) = Φ(C ◦B,D ◦A ′) = Φ(C ,D ◦A ′ ◦B′), (69)

whereas unicity is implied by faithfulness.
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11.2. Gelfand-Naimark-Segal (GNS) construction of real Hilbert
space structure

Unfortunately, even though the transposition defined in identity (65) works as an ad-
joint for the symmetric bilinear form Φ as in Eqs. (68) and (69), however, it is not the
right adjoint for the scalar product given by the strictly positive bilinear form |Φ|(A ,B)
in Eq. (60), due to the presence of the involution ς . In order to introduce an adjoint
for generalized transformations (with respect to the scalar product between effects) one
needs to extend the involution ς to generalized transformations. This can be easily done,
since the bilinear form of the faithful state is already defined over generalized trans-
formations, and Φ is symmetric over the linear space TR. Therefore, with a procedure
analogous to that used for effects we introduce the absolute value |Φ| of the symmetric
bilinear form Φ over TR, whence extend the scalar product to TR. Clearly, since the bi-
linear formΦ(A ,B)will anyway depend only on the informational equivalence classes
A andB of the two transformations, one can have different extensions of the involution
ς from generalized effects to generalized transformations, which work equally well. One
has

ς(A ) =:A ς ∈ ς(A ), (70)

with a transformation A ς := ς(A ) belonging to the informational class ς(A ). Clearly
one has ς 2(A ) = ς(A ς ) ∈ A , and generally ς 2(A ) (= A , however, one can always
consistently choose the extension such that it is itself an involution (see also the follow-
ing for the choice of the extension). The idea is now that such an involution plays the
role of the complex conjugation, such that the composition with the transposition pro-
vides the adjoint. Inspection of Eq. (69) shows that in order to have the right adjoint of
transformations with respect to the scalar product, we need to define the scalar product
via the bilinear form Φ(A ′,B′) over transposed transformations. Therefore, we define
the scalar product between generalized effects as follows

Φ〈B|A 〉Φ := Φ(B′,ς(A ′)). (71)

In the following we will equivalently write the entries of the scalar product as general-
ized transformations or as generalized effects, with Φ〈A |B〉Φ := Φ〈A |B〉Φ, the gener-
alized effects being the actual vectors of the linear factor space of generalized trans-
formations modulo informational equivalence. Notice that one has Φ〈C ◦A |B〉Φ =
Φ(A ′ ◦C ′,ς(B′)), corresponding to the operator-like form of the operation of trans-
formations over effect |C ′ ◦A 〉Φ = |C ′ ◦A 〉Φ which is the transposed version of the
Heisenberg picture evolution (34). We can easily check the following steps

Φ〈C ′ ◦A |B〉Φ =Φ(A ′ ◦C ,ς(B′)) = Φ(A ′,ς(B′)◦C ′)
=|Φ|(A ′,ς(ς(B′)◦C ′)).

(72)

Now, for composition-preserving involution (i. e. ς(B ◦A ) = Bς ◦A ς ) one can easily
verify that

Φ〈C ′ ◦A |B〉Φ = |Φ|(A ′,B′ ◦ ς(C ′)) = Φ〈A |(ς(C ′))′ ◦B〉Φ, (73)
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namely,

Φ〈ς(C ′)◦A |B〉Φ = Φ〈A |(B′ ◦ ς 2(C ′))′〉Φ = Φ〈A |C ◦B〉Φ, (74)

whence A † := ς(A ′) works as an adjoint for the scalar product, namely

Φ〈C † ◦A |B〉Φ = Φ〈A |C ◦B〉Φ. (75)

In terms of the adjoint the scalar product can also be written as follows

Φ〈B|A 〉Φ = Φ|2(A † ◦B). (76)

The involution ς is composition-preserving if ς(T) = T namely if the involution
preserves physical transformations (this is true for an identity-preserving involution
ς(I ) = I which is cone-preserving ς(T+

R) = T+
R). Indeed, for ς(T) = T one can

consider the involution on transformations induced by the involutive isomorphism
ω → ως of the convex set of states S defined as follows

ω(ς(A )) := ως (A ), ∀ω ∈ S, ∀A ∈ T. (77)

Consistency of state-reduction ωA =⇒ ως
A with the involution onS corresponds to the

identity
∀ω ∈ S, ∀A ,B ∈ T, ως

A (B) ≡ ωA ς (Bς ) (78)

which, along with identity (77) is equivalent to

∀ω ∈ S, ∀A ,B ∈ T, ω(ς(B ◦A )) = ω(Bς ◦A ς ). (79)

The involution ς of S is just the inversion of the principal axes corresponding to
negative eigenvalues of the symmetric bilinear form Φ of the faithful state in a minimal
informationally complete basis (the Bloch representation of Remark 7: see also Ref.
[1]).
By taking complex linear combinations of generalized transformations and defining

ς(cA ) = c∗ς(A ) for c ∈ C, we can now extend the adjoint to complex linear combina-
tions of generalized transformations—that we will also call complex-generalized trans-
formations, and will denote their linear space by TC. On the other hand, we can trivially
extend the the real pre-Hilbert space of generalized effectsPR to a complex pre-Hilbert
space PC by just considering complex linear combinations of generalized effects. The
complex algebra TC (that we will also denote by A) is now complex Banach algebra
space, and likewisePC is a Banach space.
We have now a scalar product Φ〈A |B〉Φ between transformations and an adjoint of

transformations with respect to such scalar product. Symmetry and positivity imply the
bounding

Φ〈A |B〉Φ ! ||A ||Φ||B||Φ, (80)

where we introduced the norm induced by the scalar product

||A ||2Φ
.= Φ〈A |A 〉Φ. (81)
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The bounding (80) is obtained from positivity of Φ〈A −zB|A −zB〉Φ for every z ∈ C.
Using the bounding (80) for the scalar product Φ〈A ′ ◦A ◦X |X 〉Φ we also see that the
set I ⊆ A of zero norm elementsX ∈ A is a left ideal, i. e. it is a linear subspace of A
which is stable under multiplication by any element ofA on the left (i. e.X ∈ I,A ∈A
implies A ◦X ∈ I). The set of equivalence classes A/I thus becomes a complex pre-
Hilbert space equipped with a symmetric scalar product, an element of the space being
an equivalence class. On the other hand, since |Φ|(X ′,X ′) = 0=⇒X ′ = 0=⇒X = 0
(we have seen that |Φ| is a strictly positive form over generalized effects) the elements
of A/I are indeed the generalized effects, i. e. A/I 4 PC as linear spaces. Therefore,
informationally equivalent transformationsA andB correspond to the same vector , and
there exists a generalized transformation X with ||X ||Φ = 0 such that A = B +X ,
and || · ||Φ, which is a norm onPC, will be just a semi-norm onA. We can define anyway
a norm on transformations in a way analogous to (42) as

||A ||Φ := sup
B∈PC,||B||Φ!1

||A ◦B||Φ, (82)

where we remind that here we are using the transposed action of (34). Completion of
A/I4PC in the norm topology will give a Hilbert space that we will denote by HΦ (for
the operational relevance of closure see Remark 6). Such completion also implies that
TC 4 A is a complex C∗-algebra. Indeed the fact that it is a complex Banach algebra
can be proved in the same ways as in Theorem 5, whence it remained to be proved that
the norm identity ||A † ◦A || = ||A ||2 holds. This is done as follows:

||A ||2Φ = sup
B∈PC,||B||Φ!1

Φ〈A ◦B|A ◦B〉Φ = sup
B∈PC,||B||Φ!1

Φ〈B|A † ◦A ◦B〉Φ

! sup
B∈PC,||B||Φ!1

||A † ◦A ◦B||Φ ≡ ||A † ◦A ||Φ ! ||A †||Φ||A ||Φ.
(83)

From the last equation one gets ||A ||Φ ! ||A †||Φ, and by taking the adjoint one has
||A ||Φ = ||A †||Φ, from which it follows that the bound (83) gives the desired norm iden-
tity ||A †◦A ||= ||A ||2. The fact thatA is a C∗-algebra—whence a Banach algebra—also
implies that the domain of definition of πΦ(A ) can be easily extended to the whole HΦ
by continuity, due to the following bounding between Cauchy sequences

||πΦ(A )Xn−πΦ(A )Xm||Φ = ||A ◦ (X n−X m)||Φ ! ||A ||Φ||X n−X m||Φ. (84)

The product inA defines the action ofA on the vectors inA/I, by associating to each
element A ∈ A the linear operator πΦ(A ) defined on the dense domain A/I ⊆ HΦ as
follows

πΦ(A )|B〉Φ
.= |A ◦B〉Φ. (85)

One also has |A ◦B〉Φ = |A ◦B〉Φ corresponding to the transposed version of (34).

Theorem 7 (Born rule) From the definition (71) of the scalar product the Born rule
rewrites in terms of the pairing

ω(A ) = Φ|2(πΦ(ω)†πΦ(A )) ≡ Φ〈πΦ(A )|πΦ(ω)〉Φ (86)
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with representations of effects and states given by

πΦ(ω) = T̃ ω :=
T ′

ω
Φ(I ,T ω)

, πΦ(A ) = A ′. (87)

The representation of transformations is given by

ω(B ◦A ) = Φ〈B′|πΦ(A ς )|πΦ(ω)〉Φ. (88)

Proof. This easily follows from the definition of preparationally faithful state. One has

ω(A ) =ΦI ,Tω |1(A ) = ΦI ,Tω |1(A ) =
Φ(A ,T ω)
Φ(I ,T ω)

=|Φ|(A ′′,ς(T̃
′
ω)) = Φ|2(πΦ(ω)†πΦ(A )).

(89)

For the representation of transformations one has

ω(B ◦A ) =Φ〈πΦ(B ◦A )|πΦ(ω)〉Φ = Φ〈A ′ ◦B′|πΦ(ω)〉Φ

=Φ〈B′|πΦ(A ς ◦ω)〉Φ = Φ〈B′|πΦ(A ς )|πΦ(ω)〉Φ.
(90)

"

12. DISCUSSION AND OPEN PROBLEMS

Identity (57). In deriving Eq. (57) I have implicitly assumed that the relation be-
tween the affine dimension and the informational dimension which holds for bipartite
systems must hold for any system. Indeed, assuming also that dynamically independent
systems can be made statistically independent (i. e. there exist factorized states) one
could independently prove that

dim#(S×2) # dim#(S)2, (91)

since locally perfectly discriminable states are also jointly discriminable, and the ex-
istence of a preparationally faithful state guarantees the existence of dim#(S)2 jointly
discriminable states, the bound in place of the identity coming from the fact that we are
not guaranteed that the set of jointly discriminable states made of local ones is maximal.
It is still not clear if the mentioned assumption is avoidable, and, if not, how relevant
it is. One may postulate that informational laws—such as identity (57) are universal,
namely they are independent on the physical system, i. e. on the particular convex set of
states S. Another possibility would be to postulate—in the spirit of experimental com-
plexity reduction—the existence of a faithful state which is pure: there is an hope that
this will not only avoid the above mentioned extrapolation, but also reduce the number
of postulates, by dropping Postulate 4. Indeed, neither Postulate 4 nor identity (57) are
needed in the GNS construction for the derivation of Quantum Mechanics in the infinite
dimensional case.
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Composition-preserving involution ς . In deriving the GNS representation of
transformations over effects we needed a composition-preserving involution ς . As
said, composition-preserving is guaranteed if ς is an involution of the convex set of
states—the inversion of the principal axes corresponding to the negative eigenvalues of
the symmetric bilinear form made with the faithful state. It is still not clear if Postulates
1-5 imply this.

The above issues will be analyzed in detail in a forthcoming publication.

APPENDIX: ERRATA TO REF. [1] AND OTHER IMPROVEMENTS

The present section is given only to avoidingmisunderstanding in relation to the previous
work [1], and can entirely skipped by the reader. [1].

1. In Ref. [1] it was not recognized that the faithful state is generally no longer a posi-
tive bilinear form when extended to generalized transformations/effects (although,
being a state, it is clearly positive on physical transformations/effects). This lead
me to introduce the involution ς in Eq. (60) in order to define a scalar product in
terms of a positive form, with the benefit of the introduction of the adjoint.

2. In Ref. [1] I assumed that the transposed of a physical transformation is a physical
transformation itself, whereas more generally one should consider it as a general-
ized transformation proportional to a physical transformation with a positive mul-
tiplication constant (i. e. for A ∈ T one hasA ′ ∈ T+

R , but generally A ′ (∈ T). This
was first noticed by R. Werner.

3. In Ref. [1] I defined the norm of generalized transformations as the norm of gen-
eralized effects, with the result that this is only a semi-norm over transformations.
Now, using definition in Eq. (42) the norm is strictly positive, with the benefit that
the set of generalized transformations is a Banach ∗-algebra. The definition (42)
has been suggested by R. Werner and D. Schlingeman.

4. The identity (54) was only a bound in Ref. [1]. The reverse bound is now proved,
based on a suggestion of P. Perinotti.

5. The stronger notion of independence used in Section 12 is based on a suggestion of
G. Chiribella and P. Perinotti.

6. In Refs. [1] and [3]) it was incorrectly argued that acausality of local actions is not
logically entailed by system independence.

7. In Ref. [1] it has been incorrectly argued that every generalized transformation
belongs to the dynamical equivalence class of a physical transformation. This is
true only for transformations in the double cone T±

R as now explained in Remark 4.
This error was noticed by G. Chiribella and P. Perinotti.

8. The fact that the norm induced by the GNS construction automatically leads to a
C∗-algebra has been suggested by M. Ozawa.
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