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Abstract
We consider the problem of discriminating among a set of unitary
transformations by means of measurements performed on the state
undergoing the transformation. We show that the use of entangled probes
improves the discrimination in the following two cases: (i) for a set of
unitaries that are the unitary irreducible representation of a group; and (ii)
for any pair of transformations provided that multiple uses of the channel are
allowed.

Keywords: Entanglement, high-precision measurements, quantum
hypothesis testing

1. Introduction

Entanglement is perhaps the most distinctive ingredient of
quantum mechanics. In recent years it has been recognized
that entanglement can be seen as a resource for improving the
processing of quantum information and increasing the speed of
computation. In this paper, we address the use of entanglement
as a resource for improving quantum measurements. In
particular, we will deal with measurements that correspond
to the estimation of the parameter θ labelling a unitary
transformation Uθ which acts on a system described by the
Hilbert space H. Usually, the problem is addressed by
fixing an input state |ψ〉 ∈ H that undergoes one of the
Uθ -transformations (figure 1), and then applying quantum
estimation theory [2] to look for the POVM which is able to
distinguish the possible output states Uθ |ψ〉 with the minimum
error probability PE . In general, this error probability, or any
other chosen figure of merit, will be a function of the input
state |ψ〉, and one further optimizes on |ψ〉.

Here, we will consider the possibilities offered by the use
of a bipartite input state |E〉〉 ∈ H ⊗ H instead of the simpler
local state |ψ〉. The transformation Uθ will act locally on |E〉〉,
thus giving as output the state |�θ 〉〉 = Uθ ⊗ I |E〉〉, as depicted
in figure 1. We will show that such a novel configuration can do
better than local measurements in discriminating the unitaries.

1 www.qubit.it

Figure 1. The parameter θ is estimated as the result of a unitary
transformation |ψ〉 → Uθ |ψ〉 (upper figure). In this scenario the use
of a possibly entangled input |E〉〉 in place of |ψ〉 is considered, with
the unknown transformation Uθ acting locally on one Hilbert space
only (lower figure).

In section 2 we focus our attention on the discrimination
of unitary transformations drawn from a unitary irreducible
representation (UIR) of a group, whereas in section 3 we
will treat the problem of distinguishing between two given
unitaries. Section 4 closes the paper with some concluding
remarks.

2. Discrimination amongst a set of unitary
transformations (UIR)

As a first example, consider the problem of discriminating
among the four unitary transformations given by the Pauli
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matrices {σi } acting on a qubit. By applying these unitaries to
any local pure state |ψ〉, one gets the four non-orthogonal states
σ j |ψ〉, whereas for a maximally entangled input state, one
finds four maximally entangled states which are orthogonal,
and thus exactly distinguishable, at least in principle. In
fact, by adopting the notation |E〉〉 .= ∑

i j Ei j |i〉| j 〉 that puts
vectors |E〉〉 ∈ H ⊗ H into correspondence with operators
E on H, a generic maximally entangled input state can be
written as 1√

d
|U 〉〉, with U unitary. Thus, in the Pauli example

the possible outputs are 1√
2
|σiU 〉〉, and they are orthogonal,

since 〈〈σiU |σ jU 〉〉 = Tr[U †σ
†
i σ j U ] = δi j . We notice that,

basically, the same kind of configuration has been used for
quantum dense coding. The generalization to a d-dimensional
system corresponds to the problem of discriminating the d2

unitary transformations

U (m, n) =
d−1∑
k=0

e2π ikm/d |k〉〈k ⊕ n|,

with n and m ranging from 0 to d −1, and ⊕ denoting addition
modulo d. Again, if the input is maximally entangled, we have
orthogonal output states.

Now, suppose we have a set of unitary transformations
{Ug}, g ∈ G, that form a (projective) representation of the
group G, i.e. UgUh = ω(g, h)Ugh , where ω(g, h) is a phase
factor satisfying the Jacobi associativity constraints, namely
that ω(gh, l)ω(g, h) = ω(g, hl)ω(h, l) and ω(g, g−1) =
ω(g, e) = 1, for g, h, l ∈ G, e being the identity element.
We will consider the case in which such a representation is
irreducible (UIR), i.e. there are no subspaces of H invariant
under the action of all the Ug . This was also the case of
the preceding example, with {U (m, n)} a UIR of the group
Zd × Zd . Given a UIR, from Schur’s lemma it follows that for
each operator O on H, one has

[Ug OU †
g ]G = Tr[O]I, (1)

where [ f (g)]G denotes the group averaging [ f (g)]G
.=∑

g∈Gµ(g) f (g), with µ(g) = d
|G| , d = dim(H), and |G|

the cardinality of G. Equation (1) can be generalized to the
continuous case by defining group averaging as [ f (g)]G

.=∫
G
µ(dg) f (g), µ(dg) being a properly normalized invariant

measure on the group G.
In order to show that entanglement is of help in improving

the discrimination, and to quantify this improvement, we now
consider several state-related parameters. First of all, as in
the first two examples, one can see that the dimension of the
Hilbert space Hout spanned by the output states is larger for an
entangled input than for factorized states. In fact, dim(Hout)

can be calculated as the rank of the operator

O = [|�g〉〉〈〈�g|]G = [Ug ⊗ I |E〉〉〈〈E |U †
g ⊗ I ]G, (2)

where �g = Ug E . By means of equation (1), one has
O = I ⊗ Tr1[|E〉〉〈〈E |] = I ⊗ (E† E)T, so

dim(Hout) = d × rank(E† E), (3)

i.e. the output space is enlarged by a factor equal to the Schmidt
number [1] of the input state. Indeed, since probing the oper-
ation with a bipartite entangled system gives access to a larger

Hilbert space, we have, literally, more room for improvement.
In the following, we refine these concepts, and give conditions
under which an entangled scheme is convenient.

The Schmidt number is only a coarse measure of the
amount of entanglement stored in |E〉〉, and the dimension
of the output space is only indirectly connected to the
distinguishability of the outputs. A more refined goodness
criterion is given by Holevo’s information χ for the set of
output states, all taken with the same probability p(g) = 1/|G|
(or p(dg) = µ(dg)/µ(G) in the continuous case); this
quantity is an upper bound for the accessible information [1].
Denoting by S(ρ) = − Tr ρ log ρ the von Neumann entropy
of ρ, Holevo’s information χ reads

χ = S

(
1

µ(G)
[|�g〉〉〈〈�g|]G

)
− 1

µ(G)
[S(|�g〉〉〈〈�g|)]G

= S

(
1

µ(G)
I ⊗ ET E∗

)

= d

µ(G)
logµ(G) +

d

µ(G)
S(ET E∗), (4)

and thus the bound is increased by an amount proportional to
the degree of entanglement2 S(ET E∗) of the input state |E〉〉
(recall that for discrete groups, µ(G) = d).

Facing the problem with a maximum-likelihood strategy,
the optimal covariant POVM that discriminates among the
{|�g〉〉} takes the form [4]


g = µ(g)(Ug ⊗ I)P(U †
g ⊗ I), (5)

with P � 0 a positive operator on H ⊗ H normalized as
Tr1[P] = I . By covariance, the likelihood—i.e. the proba-
bility of getting an outcome g when the state is |�g〉〉—is pro-
portional to 〈〈E |P |E〉〉 � d, where the bound comes from the
normalization condition on P , which limits the largest possible
eigenvalue of P to being below d. Again, optimality (satura-
tion of the bound) is reached for a maximally entangled input
state, i.e. for E = d− 1

2 U , with U unitary, and P = |U 〉〉〈〈U |.
The optimality of a maximally entangled input state for the
estimation of unitaries in SU (d) has also been noted in [6].

Since the overlap of two states is the only parameter
that determines their distinguishability, we will consider the
average overlap �(E) of all the couples of states in {|�g〉〉}:
the lower �(E), the better the overall distinguishability. One
has

�(E) = 1

2µ(G)2
[|〈〈�g|�g′ 〉〉|2]G×G

= 1

2µ(G)
[〈〈E |�g〉〉〈〈�g|E〉〉]G

= 1

2µ(G)
〈〈E |I ⊗ (ET E∗)|E〉〉

= 1

2µ(G)
〈〈E |E E†E〉〉

= 1

2µ(G)
Tr[(E† E)2]. (6)

In order to analyse the properties of �(E), we have to briefly
recall the definition of the ‘majorization’ relation between

2 S(ET E∗) represents the entropy of the partial traces of |E〉〉, which is indeed
a measure of entanglement for pure states.
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entangled pure states and its physical meaning. Given two
states |A〉〉 and |B〉〉 in H ⊗H, let λ

↓
A and λ

↓
B be the vectors of

eigenvalues of A† A and B† B respectively, sorted in descending
order. We say that |A〉〉 ≺ |B〉〉 iff

k∑
j=1

(λ
↓
A) j �

k∑
j=1

(λ
↓
B) j for each k � d. (7)

The physical meaning of this partial ordering relation has
been clarified in [5]: |A〉〉 can be transformed into |B〉〉 by
local operations and classical communication if and only if
|A〉〉 ≺ |B〉〉. Our average overlap �(E) is a so-called
‘Schur convex function’ of the eigenvalues of E†E ; that is,
if |A〉〉 ≺ |B〉〉, then �(A) � �(B). Since any maximally
entangled state is majorized by any other state, it is clear that
the minimum overlap is found in correspondence with |E〉〉
maximally entangled, and any manipulation of such a state
can only increase �(E), thus reducing the distinguishability,
and, as a consequence, the sensitivity of the measurement.

3. Discrimination between two unitary
transformations

Let us suppose that we have to distinguish among two unitaries
U1 and U2. Given an input state |ψ〉, one optimizes over the
possible measurements, and the minimum error probability in
discriminating U1|ψ〉 and U1|ψ〉 [2] is given by

PE = 1
2

[
1 −

√
1 − |〈ψ |U †

2 U1|ψ〉|2
]
, (8)

so one has to minimize the overlap |〈ψ |U †
2 U1|ψ〉| with a

suitable choice of |ψ〉. Choosing as a basis the eigenvectors
{| j 〉} of U †

2 U1, and writing |ψ〉 = ∑
j ψ j | j 〉, we define

zψ
.= 〈ψ |U †

2 U1|ψ〉 =
∑

j

|ψ j |2eiγ j , (9)

where eiγ j are the eigenvalues of U †
2 U1. The normalization

condition for |ψ〉 is
∑

j |ψ j |2 = 1, so the subset K (U †
2 U1) ⊂

C described by zψ for varying |ψ〉 is the convex polygon having
the points eiγ j as vertices. The minimum overlap

r(U †
2 U1)

.= min||ψ ||=1

∣∣〈ψ |U †
2 U1|ψ〉∣∣ (10)

is the distance of K (U †
2 U1) from z = 0. This geometrical

picture indicates in a simple way what is the best one can do
in discriminating U1 and U2: if K contains the origin, then the
two unitaries can be exactly discriminated; otherwise one has
to find the point in K nearest to the origin, and the minimum
probability of error is related to its distance from the origin.
Once the optimal point in K is found, the optimal states ψ are
those corresponding to that point through equation (9).

If (U †
2 U1) is the angular spread of the eigenvalues of

U †
2 U1 (referring to figure 2, it is  = γ+ − γ−), from

equation (8) for  < π one has

PE = 1

2
− 1

2

√
1 − cos4



2
, (11)

whereas for  � π one has PE = 0 and the discrimination is
exact.

Figure 2. r is the minimum distance between the origin and the
polygon K .

Figure 3. When distinguishing between two unitaries U = U1,2, it
is possible to achieve perfect discrimination even for non-orthogonal
U1 and U2 for a sufficiently large number N of copies of the unitary
transformation, using an N-part entangled state as in the figure (see
the text).

Given U1 and U2 not exactly discriminatable, one is
interested in understanding whether or not an entangled input
state could be of some use. The answer is negative; in
fact, using entanglement translates the problem into that of
distinguishing between U1 ⊗ I and U2 ⊗ I—thus one has
to analyse the polygon K (U †

2 U1 ⊗ I). Since U †
2 U1 ⊗ I has

the same eigenvalues as U †
2 U1, the polygons K (U †

2 U1 ⊗ I)
and K (U †

2 U1) are exactly the same, so they lead to the same
minimum probability of error.

The situation changes dramatically if N copies of the
unitary transformation are used, as depicted in figure 3:
here one has to compare the ‘performance’ of K (U †

2 U1) to
that of K ((U †

2 U1)
⊗N ). Since ((U †

2 U1)
⊗N ) = min{N ×

(U †
2 U1), 2π}, it is clear that there will be an N̄ such that U⊗N

1
and U⊗N

2 will be exactly discriminatable. This same result has
been demonstrated in [12] starting from a different approach.

4. Conclusions

We have shown that the use of entangled states as a probe
provides an effective scheme for discriminating among a set of
unitary transformations. We have analysed the discrimination
of a set of unitaries which are the UIR of a group, showing
that entanglement is always useful. We have also considered
discrimination between two generic transformations, where
it is possible to achieve perfect discrimination even for non-
orthogonal U1 and U2 for a sufficiently large number N of
copies of the unitary transformation, if an N -part entangled
state is available. The present results for the discrimination of
a discrete set of unitaries can be generalized to the continuous
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case [13], i.e. to the estimation of parameters. In this case,
entanglement improves the performance of the measurement
scheme also in the presence of losses.
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