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Abstract The evolution of a single mode of the electromagnetic field interacting with a 
squeezed bath in a Kerr medium is considered. The solution of the corresponding maser equation 
is given numerically. I1 is argued that the crearion of a superposition state (Schr6dinger's cat) 
is better achieved in the presence of a squeezed reservoir than of a thermal one. 

1. Introduction 

The possibility of detecting quantum interference effects between macroscopically 
distinguishable statesdigenstates of a variable corresponding to macroscopically different 
eigenvalues-has received much attention in the last few years [l-lo]. Such interest is 
motivated by one of the fundamental problems in quantum mechanics: to determine whether 
quantum-mechanical features can be observed in macroscopic objects [I I]. Unfortunately, 
the generation and detection of a macroscopic superposition is very difficult, due to the 
unavoidable coupling with the environment and the consequent dissipation [IZ]. The 
severity with which dissipation destroys the quantum coherence at a macroscopic level 
has been discussed by several authors [13-191. 

Since the original proposal by Yurke and Stoler [l] ,  who have shown that a coherent 
state propagating through a Kerr medium evolves, under suitable conditions, into a quantum 
superposition of two coherent states which are 180" out of phase with each other, many 
attempts have been made to preserve this superposition with detectable effects such as, 
for example, the interference fringes at the output of a homodyne detector. Mecozzi and 
Tombesi [3-51 have considered a dissipation model corresponding to a beamsplitter with 
a squeezed vacuum injected into the unused port. They have shown that the interference 
pattern may be preserved if the input light is squeezed in a suitable quadrature. As a 
model for phase-sensitive measurements, Kennedy and Walls [6] suggested the use of a 
squeezed bath in place of the thermal one, showing a substantial improvement of the 
quadrature-phase sensitivity. Along these lines, Buiek et al [IO] have recently studied 
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the phase properties of superpositions of coherent states evolving in a squeezed (phase- 
sensitive) amplifier, showing that differently from the phaseinsensitive case [19], the phase 
distribution of the Schrodinger-cat input statc can be preserved for long times. 

The above models either suffer a parametrically imposed dynamics for the loss 
(beamsplitter models [ 1,3-5]), or do not consider the nonlinear coupling generating the 
superposition state, which is just treated as an initial condition 16, IO]. Daniel and Milburn 
[I91 have shown that the generation of macroscopically distinguishable quantum states in a 
Kerr medium is completely inhibited by the unavoidable presence of loss or dissipation into 
the medium. We are thus aware that the difficulty of generating these macroscopic states 
in such a medium lies with the technological possibility of obtaining materials with very 
high nonlinearity with respect to dissipation; until then it appears useless to study this topic 
further. Despite this, we shall show that a 'quasi-superposition' of macroscopic quantum 
states, with interference fringes still surviving, could be obtained when one considers a 
model for a phase-sensitive loss. We shall show that, even for not very high values of 
the ratio of nonlinearity to dissipation, the quasi-superposition is possible when the loss 
is modelled by a squeezed bath. For this reason we consider a model in which both the 
anharmonic Hamiltonian and the interaction with a squeezed bath are taken into account, 
thus allowing a test of the effect of squeezed fluctuations on the generation of a superposition 
state starting from a single coherent one. 

This paper is organized as follows. In section 2 we introduce the model and discuss 
the conesponding master equation. In section 3 we present the numerical integration of 
the master equation and the results of the numerical analysis, showing the efficiency of a 
squeezed bath in the creation of a 'quasi-superposition' state. In section 4 we conclude and 
summarize the results. 

2. The model and the master equation 
We consider one single mode of the electromagnetic field at frequency o travelling in a Kerr 
medium coupled to a squeezed bath, namely a reservoir of oscillators whose fluctuations 
are squeezed [6], which models the phase-sensitive loss. The total Hamiltonian is given by 
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H = H s + H I +  HB (1) 

(2)  

where HS is the free Kerr Hamiltonian of the field mode 
Hs = w(u+u) + Q.(atu)z 

Hr=ai?+ar -i . 

HB is the free Hamiltonian of the bath, and HI is the oscillator-reservoir interaction 
Hamiltonian, which in the rotating wave approximation has the form 

(3) 
In equations (2) and (3) ut and a are the boson creation and annihilation operators of the 
mode, while and f' are bath operators. The bath is squeezed and Markovian, namely the 
correlation functions of the operators ?t and ? are given by [ZO] 

(P+(t)?ct')) = 2 y ~ ~ ( r  - r') 
(f'(t)f(r')> = 2 y ~ e - ~ ~ ' s ( r  - t') 

In equations (4) y is the damping constant (determined by the coupling between the oscillator 
and the bath), N is a real parameter, which reduces to the mean number of thermal photons 
when the bath is not squeezed, and M is the squeezing complex parameter (M = \MI ei*) 
satisfying the relation 

(?(t)?+(t')) = 2 y ( ~  + I)s(t - t') 
(4) 

(?t(r)F(t')) = 2 y ~ * e ' ~ ' ~ ( t  - t') . 

[MI < m. ( 5 )  
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The parameters N and M measure the strength of the correlations of the bath degrees of 
freedom: for ] M I Z  = N(N + 1) the squeezing is maximum, whereas for [MI = 0 the 
reservoir reduces to the customary thermal one. 

From equations (1)-(4) one can derive the following master equation for the reduced 
density matrix of the field mode in the interaction picture 1201: 

dt 
_ = -  " in[(aia)2,;1+ Y ( N  + ~ ) ( h $ a t  -uta; -6ata) + y ~ ( 2 a t ; a  - a a t j  - jaat) 

-yM(?.atjat -atat; - batat) - yM'(2a6a -nab - ,&a). (6) 
Equation (6) is solved numerically in the next section. The results are shown in terms of 
the Q-function 

Q(-(Y,-(Y*, 0 = ( ~ l N ) l - ( ~ )  (7) 
which is the (positive-definite) probability density for the anti-normally ordered moments 
of the annihilation and creation operators, and in terms of the Wigner function, which is 
defined by 

Using standard methods [13], it is possible to convert the master equation (6) into the 
Fokker-Planck-type equation for the Q-function 

a Z Q  +yM*- aZQ 
+ y M g  a & .  

a2 Q Q + Zy(N  + 1)- 
a-(Ya@* 

(9) 
Equation (9) has been solved for S2 = 0 [6] and for M = 0 [19]. For S2 and M both non: 
vanishing, however, an analytic solution is not available, whereas numerical integration has 
to be carried out carefully, because of computation instabilities [21]. 

In absence of dissipation an initial coherent state 

ff; 

"=a m 1~0) = exp ( -- '-(Y;") E -In) 

evolves towards the following superposition of coherent states at t = r / 2 Q  

as, was shown by Yurke and Stoler 111. The Q-function of the f = 0 coherent state is the 
Gaussian 

Q(a, a*, 0) = exp(-l-(Y - cu0lZ) (12) 
whereas fort = r /2Q it corresponds approximatively to two Gaussian peaks in the complex 
plane centred at -(YO and --(YO, with interference fringes between them [I]. The two peaks 
are 'macroscopically distinguishable' for [-(YO[ >> 1. The evolution is periodic with period 
T =%/a. Of~course. at shorter times the superposition involves more coherent states [ 11. 
In the presence of dissipation the state (at times I > 0) is no longer pure 1191. However, we 
shall show that with the master equation (6) a superposition of~states can be achieved which 
corresponds to a quasi-superposition mixed state, with interfering features still surviving. 
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We will look for signatures of such states from peaks in the complex plane approximately 
separated by a distance 21aol, reminiscent of the state (Il), and oscillations in the marginal 
distribution. 

3. Numerical results 

We have studied the time evolution of the density matrix by integrating numerically the 
master equation (6) for truncated Hilbert space dimension d = 128 (typically a power of 
2, in order to take advantage of the fast Fourier transfop algorithm for reconstructing the 
Q-function and the Wigner function). The integration time-step has to be carefully tuned as 
a function of S2 and a0 (here typically y h r  cz for a standard fourth-order RungeKutta 

rt-0.0000 it=0.0058 -- 

I I...., .??--+--  . .  - 
' -6  -3 0 3 6 

Figure 1. Contour plots ofthe time evolved Q-function according to equation (6). Here N = 30, 
IMI = m, + = 0. CO = 3, and Q / y  = 10.~ 
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routine). Numerical accuracy is checked through normalization of $, Q and W ,  positivity of 
Q, and reality of the diagonal elements of 6. As a test, the results from analytical solutions 
for y = 0 [l, 21 and for C.2 = 0 ~[6] have been recovered up to the seventh digit. 

In figure 1 the Q-function from the master equation (6) for maximally squeezed bath 
[IMI = 4-1 is given for Q / y  = 10, N = 30, and squeezing phase = 0. At 
y t  = 0.0576 (well before at = z/2, namely before the creation time of the state (1 1) in the 
undamped case) two peaks are clearly visible in the structure of the Q-function. The two 
peaks are almost symmetrical with respect to the origin of the phase space. Of course, due 
to dissipation, they are not strictly coherent, but they are still visible, even for subsequent 
times and disappear at larger times. This result can be compared with that of Daniel and 
Milburn I191 at the same time, but in the absence of the squeezed bath. 

In figure 2 the effect of a purely thermal bath on the generation of the superposition 
state is shown for comparison with figure 1 for the same values of the parameters. In this 
case there are no peaks in the Q-function, which now exhibits classical behaviour [17]: this 
is the usual effect of dissipation 1141. 

In figure 3, for completeness, we show the time evolution of the Wigner function at the 
same times as in figure 1: the two peaks still show up, but now some interference features 
arise between the two component states. as expected because the Wigner function is more 
sensitive to quantum features. 

The effect is further confirmed by the behaviour of the quadrature distributions P(x& 

yt=0.0173 yt=0.0346 

m 

m 
‘-6 -3 0 3 6 

R e t 4  

Figure 2. The same as in figure I .  but for M = 0. 
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Figure 3. The Wigner function corresponding IO plots in figure 1. 

with [x+ )  being the eigenstate of .?+ with eigenvalue x+. The probability P(x+)  is plotted 
in figure 4 at y t  = 0.0576 for 6 = 1114 and = 31114. For 6 = 3n/4-along the direction 
which joins the two peaks of the Wigner function-the probability P ( x J  exhibits two 
peaks resulting from marginal integration in the complex plane. On the other hand, along 
the orthogonal direction at 6 = x/4, a pattern reminiscent of interference in phase space 
[22] between the two originally coherent components is visible. We have also computed 
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Figure 4. Plot of the marginal distribution P(+) at yl = 0.0576 ford = 3 ~ 1 4  and @ = n/4 

the degree of mixing S = 1 - Tr(jz): its behaviour shows a rapid increase with time, 
achieving the asymptotic,value S = 0.96. Thus, the above coherence features still survive 
notwithstanding the large mixing. 

It is interesting to note that the time at which we have the formation of the two peaks is 
approximately the same as the one at which-in the absence of dissipation--five peaks show 
up. To make this comparison we have to consider the scaled time t = Qt instead of yr. In 
figure 5 ,  for comparison, we show six different time evolutions of the Q function, starting 
again from a single coherent state, at the same time T = nj5. In figure 5(a) we show the 
pure Kerr effect, in the absence of dissipation a coherent superposition of five coherent 
states is clearly visible. In figure 5(b) the same evolution is considered, but for a thermal 
bath, and the peaks are completely destroyed. On the other hand, figures 5(c)-(f) refer to 
the above-mentioned squeezed bath, for different values of the phase $ of the squeezing 
parameter. It is easily seen that depending upon the choice of $, one can select which 
two peaks (among the five original ones) survive (see also [23] for a similar effect due 
to a phase-sensitive amplifier).  this shows clearly that dissipation rapidly washes out the 
possibility of the creation of the superposition state, but also that by squeezing the degrees 
of freedom of the bath it is still possible to produce ‘quasi-superposition’ states which show 
coherence. It is not surprising that the phase of the squeezing parameter rules the effect 
of the squeezed bath in preserving the production of quasi-superposition states, due to the 
introduction of a privileged direction [24]. It should be noted, however, that such an effect 
of the squeezed reservoir is limited to short times: at greater times r the coherent effects 
disappear. 

As regards the other parameters, the overall scenario is not substantially affected by 
changing the phase of the initial coherent field (YO (though modifying the value of the phase 
of cuo changes the position of the peaks in the phase space), whereas increasing the modulus 
of LYO deteriorates the formation of the two peaks. On the other hand, slightly increasing Q 
or N (still for a maximally squeezed bath), does not appreciably improve the visibility of 
the peaks, unless we use a very large Q. 
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Figure 5. Comparison of  different dynamical evolutions of the Q function for an initial state 
given by a single coherent stale lad = 13.0). The contour plots of the time evolved Q function 
according to (6) at the same lime Qr =XIS are shown for ( 0 )  the pure Kerr effect ( y  = 0); (b) 
a thermal bath with N = 30 (M = 0); (c) a squeezed bath wirh N = 30, IMI = m, 
$ = 0: (d) the same 35 (c) bur with $ = n; (e) the same as (c) but with $ = n/2: (f) the 
same as (c )  but with $ = 3 ~ 1 2 .  

4. Summary and Conclusions 

We have considered the anharmonic oscillator interacting with a squeezed bath. The 
dissipative.Kerr effect models a coherent state propagating into a nonlinear medium, such 
as, for example, into an optical fibre. The squeezing has been considered in order to produce 
coherent effects in the presence of dissipation. Differently from previous works [6,10], our 
model treats all effects (nonlinearity, dissipation and squeezing) in context. We have shown 
that squeezing the fluctuations of the bath improves the generation of ‘quasi-superposition’ 
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states, which are completely forbidden in the presence of a beat bath. Our results are in 
agreement with those of Kennedy and Walls [6] and of Buiek et al [IO] and complete 
them: not only is a squeezed bath able to preserve a macroscopic quantum superposition, 
but also allows its generation in the presence of nonlinear interactions. It is conu%only 
believed that in order to produce Schrodinger cat states in a Kerr medium, high ratios i 2 / y  
are needed [25]. In the present work we have shown that the value ! 2 / y  = 10 is sufficient. 
Furthermore, new semiconductor materials have been recently found to show high third- 
order nonlinear susceptibility and also large ratios of nonlinearity to loss [26]. This appears 
to give new interest to the search for the generation of superpositions of macroscopically 
distinguishable quantum states in Kerr media. 

In order to be complete, we have to say that in the present work we have considered the 
production of superpositions in the presence of dissipation, whereas much care must be taken 
if one also considers the measurement of the state. The physical meaning of a~ squeezed 
bath is not completely understood in the present context: a suitable feedback mechanism 
could be envisaged that supports an ad. hoc phase-sensitive interaction, which amplifies or 
attenuates fluctuations, depending on the quadrature [27]. Alternatively, it could be realized 
by inserting various phase-sensitive amplifiers along the line to provide a similar effect as 
in the linear optical fibre [28]. Notwithstanding, squeezing seems to be the only way to 
maintain coherent effects in the presence of noise, provided the set of values of the bath 
parameters belong to a narrow region of the parameter space [61. 

In conclusion, some comments regarding the direction of squeezing in the bath are in 
order. Despite the squeezing, direction does not affect the generation of quasi-superposition 
states, which are only given by the nonlinearity, the survival time of coherence is naturally 
increased only for squeezing in the direction orthogonal to the line that joins the component 
states. On the other hand. the Kerr effect rotates the Q-function in the complex plane, thus 
making squeezing less efficient in the overall  evolution.^ This suggests that an ideal bath 
should be squeezed isotropically in the plane, depending on the phase of the state itself. It 
is possible to write a master equation for such an isotropically squeezed bath: numerical 
results on these lines can be found in [29]. 
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