PHYSICAL REVIEW A 67, 042310(2003
Local observables for entanglement detection of depolarized states
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We present an explicit construction of entanglement witnesses for depolarized states in an arbitrary finite
dimension. For an infinite dimension, we generalize the construction to twin beams perturbed by Gaussian
noises in the phase and in the amplitude of the field. We show that entanglement detection for all these families
of states require only three local measurements. The explicit form of the corresponding set of local observables
needed for an entanglement witness is derived.
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I. INTRODUCTION result is not in contradiction with the ones derived in RBf.
because we assume to have more knowledge about the fam-
Entanglement plays an essential role in almost all aspeciy of states.

of quantum information theorl]. Entangled states are the ~ The paper is organized as follows. In Sec. II, we construct

key ingredients of many quantum protocols such as quanturthe EW for bipartite depolarized entangled states in an arbi-

teleportation, quantum dense coding, and entanglementrary finite dimension, and give the explicit form of the cor-

based quantum cryptography. However, entanglement can tiesponding local quorum. In Sec. Ill, we analyze the case of

in general corrupted by interaction with the environment.bipartite CV systems. In particular, we study the family of

Therefore, entangled states that are available for experiment@in-beam states corrupted by Gaussian noise, both in the

are usually mixed states, and it becomes crucial to establigphase and in the amplitude of the field, and show how to

whether or not entanglement has survived the environmentaletect entanglement by employing homodyne-tomographic

noise. techniques. In Sec. IV, we close the paper with a summary of

The issue of experimental entanglement detection wathe results and final comments.

first addressed for pure states in Rf]. More recently, in

Ref. [3], procedures based on the use of collective measuretl. DEPOLARIZED STATES IN ARBITRARY DIMENSION

ments were proposed. Later, in Rpf] a general method to . _ )

detect entanglement with few local measurements was pre- ! this section, we will show how to detect entanglement

sented and optimal schemes were designed for tw locally for depolanzed_states in an arbitrary finite dimension

dimensional systems, bound entangled states, and entangi&d"a@mely, for the family of states

states of three qubits. In Rd5], a method for local detec-

tion of nonseparable states has been derived for bipartite =plu) (| + 1—p|®| 1)

states in dimension and to some families of states of P d? '

qubits; it was shown, in particular, that in the bipartite case

and ford as a prime number the method achieves the lowewhere| ) is any bipartite entangled normalized pure state of

bound of d+1 measurements derived in R¢#]. In this  systems with dimensiod, | is thed < d identity operator and

paper, we extend the approach of REf] to depolarized O<p=1. If |¢) is a maximally entangled state, the states in

bipartite states in an arbitrary dimension, and show how enEg. (1) coincide with the family of the so-called isotropic

tanglement can be efficiently detected by identifying thestates.

minimal needed set of local observables, the so-cajieat We will now introduce a more convenient notation. Given

rum of observables. Moreover, we address the problem of basig|i)®|j)} for the Hilbert spacé{,® H, (with H, and

entanglement detection for continuous variabl€%) and 7+, generally not isomorphjc we can write any vector

find entanglement witnessg&W) for a twin-beam state |¥)eH,®H, as

(TWB) corrupted by Gaussian noises, both in the phase and

in the amplitude of the field. In this case, efficient : .

homodyne-tomographic procedures are analyzed suited to lo- W)= %: \Pii|'>1® )2 (2)

cal detection of entanglement. We found that for all the fami-

lies of states that we have considered, a rank-4 witness ofFhe above notatiof6] exploits the correspondence between

erator is sufficient to detect entanglement. Notice that thistates|¥)) in H,;®H, and Hilbert-Schmidt operator¥
=3;; Wi )(j| from H; to H,. The following relations are
an immediate consequence of definiti@:

*Electronic address: dariano@unipv.it

TElectronic address: chiara@unipv.it A® B|‘I’>>: |Aq’BT>>v 3
*Electronic address: paris@unipv.it
SURL: http://www.qubit.it (AIBY=TI[A'B], (4)

1050-2947/2003/64)/04231@5)/$20.00 67 042310-1 ©2003 The American Physical Society



D’ARIANO, MACCHIAVELLO, AND PARIS PHYSICAL REVIEW A 67, 042310(2003

where BT denotes the transposition of the operaBowith ¥—which are conventionally ordered decreasingly. The
respect to the chosen bagjs)}. As mentioned above, in the above equation then takes the form

following we will consider only bipartite states dH® H,

where’H has dimensiorn. XEYTATX*SYT=uA. (11

In this notation, the depolarized stat® takes the form o +
By multiplying Eq. (11) by X' on the left and byy* on the

right, and upon defining

1-p

R=p|¥) (¥ |+ 1. 5

Y)W+ = ©) oy "

Let us briefly recall the definition of EW7,8]. A statep is Eg. (11) can be written in the compact form

entangled iff there exists an Hermitian operaféisuch that

TI{Wp]<0, while T{Wps.,J=0 for all separable states B'=u 13BI. (13
Psep- The operatoV is called entanglement witness-or _ ) )
entangled states with nonpositive partial transpd#eT), w  The last equation can be conveniently expressed by explic-
notes the partial transposition @ on the second Hilbert 1

space, ande) is the eigenvector op?’ that corresponds to bij = "bji o0 (14
the minimum eigenvalug8]. Notice that this is not the only B

method to construct entanglement witnesses. Other tech-y reiterating the above equation, one obtains

niques, working for both NPT an@ositive partial trans- b, = u 20202, (15)
pose PPT entangled states, have been suggested, as for ex- . R
ample, in Refs[9,10]. N which is fulfilled for
The entangled states of the fol) have nonpositive par-
tial transpos¢11,12. Following the approach of Rdf4], we u= g'izg'jz_ (16)

will show how to detect entangled states within the family
(1) by explicitly deriving EW according to the above con- For values ofi andj that cannot satisfy Eq16), we neces-
struction. sarily haveb;;=0. We now want to specify the form of
The partial transpose of the stdecan be written as operatorB corresponding to the minimum eigenvalueNo-
tice first that for eigenvalues<c, the parameten is nega-
1-p tive, and therefore, according to E@.4), all diagonal ele-
d2 lel, ©) ments ofB vanish. This is the case, in particular, when the
minimum eigenvalue\ ., is negative. We will now explicitly
whereE is the swap operator, i.e5==;i){(j|®|j)(il. derive the form ofB corresponding to the minimum eigen-
As mentioned above, in order to construct a witness opvalue . Assume thair; and o, are the two largest ele-
erator for the family of statedl), we look for the eigenvector ments of% ando;=o,. Then, from Eq(10), the minimum
of R? corresponding to the minimum eigenvalue. Therefore gigenvalue\, takes the form\,= —po; 0+ ¢, and accord-
we can start by writing explicitly the eigenvalue equation g to Eq.(15) the matrix elements of the operatBrcorre-
sponding to\ ,, (which we will denote byB) are

Rl=p(TeE(YTel)+

RYA)=N\|A), (@) -
where|A)) is the eigenvector for the eigenvaliie By using b12=—b2=1, (17

the properties4) and Eq.(6), we can also write while all the other elements vanish. Therefore, the opeﬁtor

RO A)= p|WATT* )+ c|A) (8) has rank 2 and takes the explicit form
wherec=(1-p)/d?, andO* denotes complex conjunction
of the operatorO with respect to the chosen badig)}. (18
Therefore, the eigenvalue equation in operatorial terms takes
the form
NA=pWATW* +CA, ©  The expression for the operatarcorresponding to the mini-

and can be more conveniently written as mum eigenvalue ,,, which we will call A, follows from the
definition of B in Eq. (12) and is given by
VATW*=pyA, u=(N—c)/p. (10 o
A=XBYT. (19
We now use the singular-value decomposition of the ma-
trix ¥, namely,\If=X2YT, whereX andY are unitary op- The EW for the family of state€l) can then be derived as
erators, while3, is the diagonal operator containing the ei-

genvalueg o} of VW WT—the so-calledsingular valuesof W= (|A) (A])’. (20)
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Notice that the same form @ is also valid for degenerate As we can see from E@25), the witness operatdl/ can be
maximum singular valuer;, although in this case the solu- measured by performing the measurements of only three lo-
tion is not unique. Moreover, an interesting feature of theca| observablesr,® o, a=x,y,z. This result generalizes
resulting witness operator is that it has rank 4, independetthat of Ref.[4] to an arbitrary dimension for states of the
of the dimensiord of the subsystems. We also want to point form (1): in all cases only three local observables are suffi-
out that the EW for the stated) does not depend on the cjent.
value ofp, but only on somea priori knowledge about the As mentioned in the Introduction, in R€] a different
state|¥)), namely, on the singular values & and on the method to detect entanglement @idimensional states has
form of the operatorX andY. . been proposed. This method is valid for states of the form
As an |Ilgstrat|on_we will consider two e_xpllc_:lt exa_mples. |y)=39"1a,|kk) with a,=0 and requires the measurement
When|¥)) is a maximally entangled state in dimensiof  of g+ 1 observables. Compared to our method, it needs the
the form|W)=(1/yd)Z)|jj), i.e., the operatok is propor-  measurements of a larger number of observables, but, on the
tional to the identity, witho;=1/\/d, then the operatoA  other hand, it does not require the knowledge of the values of
corresponding to a staf@)=(|ij}—|ji))/+/2 can be used to the coefficientsa, in the density matrix.
construct a witness operator. In this case, the state is sepa-
rable iff p>1/(d+1). Ill. PERTURBED TWIN BEAM IN CONTINUOUS
As a second example, let us consider an initial state with VARIABLES

Schmidt number 2, i.eg,=0,=1/y/2 ando;=0 fori>2. . . .
71~ 92 \/— 7i — In this section, we address the construction and the mea-

In this case, the corresponding EW is constructed ftéi surement of EW for CV. At first, we have to define the fami-

=(/01)—[10))/+2, where|01) and|10) are the basis Stales jies of states we are going to consider. These cannot be a
related too; ando,. The state is entangled whe2/(d”  yjyial generalization of the isotropic states, since both maxi-

+2). . mally entangled states and the identity are unphysical states
We will now show how to detect entanglement for they ap infinite-dimensional Hilbert space. We start from the
family of states(1) by measuring only three local observ- «mayimally” entangled state of two CV systems at finite

ables. The matri in Eqg. (19) can be written as energy, which is given by

A=iX(a,®0)YT, (21 w)Y=Tol|l)), T=VIi-|x?x¥?, |x|<1, (27

whereo is a Pauli matrix(acting between the two levels of \yhere without loss of generality we will consideras real.
the two-dimensional subspace spanned\by® denotes the Here and in the following, witla',b", andab we will de-
direct sum, and is the null matrix. If P is the projection note the creation and annihilation operators of two indepen-
operator over the subspace whekeis not null, the above dent harmonic oscillators, respectively, with commutations

expression can be rewritten as [a,a’]=[b,b’]=1. For electromagnetic radiation, the har-
monic oscillators describe two field modes, and &7) de-
K:ixfp/zyp/y*’ (22) scribes the so-called TWB obtained by parametric down-

conversion of the vacuum in a nondegenerate optical
where X'=XY", P’=Y*PY", and 2,=Y*o,®0Y". In-  parametric amplifier. In this case=2x*/(1—x) represents
serting the above expression in the definiti?0) of W  the average number of photons of the TWB. In practice,
— (A at TWBs are the most reliable source of CV entanglement: in-
=(Ax1)E(A'®I), we have : . : 4 .

deed, experimental implementation of quantum information
W=(X'S,@ 1) (E,a0) (S X' T @), 23 protocols sgch as teleportation, have been obtained using

(X"2y®1)(E200)(2y ) @3 TWB of radiation.

Let us now analyze the family of states that are obtained
by perturbing a TWB with a noisy environment. We will
consider Gaussian noises both in the phase and in the ampli-
tude of the field modes. Thermal noise is a special case of the

whereE; is the swap operator for the two-dimensional sub-
space spanned by the supportAaf Since one has

Ezzl o,R0,, (24)  Ppresent Gaussian displacement noise, whereas the noise com-
2 a=txy.z ing from the addition of a thermal state has been considered
in Ref.[13]. In this case, our results coincide with the ones
whereo=I, the EW can be finally written as given there.

The action of a phase-destroying environment on the

— 1 1. TWB is described by th t ti
W= 1ol + z To.®0,, (25) IS aescribed by the master equation
2 a=X,Y,z 2
5 Y roatanala (ata)2R— R(aa)2
with R 2[Za aRa'a—(a'a)’R—R(a'a) (28
T, =X'3y0, 3 X' T, (26) +2b'™bRb'b—(b'b)?’R—R(b')?], (29
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whereR denotes the time derivative of the st®eThe so-
lution of Eq. (29) for initial condition Ry=|¥ ) (¥| can be
expressed as

R()=(1-x2)>, xP*9e 1P’ ppy(qql, (30
p.q

where we used the abbreviate notatjgn for |i)®|j). The

correlations between the modes are reduced in the mixture
(30) compared to the initial TWB state. However, as we will

PHYSICAL REVIEW A 67, 042310 (2003

Let us now consider the family of states obtained by per-
turbing a TWB state by Gaussian amplitude noise, namely,

R=G,®G.(¥) (¥, (36)
where for a single-mode stajg the map of the Gaussian
noise is given by

d? 2
Gulp)= f Sl (@)D (a),  (37)

see by explicitly constructing an EW, phase noise never leads
to a separable state, i.e., the entanglement is not deStroy%ereD(a)=exp[aaT—Za} denoting the displacement op-

for any value ofyt.
In order to obtain an EW for the familR(t), we con-
struct and diagonalize the partial transp&t),

RI(t)=(1-x2) >, xP*de~"p=a"pgy(qp|.  (31)
pq

The eigenvalues equatid®’| 1)) =\|)) is solved by

A=(1=Xx3)x*", |,y =|nn),

)\r?m: + (1_ X2)Xn+mef yt(nfm)zy

+ —i +
|¢nm>>_ \/§(|nm>—|mn>)- (32)

The minimum eigenvalue is given byy,= —(1—x%)xe™”
corresponding to the eigenvector

v (01—
| o) = ﬁ(|01> 10). (33

The eigenvectot,,)) does not depend opt, and thus is

erator. We notice that the operat(84) obtained for phase
perturbation is an EW also for Gaussian amplitude noise.
Omitting positive factors, we have

1—Xx n>1

1
TIRW]xk—1+ - — = k—1+ —. (39
X 4n

eq@tion (38) says thatR, becomes separable k=1

—1in~1 aresult that can be also obtained by a direct check
of the positivity of the partial transpo$EBPT condition [16].

The familyR,., in fact, is composed of Gaussian states, for
which the PPT condition is necessary and sufficient for sepa-
rability [17]. It should be mentioned that the constructive
procedure suggested in R¢8] fails to provide an EW for
the the familyR,, in particular, it does not lead to a state-
independent witness.

In principle, the EW(34) can be measured by using only
three observables, as in the finite-dimensional case. How-
ever, there is no feasible implementation of the measuring
apparatus corresponding to the quorum in the present CV
case. Since we are interested only in the expectation value of
W, we could use quantum tomograpkfer a recent tutorial
review on quantum tomography, see Réf8]). However, a

suitable to build a proper EW for this family of states. We tomographic determination dV is useful only if one re-

have

1
W= 2 ([ 2) ()

1
= 5(101)(01 +[10)(10 - [00)(11 - [12)(00)).
(34)
The expectation value

THR(OW]=rg;<0  Vit,x (35)

is always negative and thus the stRig) is never separable,

for any value oft, and for any value of the initial TWB

parametew. In other words, the entanglement is decreasedf
but never destroyed by phase noise. It can also be prove

[14] that R(t) can be distilled. The result in E¢35) proves

the conjecture suggested in R¢L5], where the entangle-

quires a smaller number of observables than those needed for
reconstructing the full state. Indeed, this is the case for the
EW in Eq. (34). In fact, for two modes of radiation; and

a,, the expectation valug0)=Tr{RO] of a generic opera-

tor O can be obtained byocal repeated measurements of
the quadratures X;, =3(aje'*t+ae”'?) and X,y
=1(ale'?2+ae'%?) as follows:

de¢, d
<Q>:f f%%(R[O](X1¢l.¢1;xz¢2¢2)>v (39

namely, by averaging the over the phagfgs, and over an
ensemble of repeated measurements the function of the two
quadraturesR[ O](X1, ¢1; X2, ¢po)—s0-called estimator or
kernel functior—depending on the operat@®. The kernel
gnction for Hilbert-Schmidt operators can be obtained di-
rectly by means of the trac€l8] R[O](X1,d1;X2,db5)
=Tr[R(X1¢1—x1) R(X2¢2—x2)0] with R(x)

ment analysis of a phase-perturbed TWB was performed by —lim,_q+3Re(x+ig) 2. For the operatow in Eq. (34),
numerical evaluation of the relative entropy of entanglementwe have
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RIW](X1,b1:X2,2) = Foo(X1) F12(X2) + F12(X1) Foo(X2)
—2c08 1+ @) Foa(X1) For(Xz),

(40)
where
foo(X) =2P (1,3 ;—2%?),
foa(X) =d/mxd(2,5 ;- 2x%),
f1(X)=2[®(1,3;-2x?)—2d(2,5;-2x%)] (42

and ®(a,b;z) denotes the confluent hypergeometric func-
tion. RemarkablyR[ W] depends only on the sum of the two
phasesp, ,, and shows only a couple of oscillations. There-
fore, the number of measurements to detect the entanglem

witness is much smaller than that needed to reconstruct ju§ttru

the first few matrix elements of the state, say, in the photo
number representation, since the number of oscillations
the estimators for such matrix elements increases linearl
with their photon-number index. The precision of the tomog
raphic estimation can be further improved by adaptive tec
niques[19].

If we are allowed to mix the two modes after perturbation,
the characterization of entanglement for the far®|ycan be
obtained by measuring a single quadrature. In fact, fo

PHYSICAL REVIEW A 67, 042310(2003

+a) on the sum mode, we have squeezing if and only if the
input state is entangled. Therefore, the fluctuation operator
W=AX?—1/4=X?—(X)?—1/4 is an EW, and its expecta-
tion value is of course obtained by measuring the quadrature
X. The analysis is valid also when the TWB initial parameter
x is complex, in which case the phase of the quadrature to be
measured coincides with the phasexofObviously, if the
mixing of the two modes is not possible, one can always
reconstruct the above quadrature locally by quantum
tomography.

IV. CONCLUSIONS

In this paper, we have given an explicit construction of
EW for depolarized states in an arbitrary finite dimension.
For infinite dimensions, i.e., for CV, we have introduced iso-
tropic states as twin beams perturbed by Gaussian noises in
phase or in the amplitude of the field, and we have con-
cted their respective EW as well. We have shown that in

Il cases entanglement detection needs only a quorum of
hree local observables, whose explicit form have been de-
Yived. For CV it is possible to use also homodyne tomogra-

“phy efficiently to detect entanglement, without determining

the matrix elements of the state.
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