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Local observables for entanglement detection of depolarized states
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We present an explicit construction of entanglement witnesses for depolarized states in an arbitrary finite
dimension. For an infinite dimension, we generalize the construction to twin beams perturbed by Gaussian
noises in the phase and in the amplitude of the field. We show that entanglement detection for all these families
of states require only three local measurements. The explicit form of the corresponding set of local observables
needed for an entanglement witness is derived.
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I. INTRODUCTION

Entanglement plays an essential role in almost all asp
of quantum information theory@1#. Entangled states are th
key ingredients of many quantum protocols such as quan
teleportation, quantum dense coding, and entanglem
based quantum cryptography. However, entanglement ca
in general corrupted by interaction with the environme
Therefore, entangled states that are available for experim
are usually mixed states, and it becomes crucial to estab
whether or not entanglement has survived the environme
noise.

The issue of experimental entanglement detection
first addressed for pure states in Ref.@2#. More recently, in
Ref. @3#, procedures based on the use of collective meas
ments were proposed. Later, in Ref.@4# a general method to
detect entanglement with few local measurements was
sented and optimal schemes were designed for t
dimensional systems, bound entangled states, and enta
states of three qubits. In Ref.@5#, a method for local detec
tion of nonseparable states has been derived for bipa
states in dimensiond and to some families of states ofn
qubits; it was shown, in particular, that in the bipartite ca
and ford as a prime number the method achieves the lo
bound of d11 measurements derived in Ref.@4#. In this
paper, we extend the approach of Ref.@4# to depolarized
bipartite states in an arbitrary dimension, and show how
tanglement can be efficiently detected by identifying t
minimal needed set of local observables, the so-calledquo-
rum of observables. Moreover, we address the problem
entanglement detection for continuous variables~CV! and
find entanglement witnesses~EW! for a twin-beam state
~TWB! corrupted by Gaussian noises, both in the phase
in the amplitude of the field. In this case, efficie
homodyne-tomographic procedures are analyzed suited t
cal detection of entanglement. We found that for all the fam
lies of states that we have considered, a rank-4 witness
erator is sufficient to detect entanglement. Notice that
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result is not in contradiction with the ones derived in Ref.@5#
because we assume to have more knowledge about the
ily of states.

The paper is organized as follows. In Sec. II, we constr
the EW for bipartite depolarized entangled states in an a
trary finite dimension, and give the explicit form of the co
responding local quorum. In Sec. III, we analyze the case
bipartite CV systems. In particular, we study the family
twin-beam states corrupted by Gaussian noise, both in
phase and in the amplitude of the field, and show how
detect entanglement by employing homodyne-tomograp
techniques. In Sec. IV, we close the paper with a summar
the results and final comments.

II. DEPOLARIZED STATES IN ARBITRARY DIMENSION

In this section, we will show how to detect entangleme
locally for depolarized states in an arbitrary finite dimensi
d, namely, for the family of states

r5puc&^cu1
12p

d2
I ^ I , ~1!

whereuc& is any bipartite entangled normalized pure state
systems with dimensiond, I is thed3d identity operator and
0<p<1. If uc& is a maximally entangled state, the states
Eq. ~1! coincide with the family of the so-called isotropi
states.

We will now introduce a more convenient notation. Give
a basis$u i & ^ u j &% for the Hilbert spaceH1^ H2 ~with H1 and
H2 generally not isomorphic!, we can write any vector
uC&&PH1^ H2 as

uC&&5(
i j

C i j u i &1^ u j &2 . ~2!

The above notation@6# exploits the correspondence betwe
states uC&& in H1^ H2 and Hilbert-Schmidt operatorsC
5( i j C i j u i &^ j u from H1 to H2. The following relations are
an immediate consequence of definition~2!:

A^ BuC&&5uACBT&&, ~3!

^̂ AuB&&5Tr@A†B#, ~4!
©2003 The American Physical Society10-1
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where BT denotes the transposition of the operatorB with
respect to the chosen basis$u i &%. As mentioned above, in th
following we will consider only bipartite states onH^ H,
whereH has dimensiond.

In this notation, the depolarized state~1! takes the form

R5puC&& ^̂ Cu1
12p

d2
I ^ I . ~5!

Let us briefly recall the definition of EW@7,8#. A stater is
entangled iff there exists an Hermitian operatorW such that
Tr@Wr#,0, while Tr@Wrsep#>0 for all separable state
rsep. The operatorW is called entanglement witness. For
entangled states with nonpositive partial transpose~NPT!, W
can be explicitly constructed asW5(ue&^eu)u, whereOu de-
notes the partial transposition ofO on the second Hilber
space, andue& is the eigenvector ofru that corresponds to
the minimum eigenvalue@8#. Notice that this is not the only
method to construct entanglement witnesses. Other t
niques, working for both NPT and~positive partial trans-
pose! PPT entangled states, have been suggested, as fo
ample, in Refs.@9,10#.

The entangled states of the form~1! have nonpositive par
tial transpose@11,12#. Following the approach of Ref.@4#, we
will show how to detect entangled states within the fam
~1! by explicitly deriving EW according to the above co
struction.

The partial transpose of the stateR can be written as

Ru5p~C ^ I !E~C†
^ I !1

12p

d2
I ^ I , ~6!

whereE is the swap operator, i.e.,E5( i j u i &^ j u ^ u j &^ i u.
As mentioned above, in order to construct a witness

erator for the family of states~1!, we look for the eigenvecto
of Ru corresponding to the minimum eigenvalue. Therefo
we can start by writing explicitly the eigenvalue equation

RuuA&&5luA&&, ~7!

whereuA&& is the eigenvector for the eigenvaluel. By using
the properties~4! and Eq.~6!, we can also write

RuuA&&5puCATC* &&1cuA&&, ~8!

wherec5(12p)/d2, andO* denotes complex conjunctio
of the operatorO with respect to the chosen basis$u i &%.
Therefore, the eigenvalue equation in operatorial terms ta
the form

lA5pCATC* 1cA, ~9!

and can be more conveniently written as

CATC* 5mA, m5~l2c!/p. ~10!

We now use the singular-value decomposition of the m
trix C, namely,C5XSY†, whereX and Y are unitary op-
erators, whileS is the diagonal operator containing the e
genvalues$s j% of ACC†—the so-calledsingular valuesof
04231
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C—which are conventionally ordered decreasingly. T
above equation then takes the form

XSY†ATX* SYT5mA. ~11!

By multiplying Eq. ~11! by X† on the left and byY* on the
right, and upon defining

B5Y†ATX* , ~12!

Eq. ~11! can be written in the compact form

BT5m21SBS. ~13!

The last equation can be conveniently expressed by exp
itly writing its matrix elements as follows:

bi j 5m21bji s is j . ~14!

By reiterating the above equation, one obtains

bi j 5m22s i
2s j

2bi j , ~15!

which is fulfilled for

m25s i
2s j

2 . ~16!

For values ofi and j that cannot satisfy Eq.~16!, we neces-
sarily havebi j 50. We now want to specify the form o
operatorB corresponding to the minimum eigenvaluel. No-
tice first that for eigenvaluesl,c, the parameterm is nega-
tive, and therefore, according to Eq.~14!, all diagonal ele-
ments ofB vanish. This is the case, in particular, when t
minimum eigenvaluelm is negative. We will now explicitly
derive the form ofB corresponding to the minimum eigen
value lm . Assume thats1 and s2 are the two largest ele
ments ofS ands1>s2. Then, from Eq.~10!, the minimum
eigenvaluelm takes the formlm52ps1s21c, and accord-
ing to Eq.~15! the matrix elements of the operatorB corre-
sponding tolm ~which we will denote byB̄) are

b̄1252b̄2151, ~17!

while all the other elements vanish. Therefore, the operatoB̄
has rank 2 and takes the explicit form

~18!

The expression for the operatorA corresponding to the mini-
mum eigenvaluelm , which we will call Ā, follows from the
definition of B in Eq. ~12! and is given by

Ā5XB̄YT. ~19!

The EW for the family of states~1! can then be derived as

W̄5~ uĀ&& ^̂ Āu!u. ~20!
0-2
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Notice that the same form ofB̄ is also valid for degenerat
maximum singular values1, although in this case the solu
tion is not unique. Moreover, an interesting feature of
resulting witness operator is that it has rank 4, independ
of the dimensiond of the subsystems. We also want to po
out that the EW for the states~1! does not depend on th
value of p, but only on somea priori knowledge about the
stateuC&&, namely, on the singular values ofC and on the
form of the operatorsX andY.

As an illustration we will consider two explicit example
WhenuC&& is a maximally entangled state in dimensiond of
the form uC&&5(1/Ad)( j u j j &, i.e., the operatorS is propor-
tional to the identity, withs i51/Ad, then the operatorĀ
corresponding to a stateuĀ&&5(u i j &2u j i &)/A2 can be used to
construct a witness operator. In this case, the state is s
rable iff p.1/(d11).

As a second example, let us consider an initial state w
Schmidt number 2, i.e.,s15s251/A2 ands i50 for i .2.
In this case, the corresponding EW is constructed fromuĀ&&
5(u01&2u10&)/A2, whereu01& and u10& are the basis state
related tos1 ands2. The state is entangled whenp>2/(d2

12).
We will now show how to detect entanglement for t

family of states~1! by measuring only three local obser
ables. The matrixĀ in Eq. ~19! can be written as

Ā5 iX~sy% 0!YT, ~21!

wheresy is a Pauli matrix~acting between the two levels o
the two-dimensional subspace spanned byĀ), % denotes the
direct sum, and0 is the null matrix. If P is the projection
operator over the subspace whereĀ is not null, the above
expression can be rewritten as

Ā5 iX8P8SyP8Y* , ~22!

where X85XYT, P85Y* PYT, and Sy5Y* sy% 0YT. In-
serting the above expression in the definition~20! of W̄

5(Ā^ I )E(Ā†
^ I ), we have

W5~X8Sy^ I !~E2% 0!~SyX8†
^ I !, ~23!

whereE2 is the swap operator for the two-dimensional su
space spanned by the support ofĀ. Since one has

E25
1

2 (
a5t,x,y,z

sa ^ sa , ~24!

wheres t[I , the EW can be finally written as

W̄5
1

2
I ^ I 1 (

a5x,y,z

1

2
s̃a ^ sa , ~25!

with

s̃a5X8SysaSyX8†. ~26!
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As we can see from Eq.~25!, the witness operatorW̄ can be
measured by performing the measurements of only three
cal observabless̃a ^ sa , a5x,y,z. This result generalizes
that of Ref. @4# to an arbitrary dimension for states of th
form ~1!: in all cases only three local observables are su
cient.

As mentioned in the Introduction, in Ref.@5# a different
method to detect entanglement ofd-dimensional states ha
been proposed. This method is valid for states of the fo
uc&5(k50

d21akukk& with ak>0 and requires the measureme
of d11 observables. Compared to our method, it needs
measurements of a larger number of observables, but, on
other hand, it does not require the knowledge of the value
the coefficientsak in the density matrix.

III. PERTURBED TWIN BEAM IN CONTINUOUS
VARIABLES

In this section, we address the construction and the m
surement of EW for CV. At first, we have to define the fam
lies of states we are going to consider. These cannot b
trivial generalization of the isotropic states, since both ma
mally entangled states and the identity are unphysical st
in an infinite-dimensional Hilbert space. We start from t
‘‘maximally’’ entangled state of two CV systems at finit
energy, which is given by

uC&&5C ^ I uI &&, C5A12uxu2 xa†a, uxu,1, ~27!

where without loss of generality we will considerx as real.
Here and in the following, witha†,b†, anda,b we will de-
note the creation and annihilation operators of two indep
dent harmonic oscillators, respectively, with commutatio
@a,a†#5@b,b†#51. For electromagnetic radiation, the ha
monic oscillators describe two field modes, and Eq.~27! de-
scribes the so-called TWB obtained by parametric dow
conversion of the vacuum in a nondegenerate opt
parametric amplifier. In this case,n̄52x2/(12x2) represents
the average number of photons of the TWB. In practi
TWBs are the most reliable source of CV entanglement:
deed, experimental implementation of quantum informat
protocols such as teleportation, have been obtained u
TWB of radiation.

Let us now analyze the family of states that are obtain
by perturbing a TWB with a noisy environment. We wi
consider Gaussian noises both in the phase and in the am
tude of the field modes. Thermal noise is a special case o
present Gaussian displacement noise, whereas the noise
ing from the addition of a thermal state has been conside
in Ref. @13#. In this case, our results coincide with the on
given there.

The action of a phase-destroying environment on
TWB is described by the master equation

Ṙ5
g

2
@2a†aRa†a2~a†a!2R2R~a†a!2 ~28!

12b†bRb†b2~b†b!2R2R~b†b!2], ~29!
0-3
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whereṘ denotes the time derivative of the stateR. The so-
lution of Eq. ~29! for initial condition R05uC&& ^̂ Cu can be
expressed as

R~ t !5~12x2!(
p,q

xp1qe2gtup2qu2upp&^qqu, ~30!

where we used the abbreviate notationu i j & for u i & ^ u j &. The
correlations between the modes are reduced in the mix
~30! compared to the initial TWB state. However, as we w
see by explicitly constructing an EW, phase noise never le
to a separable state, i.e., the entanglement is not destr
for any value ofgt.

In order to obtain an EW for the familyR(t), we con-
struct and diagonalize the partial transposeRu(t),

Ru~ t !5~12x2!(
pq

xp1qe2gtup2qu2upq&^qpu. ~31!

The eigenvalues equationRg
u uc&&5luc&& is solved by

ln5~12x2!x2n, ucn&5unn&,

lnm
6 56~12x2!xn1me2gt(n2m)2

,

ucnm
6 &&5

1

A2
~ unm&6umn&). ~32!

The minimum eigenvalue is given byl01
2 52(12x2)xe2g

corresponding to the eigenvector

uc01
2 &&5

1

A2
~ u01&2u10&). ~33!

The eigenvectoruc01
2 && does not depend ongt, and thus is

suitable to build a proper EW for this family of states. W
have

W5
1

2
~ uc01

2 && ^̂ c01
2 u!u

5
1

2
~ u01&^01u1u10&^10u2u00&^11u2u11&^00u!.

~34!

The expectation value

Tr@R~ t !W#5l01
2 ,0 ;t,x ~35!

is always negative and thus the stateR(t) is never separable
for any value oft, and for any value of the initial TWB
parameterx. In other words, the entanglement is decreas
but never destroyed by phase noise. It can also be pro
@14# that R(t) can be distilled. The result in Eq.~35! proves
the conjecture suggested in Ref.@15#, where the entangle
ment analysis of a phase-perturbed TWB was performed
numerical evaluation of the relative entropy of entangleme
04231
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Let us now consider the family of states obtained by p
turbing a TWB state by Gaussian amplitude noise, name

Rk5Gk ^ Gk~ uC&& ^̂ Cu!, ~36!

where for a single-mode stater, the map of the Gaussia
noise is given by

Gk~r!8E d2a

pk
e2uau2/kD~a!rD†~a!, ~37!

whereD(a)5exp$aa†2āa% denoting the displacement op
erator. We notice that the operator~34! obtained for phase
perturbation is an EW also for Gaussian amplitude no
Omitting positive factors, we have

Tr@RkW#}k211
1

2

12x

11x
.

n̄@1

k211
1

4n̄
. ~38!

Equation ~38! says thatRk becomes separable ifk*1
2 1

4 n̄21, a result that can be also obtained by a direct ch
of the positivity of the partial transpose~PPT condition! @16#.
The family Rk , in fact, is composed of Gaussian states,
which the PPT condition is necessary and sufficient for se
rability @17#. It should be mentioned that the constructi
procedure suggested in Ref.@8# fails to provide an EW for
the the familyRk , in particular, it does not lead to a stat
independent witness.

In principle, the EW~34! can be measured by using on
three observables, as in the finite-dimensional case. H
ever, there is no feasible implementation of the measur
apparatus corresponding to the quorum in the present
case. Since we are interested only in the expectation valu
W, we could use quantum tomography~for a recent tutorial
review on quantum tomography, see Ref.@18#!. However, a
tomographic determination ofW is useful only if one re-
quires a smaller number of observables than those neede
reconstructing the full state. Indeed, this is the case for
EW in Eq. ~34!. In fact, for two modes of radiationa1 and
a2, the expectation valuêO&8Tr@RO# of a generic opera-
tor O can be obtained bylocal repeated measurements
the quadratures X1f1

5 1
2 (a1

†eif11a1e2 if1) and X2f1

5 1
2 (a2

†eif21a2e2 if2) as follows:

^O&5E E df1

p

df2

p
^R@O#~X1f1

,f1 ;X2f2
f2!&, ~39!

namely, by averaging the over the phasesf1,2 and over an
ensemble of repeated measurements the function of the
quadraturesR@O#(x1 ,f1 ;x2 ,f2)—so-called estimator or
kernel function—depending on the operatorO. The kernel
function for Hilbert-Schmidt operators can be obtained
rectly by means of the trace@18# R@O#(x1 ,f1 ;x2 ,f2)
5Tr@R(X1f1

2x1)R(X2f2
2x2)O# with R(x)

52 lim«→01
1
2 Re(x1 i«)22. For the operatorW in Eq. ~34!,

we have
0-4
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R@W#~x1 ,f1 ;x2 ,f2!5 f 00~x1! f 11~x2!1 f 11~x1! f 00~x2!

22cos~f11f2! f 01~x1! f 01~x2!,

~40!

where

f 00~x!52F~1,1
2 ;22x2!,

f 01~x!54ApxF~2,3
2 ;22x2!,

f 11~x!52@F~1,1
2 ;22x2!22F~2,1

2 ;22x2,!# ~41!

and F(a,b;z) denotes the confluent hypergeometric fun
tion. Remarkably,R@W# depends only on the sum of the tw
phasesf1,2, and shows only a couple of oscillations. Ther
fore, the number of measurements to detect the entangle
witness is much smaller than that needed to reconstruct
the first few matrix elements of the state, say, in the pho
number representation, since the number of oscillations
the estimators for such matrix elements increases line
with their photon-number index. The precision of the tomo
raphic estimation can be further improved by adaptive te
niques@19#.

If we are allowed to mix the two modes after perturbatio
the characterization of entanglement for the familyRk can be
obtained by measuring a single quadrature. In fact,
Gaussian states, a necessary and sufficient condition to
entanglement after a beam splitter is that the two inputs s
squeezing~in mutually orthogonal directions! @20,21#. There-
fore, if we impinge the two modes of the perturbed TWB
a beam splitter, and then measure the quadratureX5 1

2 (a†
-

.
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1a) on the sum mode, we have squeezing if and only if
input state is entangled. Therefore, the fluctuation oper
W5DX221/45X22^X&221/4 is an EW, and its expecta
tion value is of course obtained by measuring the quadra
X. The analysis is valid also when the TWB initial parame
x is complex, in which case the phase of the quadrature to
measured coincides with the phase ofx. Obviously, if the
mixing of the two modes is not possible, one can alwa
reconstruct the above quadrature locally by quant
tomography.

IV. CONCLUSIONS

In this paper, we have given an explicit construction
EW for depolarized states in an arbitrary finite dimensio
For infinite dimensions, i.e., for CV, we have introduced is
tropic states as twin beams perturbed by Gaussian noise
the phase or in the amplitude of the field, and we have c
structed their respective EW as well. We have shown tha
all cases entanglement detection needs only a quorum
three local observables, whose explicit form have been
rived. For CV it is possible to use also homodyne tomog
phy efficiently to detect entanglement, without determini
the matrix elements of the state.
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