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Abstract—The present short review article illustrates the lat-
est theoretical developments on quantum tomography, regarding
general optimization methods for both data processing and setup.
The basic theoretical tool is the informationally complete measure-
ment. The optimization theory for the setup is based on the new
theoretical approach of quantum combs.

Index Terms—Quantum information, quantum process tomog-
raphy, quantum tomography.

I. INTRODUCTION

F INE calibration of apparatuses is the basis of any precise
experiment, and the quest for precision and reliability is

relentlessly increasing with the strict requirements of the new
photonics, nanotechnology, and the new world of quantum in-
formation. The latter, in particular, depends crucially on the
reliability of processes, sources, and detectors, and on precise
knowledge of all sources of noise, e.g., for error correction.

But what does it mean to calibrate a quantum device? It is re-
ally a much harder task than calibrating a classical “scale.” For
example, for calibrating a photocounter, we do not have stan-
dard sources with precise numbers of photons—the equivalent
of the “standard weights” for the scale. Even worst, we never
know for sure that all photons have been actually absorbed by
the detector. The practical problem is then to perform a kind
of quantum calibration to determine in a purely experimental
manner (by relying on some well-established measuring instru-
ments) the quantum description of our device, without the need
of a detailed theoretical knowledge of its inner functioning—
being it a measuring apparatus, a quantum channel, a quantum
gate, or a source of quantum states.

And here it comes the powerful technique of quantum tomog-
raphy. Originally invented for determining the quantum state of
radiation (for recent reviews see [1] and, e.g., [2] and [3], it soon
became the universal measuring technique by which one can de-
termine any ensemble average and measure the fine details of
any quantum operation, channel, or measuring instruments—
objects that were just theoretical tools before (for history and
references see next section).

In the present short review article, we will illustrate our latest
theoretical developments on quantum tomography, consisting in
a first systematic theoretical approach to optimization of both
data processing and setup. Therefore, apart from the historical
excursus of the next section, where we mention the relevant con-
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tributions from other authors, the body of the paper is focused
only on our theoretical work.

The basic tool of the theoretical approach is the information-
ally complete measurement [4] (see [5] and [6] for applications
in the present context)—corresponding to the mathematical the-
ory of operator bases. The optimization of data processing [7]
relies on the fact that as an operator basis, the informationally
complete measurement is typically linearly dependent, allowing
different expansion coefficients, which can be then optimized,
according to specific criteria. The optimization theory for the
setup [8], on the other hand, needs the new theory of quantum
combs and quantum testers [9], novel powerful notions in quan-
tum mechanics, which generalize those of quantum channel
and of positive-operator-valued measure (POVM). These will
be briefly reviewed in the section before conclusions. As the
reader will see, the theoretical framework is sufficiently general
and mature for a concrete optimization in the laboratory, i.e.,
accounting for realistic bounded resources, and this will be the
direction of future development of the field.

II. HISTORICAL EXCURSUS

Quantum tomography is a relatively recent discipline. How-
ever, the possibility of “measuring the quantum state” has puz-
zled physicists in the past half century, since the earlier the-
oretical studies of Fano [10] (see also [11]). That more than
two observables—actually a complete set of them, a so-called
quorum of observables [12], [13]—are needed for a complete
determination of the density matrix was immediately clear [10].
However, in those years, it was hard to devise concretely mea-
surable observables other than position, momentum, and energy
(Royer pointed out that instead of measuring varying observ-
ables, one can vary the state itself in a controlled way, and
measure, e.g., just its energy [16]). For this reason, the funda-
mental problem of determining the quantum state remained at
the level of mere speculation for many years. The issue finally
entered the realm of experiments only less than 20 years ago,
after the pioneering experiments by Raymer’s group [17], in the
domain of quantum optics. Why quantum optics? Because in
quantum optics, differently particle physics, there is the unique
opportunity of measuring all possible linear combinations of
position and momentum of a harmonic oscillator, representing a
single mode of the electromagnetic field. Such measurement can
be achieved by means of a balanced homodyne detector, which
measures the quadrature Xφ = (1/2)

(
a†eiφ + ae−iφ

)
of a field

mode at any desired phase φ with respect to the local oscillator
(LO) (as usual a denotes the annihilator of the field mode). The
first technique to reconstruct the density matrix from homodyne
measurements—so called homodyne tomography—originated
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from the observation by Vogel and Risken [18] that the col-
lection of probability distributions {p(x, φ)} for φ ∈ [0, π) is
just the Radon transform—i.e., the tomography—of the Wigner
function W . Therefore, by a Radon transform inversion, one
can obtain W , and from W, the matrix elements of the density
operator ρ. This first method, however, works fine only for high
number of photons or for almost classical states, whereas in the
truly quantum regime is affected by the smoothing needed for the
Radon transform inversion. The main physical tool, however—
i.e., using homodyning—was a perfectly good idea: one just
needed to process the experimental data properly.

The first exact technique was given in [19] for measuring
experimentally the matrix elements of ρ in the photon-number
representation, by just averaging functions of homodyne data.
After that, the method was further simplified [20], and the feasi-
bility for nonunit quantum efficiency η < 1 at detectors—above
some bounds—was established. Further improvements in the
numerical algorithms made the method so simple and fast that it
could be implemented easily on small PCs, and the method be-
came quite popular in the laboratories (for the earlier progresses
and improvements, the reader can see the old review [21]). In the
meanwhile, there has been an explosion of interest on the sub-
ject of measuring quantum states, with hundreds of papers, both
theoretical and experimental. The exact homodyne method has
been implemented experimentally to measure the photon statis-
tics of a semiconductor laser [22], and the density matrix of a
squeezed vacuum [23], [24]. The success of optical homodyne
tomography has then stimulated the development of state re-
construction procedures for atomic beams [25]–[27], the exper-
imental determination of the vibrational state of a molecule [28],
of an ensemble of helium atoms [29], and of a single ion in a
Paul trap [30], and different state reconstruction methods have
been proposed (for an extensive list of references of these first
pioneering years, see, e.g., [31]).

Later, the method of quantum homodyne tomography has
been generalized to the estimation of an arbitrary observable of
the field [32], with any number of modes [33], and, to arbitrary
quantum systems via group theory [34]–[36], and with a general
method for unbiasing noise [34], [35]. Eventually, it was rec-
ognized that the general data processing is just an application
of the theory of operator expansions [37], [38], which lead to
identify quantum tomography as an informationally complete
measurement [39]—a generalization of the concept of quorum
of observables [12], [13].

State reconstruction was extended to the case where an incom-
plete measurement is performed. In this, the reconstruction of
the full density matrix of the system is actually impossible, and
one can only estimate the state that best fits the measured data ap-
plying the Jaynes’s maximum entropy principle (MaxEnt) [14].
When one has some nontrivial prior information, the fit can be
improved by minimizing the Kullback–Leibler distance from a
given state that represents this a priori information [15].

At the same time, as an alternative to the averaging data pro-
cessing strategy of the original method [19], the possibility of
implementing a maximum-likelihood strategy for reconstruct-
ing the diagonal of the density matrix, and later for the full ma-
trix [42], was recognized in [40] and [41]. An advantage of the

maximum-likelihood strategy is that the density matrix is con-
strained to be positive, whereas positivity can be violated in the
fluctuations of the averaging strategy. In addition, the maximum-
likelihood often allows to reduce the number of experimental
data for achieving the same statistical error dramatically, at the
expense of a bias, which is, however, negligible in many cases of
practical interest. However, there is a drawback: this is the need
of estimating the full density matrix (the strategy is essentially
a maximization of the joint probability of the full dataset over
all possible density matrices, or Bayesian variations of such
maximization accounting for prior knowledge [43]). This, on
one side, requires a cutoff of the dimension of the Hilbert space
when infinite (such as for the harmonic oscillator, as in homo-
dyne tomography), thus introducing the mentioned bias; on the
other side, it has computational and memory complexities that
increase exponentially with the number of systems for a joint
tomography on multiple systems. On the contrary, the averaging
strategy for any desired expectation value needs just to average
a single function of the experimental outcome, without needing
the full matrix, and this includes, as a special case, the evalua-
tion of single matrix element itself, when without necessitating
a dimensional cutoff.

Contemporary to this preliminary evolution of data process-
ing methods, there has also been a parallel evolution in the
tomographic setup design. It was realized that it is possible to
obtain not only states, but also channels [44], [45]—the so-
called (standard quantum) process tomography (SQPT)—based
on the idea of tomographing the outputs of a channel corre-
sponding to a set of input states making an operator basis for all
density matrices. However, soon later, it was recognized (first
for the diagonal matrix elements in the number basis of an op-
tical process [46], then, in general, for any channel [47], [48])
that the same process tomography can be actually achieved us-
ing just a single-input state entangled (with maximal Schmidt
number) with an ancilla—the so-called ancilla-assisted process
tomography (AAPT)—exploiting the “quantum parallelism” of
the entangled input state that plays the role of a “superposition
of all possible input states.” This can have a great experimental
advantage when the basis of states is not easily achievable exper-
imentally, whereas the entangled state can be achieved easily,
as in the case of homodyne tomography, where it is easy to
achieve such entangled state from parametric downconversion
of vacuum, whereas it is hard to achieve photon-number states
(see, however, [49], where a set of random coherent states have
been proposed as a basis). As later proved in [50], and experi-
mentally verified in [51], almost any joint system–ancilla state
can be exploited for AAPT. On the other hand, the same AAPT
has been extended to quantum operations and to measuring ap-
paratus [52], [53] (former theoretical proposals for calibration
of detectors were published without ancilla [55], [56], and even
ancilla-assisted [57]). Later, by another kind of quantum paral-
lelism, it was recognized that one can also estimate the ensem-
ble average of all operators of a quantum system by measuring
only one fixed “universal” entangled observable on an extended
Hilbert space [58]—a truly universal observable. At this point,
the tomographic method had reached the stage in which a sin-
gle fixed apparatus (single preparation of the input and single
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observable at the output) is needed, in principle reducing enor-
mously the experimental complexity for joint tomography on
many systems (complexity 1 versus exponential complexity).

After the first experimental SQPT by nuclear magnetic res-
onance (NMR) [59], AAPT was experimentally proved in [51]
and [60], for photon polarization qubit quantum operations, ex-
ploiting spontaneous parametric downconversion in a nonlinear
crystal as a source of entangled states.

As in the case of state tomography, the freedom in the choice
of the experimental configuration poses the natural question of
what is the optimal setup for a given figure of merit. The issue
of minimizing the number of different experimental configura-
tions needed for process tomography was raised again in [61],
and a the so-called direct characterization of quantum dynamics
(DCQD) setup was introduced for qubits, later generalized to ar-
bitrary finite-dimensional systems [62]. The proposed protocol
starts from the expression of the Choi–Jamiołkowski operator
(also called χ-matrix) C(ρ) =

∑
mn χmnAm ρA†

n of the quan-
tum channel C operating on the inputs state ρ, choosing for
the basis {Am} the shift-and-multiply group elements, and then
uses techniques from error detection for the estimation of pa-
rameters χmn from estimated error probabilities. The DCQD
approach is interesting because of the interpretation of process
tomography in terms of error detection; however, it does not
provide any optimality argument in terms of number of experi-
mental configurations, apart from a vague resource analysis [63].
A similar scheme was introduced in [64], where the Bendersky
et al. provide a method for process tomography that allows to
separately reconstruct the Choi operator matrix elements in a
fixed basis based by Haar-distributed input-state sampling. The
authors exploit spherical 2-designs [65] in order to discretize
the required averaging over the group SU(d).

In more recent years, some experiments in the continuous-
variable domain were performed both for process tomogra-
phy [66] and for measurement calibration [67]; however, both
experiments exploited the SQPT technique, while no AAPT
experiments with continuous-variable systems have been re-
ported so far. Many tomographic experiments on different kinds
of quantum systems have been performed, like atoms in op-
tical lattices [68], cold ions in Paul traps [69], NMR-probed
molecules [70], solid-state qubits [71], and quantum optic cav-
ity modes interacting with atoms [72].

In the last decade, the interest in quantum tomography grew
very fast with the increasing number of applications in the hot
field of quantum information, allowing testing the accuracy of
state preparation and calibration of quantum gates and measur-
ing apparatuses. One should realize that the whole technology
of quantum information crucially depends on the reliability of
processes, source, and detectors, and on precise knowledge of
sources of noise and errors. For example, all error correction
techniques are based on the knowledge of the noise model,
which is a prerequisite for an effective design of correcting
codes [73]–[75], and quantum process tomography allows a
reliable reconstruction of the noise and its decoherence-free
subspaces without recurring to prior assumptions on the noisy
channels [76]. The increasingly high confidence in the tomo-
graphic technique, with the largest imaginable flexibility of

data processing, and expanding outside the optical domain in
the whole physical domain, grew the appetite of experimental-
ists and theoreticians posing increasingly challenging problems.
The relevant issues were to establish the optimal tomographic
setups and data processing, and to minimize the physical re-
sources, handling increasingly large numbers of quantum sys-
tem jointly. Regarding this last point, a relevant issue is the
exponentially increasing dimension of the Choi operator of the
quantum process versus the number of systems involved, and
methods for safely neglecting irrelevant parameters in multi-
ple qubit noise model reconstruction have been introduced [77]
based on assumptions of qubit noise independence and Marko-
vianity. Methods to tackle the case of sparse Choi matrices are
shown in [78], expressing the minimum �1-norm distance cri-
terion in terms of a standard convex optimization problem. On
the problem of optimizing data processing, on the other hand,
upper bounds on minimal Hilbert–Schmidt distance between
the estimated and the actual Choi–Jamiołkowski state has been
derived [79] exploiting spherical 2-designs. It can be shown
that minimizing such a distance is equivalent to minimizing
the statistical error in the estimation of any ensemble average
evolved by the channel. On the other hand, a systematic way of
posing the problem of optimizing the data processing is to fix
a cost function (depending on the purpose of the tomographic
reconstruction), and minimize the average cost—the canonical
procedure in quantum estimation theory [80].

The optimal data processing for any measurement (in finite
dimensions) for estimating the expectation of any observable
with minimum error was derived in [7]. On the other hand,
as regards the optimal setups, an approach based on the the-
ory of quantum combs and quantum testers [9], [81] have been
introduced that allowed to determine the optimal schemes (min-
imizing the statistical error in estimating expectation values) for
all of the three kinds of tomography: state, process, and mea-
surement [8] (quantum combs and quantum testers generalize
the notion of channels and POVM’s). The optimal setups use
up to three ancillas, and need only a single-input state (with bi-
partite entanglement only) and the measurement of a Bell basis,
with a variable local unitary shifts of the ancillas. Exploiting
the same approach, incomplete process tomography has been
addressed in [82] using “process entropy,” the analogous of the
max-entropy method [14] for process tomography.

III. METHODOLOGY

In the following, we will treat linear operators X from H0 to
H1 as elements of a vector space, and the following formula is
very useful:

|X〉〉 :=
d1 −1∑
m=0

d0 −1∑
n=0

Xmn |m〉1 |n〉0 . (1)

In (1), di denotes the dimension of the Hilbert space Hi , {|n〉i}
are orthonormal bases for Hi i = 1, 2, and Xmn are the matrix
elements of X on the same orthonormal basis.

A general mathematical framework for quantum tomography
was introduced in [37] and [38], based on spanning sets of
observables called quorums. We will review the more general
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approach based on informationally complete POVMs in [5] and
[6]. A POVM is a set of positive operators {Pl} that add up
to the identity. The method is based on operator expansions,
and we will show how expanding operators on a POVM can be
used to reconstruct their expectation values on the state of the
measured system. The aim of a tomographic reconstruction is to
obtain the ensemble expectation of an operator X by averaging
some function fl [X] depending on the outcome of a suitable
POVM {Pl}. We require the procedure to be unbiased, namely
the reconstruction must be as follows:

〈X〉ρ =
∑

l

fl [X]p(l|ρ), p(l|ρ) := Tr[ρPl ]. (2)

Whatever notion of convergence one uses, the requirement for
unbiasedness implies—by the polarization identity—that the
following expansion for the operator X holds:

X =
∑

l

fl [X]Pl (3)

where the sum can be replaced by an integral in the case of
continuous outcome set (the expansion clearly is defined for
weakly convergent sum, meaning that (2) holds for all states
ρ). The general reconstruction method consists in finding ex-
pansion coefficients fl [X], and then averaging them over the
outcomes l. In this way, one can define the expansion for gen-
eral bounded operators X . Further extensions of the definition
in (3) to unbounded operators can be obtained requiring the con-
vergence of (2) for states ρ in a dense set S (e.g., finite-energy
states). A particularly simple case is that of operators on finite-
dimensional Hilbert spaces, or for Hilbert–Schmidt operators in
infinite-dimensional spaces, since in these cases, the space of
operators is a Hilbert space itself, equipped with the Hilbert–
Schmidt product 〈〈A|B〉〉 := Tr[A†B], and convergence of (3)
can be defined in the Hilbert–Schmidt norm ||X|| :=

√
〈〈X|X〉〉.

Clearly, the use of the formula in (2) for estimation of 〈X〉ρ
(for all ρ ∈ S and for all X such that Tr[ρX] is defined on S) is
possible iff {Pl} is a complete set in the space of linear operators.
Such a POVM is called informationally complete [4]. For the
sake of simplicity, in the following, we will restrict attention to
the case of Hilbert–Schmidt operators X . Equation (3) defines
a linear map Λ from the vector space of coefficients f := (fl)
to linear operators as follows:

Λf =
∑

l

flPl (4)

whose domain contains all the vectors f such that the sum in (4)
converges (either in Hilbert–Schmidt norm or weakly). As we
mentioned earlier, a reconstruction strategy requires a choice of
coefficients f [X] for any operator X , such that Λf [X] = X . In
algebraic terms, the choice corresponds to a generalized inverse
Γ of Λ defined by ΛΓΛ = Λ, so that f [X] = Γ(X) [83]. When
the set {Pl} is not linearly independent, the inverse Γ is not
unique, and this implies that one can choose the coefficients
f [X] according to some optimality criterion, as we will explain
in Section VIII. Note that by linearity, any inverse Γ provides a
dual spanning set {Ql} whose matrix elements are (Ql)∗mn :=
fl [Emn ], with Emn := |m〉〈n|, namely fl [X] = Tr[Q†

l X].

As we will see in the next sections, for finite-dimensional sys-
tems the theory of generalized inverses is sufficient for classify-
ing all possible expansions, and consequently, deriving the op-
timal coefficients f [X] for a fixed POVM {Pl} [7], [87]. On the
other hand, the full classification of inverses Γ and consequent
optimization is a still unsolved problem for infinite-dimensional
systems, for which alternative approaches are useful [86].

A. Frames

In this section, we will review the relevant results in the the-
ory of frames on Hilbert spaces, which is useful for dealing with
POVMs on infinite-dimensional systems [86] where a classifica-
tion of all inverses Γ is still lacking. The method for evaluating
possible inverses provided in [37], [38] is an orthogonalization
algorithm—similar to the customary Gram–Schmidt method—
based on the assumption that the POVM is a frame [84] in the
Hilbert space of Hilbert–Schmidt operators, namely the follow-
ing two inequalities hold:

a ||X||2 ≤
∑

l

|〈〈Pl |X〉〉|2 ≤ b ||X||2 . (5)

Equivalently, {Pl} is a frame iff its frame operator

F :=
∑

l

|Pl〉〉〈〈Pl | (6)

is bounded and invertible with bounded inverse. The theory of
frames provides a (partial) classification of inverses Γ in terms
of dual frames for {Pl}, namely those frames Ql such that the
following identity holds in the vector space of operators:∑

l

|Pl〉〉〈〈Ql | = I. (7)

While the orthogonalization method is effective in providing
adequate coefficients f [X] for the purpose of evaluating the
expectation value of operators X , it may be inefficient in min-
imizing the statistical errors, since the orthogonalization would
be equivalent to discard experimental data. On the other hand,
using the method of alternate duals of a frame allows one to
use all experimental data in the most efficient way, according
to any chosen criterion, such as minimizing the statistical error.
We will now show how the method works.

The canonical dual frame is defined as

|Dl〉〉 := F−1 |Pl〉〉 (8)

and it trivially satisfy (7). All alternate dual frames of a fixed
frame {Pl} are classified in [85], and they are given by the
following expression:

Ql = Dl + Yl −
∑

j

〈〈Dl |Pj 〉〉Yj (9)

where Yl is arbitrary, provided that the sum
∑

j 〈〈Dl |Pj 〉〉Yj

converges. It is clear from the definition in (7) that any dual
frame {Ql} corresponds to an inverse Γ, via the identification
Γ(X) = f [X], with the coefficients given by

fl [X] := 〈〈Ql |X〉〉. (10)
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For finite dimensions also, the converse is true, namely any
inverse Γ provides a dual set {Ql}, which is a frame. However,
in the infinite-dimensional case, it is not guaranteed that all the
dual sets corresponding to inverses Γ are frames themselves.

The results in this section can be generalized to frames for
bounded operators (for the theory of frames for Banach spaces,
see [88]) by weakening the definition of convergence of the
sums in (6), (7), and (9).

IV. WHAT YOU NEED TO MEASURE FOR TOMOGRAPHY

As we mentioned in the previous section, the use of a detec-
tor whose statistics is described by an informationally complete
POVM {Pl}, allows the reconstruction of any expectation value
(including those of external products |m〉〈n|, namely matrix el-
ements in a fixed representation). In the assumption that every
repetition of the experiment is independent, it is indeed suffi-
cient to find a set of coefficients f [X], and to average it by the
experimental frequencies νl := nl/N (nl is the number of out-
comes l occurred, and N is the total number of repetitions). The
estimated expectation is then given by

X :=
∑

l

νlfl [X] � 〈X〉ρ (11)

where the symbol � means that by the law of large numbers
left-hand side (LHS) converges in probability to right-hand side
(RHS)

A. Informationally Complete Measurements

Informationally complete measurements play a relevant role
in foundations of quantum mechanics, constituting a kind of
standard reference measurement with respect to which all quan-
tum quantities are defined. They have been used as a tool to
assess general foundational issues, such as in the proof of the
quantum version of the de Finetti theorem [89]. One of the most
popular examples of informationally complete measurement is
the coherent-state POVM for harmonic oscillators, which is
used, in particular, in quantum optics. Its probability distribu-
tion is the so-called Q-function (or Husimi function). Other
examples are the quorums of observables, such as the set of
quadratures of the harmonic oscillator, which was the first kind
of informationally complete measurement considered for quan-
tum tomography [18]. The use of the notion of informational
completeness has also lead to advancements on other relevant
conceptual issues, such as the problem of joint measurements
of noncommuting observables [90].

B. Quorums

A quorum of observables {Xξ}ξ∈X is a set of independent
observables ([Xξ ,Xξ ′ ] = 0 only if ξ = ξ′), with spectral reso-
lution Eξ (dx) and spectrum Xξ , such that the statistics of their
outcomes x ∈ Xξ allows one to reconstruct average values of
an arbitrary operator X as follows:

〈X〉ρ =
∫

X

µ(dξ)〈fξ (Xξ ,X)〉ρ (12)

where µ(dξ) is a probability measure on X and fξ (x,X) is
a complex function of x ∈ Xξ called tomographic estimator,
enjoying the following properties

1) In order to have bounded variance in the estimation,
fξ (x,X) is square summable with respect to the mea-
sure µ(dξ)〈Eξ (dx)〉ρ for all ρ in the set S of interest,
namely∫

X

µ(dξ)
∫
Xξ

〈Eξ (dx)〉ρ |fξ (x,X)|2 < ∞ (13)

for X such that |Tr[ρX]| < ∞ and for all ρ ∈ S.
2) For a fixed x, fξ (x,X) is linear in X , namely

fξ (x, aX + bY ) = afξ (x,X) + bfξ (x, Y )

fξ (x,X†) = fξ (x,X)∗. (14)

The problem of tomography is to find all possible correspon-
dences X ↔ fξ (x,X), namely all possible estimators. Usually,
quorums are obtained from observable spanning sets {Fω}ω∈Ω ,
satisfying

X =
∫

Ω
dω cω [X]Fω (15)

where the measure dω may be unnormalizable. However, this
feature is usually due to redundancy of the set Ω, which may
be partitioned into sets Kξ of observables such that for all Fω ∈
Kξ , one has [Fω ,Xξ ] = 0 for a fixed observable Xξ . The set
Kξ then corresponds to the observable Xξ in the quorum so
that for Fω ∈ Kξ , we can write Fω := F(ξ ,κ) = fκ(Xξ ). Under
standard hypotheses, dω can be decomposed as µ(dξ)νξ (dκ),
where νξ (dκ) is the measure on Kξ induced by dω, and (15) can
be rewritten as

X =
∫

X

µ(dξ)
∫

Kξ

ν(dκ)c(ξ ,κ) [X]fκ(Xξ ). (16)

The last expression has the form of (12) with the choice of
tomographic estimators provided by

fξ (x,X) :=
∫

Kξ

ν(dκ)c(ξ ,κ) [X]fκ(x). (17)

Note that in the case of a quorum, the possibility of optimizing
the estimator depends on nonuniqueness of the estimator, which
is equivalent to the existence of null functions, namely functions
nξ (x) such that∫

X

µ(dξ)
∫
Xξ

Eξ (dx)nξ (x) = 0. (18)

C. Group Tomography

In this section, we will review the approach to quantum to-
mography based on group representations that was introduced
in [35], and then exploited in [36] and [92]. The method exploits
the following group theoretical identity, holding for unitary ir-
reducible representations U(g) of a unimodular group G :∫

G

dg U(g)XU(g†) = Tr[X]I (19)
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where dg is the invariant Haar measure of G normalized to 1 [we
recall that a group is unimodular when the left-invariant measure
is equal to the right-invariant one]. In the following, we will con-
sider compact Lie groups (such as the rotation group or the group
of unitary transformations), which are necessarily unimodular.
However, the identity can be extended to square-summable rep-
resentations of non compact unimodular groups [95], allowing
for extension of group tomography to the noncompact groups
SU(1, 1) [93], [94], along with the Euclidean group on the com-
plex plane (which is the case of homodyne tomography). We
will exploit the following identities coming from the correspon-
dence of (1):

A ⊗ B|C〉〉 = |ACBT 〉〉, Tr1[|A〉〉〈〈B|] = AT B∗ (20)

where XT and X∗ denote the transpose and the complex con-
jugate of X , respectively, on the basis of (1). Using (19) and
(20), one obtains

∫
G dg |U(g)〉〉〈〈U(g)| = I , which implies the

following reconstruction formula:

X =
∫

G

dg Tr[U †(g)X]U(g). (21)

In the hypothesis that the group manifold is connected, the
exponential map eiψn·T covers the whole group, Ti denoting the
generators Lie algebra representation, and n being a normalized
real vector. The integral can then be rewritten as follows:

X =
∫

Ψ
µ(dψ)

∫
S n

ν(dn)Tr[e−iψn·TX]eiψn·T . (22)

By exchanging the two integrals over ψ and n, the integral over
ψ is evaluated analytically, whereas the integral over n is sam-
pled experimentally. The practical problem is then to measure
n·T. A way is to start from a finite maximal set of commuting
observables, say {Tν } (these make the so-called Cartan abelian
subalgebra of the Lie algebra), and achieve the observables of
the quorum by evolving Tν with the group G of physical trans-
formations in the Heisenberg picture, e.g., by preceding the Tν

detectors with an apparatus that performs the transformations
of G. For example, for the group SU(2), the generators are the
angular momentum components Ji , and a quorum is provided
by the set of all angular momentum operators J·n on the sphere
n ∈ S2 [92] that can be obtained measuring Jz after a rotation
of the state.

The use of group representations provides also a tool for con-
structing covariant informationally complete POVMs. A covari-
ant POVM with respect to the representation U(g) of the group
G is a POVM with the following form:

P (dg) = dgU(g)ξU(g)† (23)

where ξ ≥ 0 is called seed and must be such that
∫

G P (dg) = I .
The informational completeness can be required through the in-
vertibility condition for the frame operator in (6), which rewrites

F =
∫

G

dg U(g) ⊗ U(g)∗|ξ〉〉〈〈ξ|U(g)† ⊗ U(g)T . (24)

A general classification of covariant informationally complete
measurements has been given in [6].

V. METHODS OF DATA PROCESSING

Given a detector corresponding to an informationally com-
plete POVM, one can use either the theory of generalized in-
verses or the theory of frames to find a suitable data processing to
reconstruct all the parameters of a quantum state. However, the
processing is usually not unique, and this feature leaves room for
optimization. One can indeed choose a figure of merit and look
for the processing that optimizes it for a fixed POVM. This step
is mandatory for a fair comparison between two POVMs, and
a comparison without optimization generally leads to a wrong
choice of POVM. Before reviewing recent results on optimiza-
tion of processing and POVMs, in Section VIII, we summarize
the main approaches to data processing, along with the corre-
sponding figures of merit.

A. Unbiased Averaging Method: Tomography
as Indirect Estimation

Quantum tomography can be regarded as a special case of
indirect estimation [90], in which the informationally complete
detector allows one to indirectly estimate without bias any ex-
pectation value. From this point of view, a very natural figure
of merit in judging a data processing strategy is the statistical
error in the reconstruction of expectations. The statistical error
occurring when the processing in (3) is used has the following
expression:

∆(X)2
ρ,ν :=

∑
l

|fl [X]νl − 〈X〉ρ |2 (25)

where the frequencies νl have a multinomial distribution
pN (ν|ρ) := N !∏

l n l !

∏
l Tr[ρPl ]N νl . Note that this reconstruction

is unbiased for any N , since averaging the reconstructed expec-
tation in (11) over all possible experimental outcomes provides
exactly 〈X〉ρ . On the other hand, averaging the statistical error
over all possible experimental outcomes provides the following
expression:

∆(X)2
ρ :=

∑
l |fl [X]|2p(l|ρ) − |〈X〉ρ |2

N
. (26)

Finally, this quantity depends on the state ρ, and in order to re-
move this dependence, we consider a Bayesian setting in which
the measured state is assumed to be distributed according to a
prior probability p(ρ). Averaging the error over the prior distri-
bution finally provides

δ(X)E :=
∑

l

|fl [X]|2p(l|ρE) − |〈X〉|2E (27)

where ρE :=
∫

dρ p(ρ)ρ, and f(ρ)E :=
∫

dρ p(ρ)f(ρ). The ex-
pression in (27) was considered in [6] and [96] as a figure of
merit for judging the quality of the reconstruction provided by
the processing coefficients f [X] with a fixed POVM {Pl} in [6]
and [96]. In Section VIII, we will show how the optimal pro-
cessing [7] can be derived within this framework.

B. Maximum Likelihood Method

The unbiased averaging method can generally lead to ex-
pectations that are unphysical, e.g., violating the positivity of



1652 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

the density operator. This fact had led some authors to adopt
data processing algorithms based on the maximum-likelihood
criterion that allows one to constrain the estimated state to be
physical [40], [41]. However, it actually does not make much
difference if the deviation from the true value results in a phys-
ical or unphysical state: is it better to guess a physical state
that is far from the true one, or to guess an unphysical one that
is close to the true one? Indeed, as we have already discussed
in Section II, the maximum likelihood is generally biased, and
the physical constraint may result, e.g., in the state to be pure
when instead the true state is mixed. A Bayesian variation of the
maximum-likelihood method was proposed in [43], in order to
avoid such feature.

A comprehensive maximum-likelihood approach has been
given in [42]. The likelihood is a functional L[ρ] over the set of
states that evaluates the probability that the state ρ produces the
experimental outcomes summarized by the frequencies ν, and
has the following expression:

L[ρ] :=
∏

l

p(l|ρ)νl =

(∏
l

p(l|ρ)nl

) 1
N

. (28)

It is convenient to define the following functional, which is just
the logarithm of L[ρ]:

L[ρ] :=
1
N

∑
l

nl log p(l|ρ) (29)

whose maximization is equivalent to the maximization of L[ρ].
The positivity constraint on ρ is achieved by substituting it with
T †T in Eq. (29), thus defining a functional L′[T ], and intro-
ducing a Lagrange multiplier N to account for the condition
Tr[T †T ] = 1. Equation (29) provides a natural interpretation of
the maximum-likelihood criterion in terms of the Kullback–
Leibler divergence D(ν||p), where pl := p(l|ρ). Indeed, the
Kullback–Leibler distance of the probability distribution p from
experimental frequencies ν has the following expression:

D(ν||p) =
∑

l

νl log
νl

pl
(30)

and since S(ν) := −
∑

l νl log νl is fixed, the minimization of
the distance is equivalent to the maximization of

∑
l

νl log pl =
1
N

∑
l

nl log pl ≡ L[ρ]. (31)

The maximization over ρ with the positivity and normalization
constraints can thus be interpreted as the choice of a physical
state ρ such that its probability distribution has the minimum
Kullback–Leibler distance from the experimental frequencies.

The statistical motivation for the maximum-likelihood es-
timator resides in the following argument. Given a family of
probability distributions p(x;θ) in x, depending on a multidi-
mensional parameter θ, the Fisher information matrix can be
defined as follows:

F (θ)mn :=
〈

∂p(x;θ)
∂θm

∂p(x;θ)
∂θn

〉
x

. (32)

Upon defining the covariance matrix for an estimator θ̂ as fol-
lows:

Σmn := 〈(θ̂m − θm )(θ̂n − θn )〉x (33)

one has the Cramér–Rao bound given by

Σ ≥ 1
N

F (θ)−1 (34)

which is independent of the estimator θ̂. It can be proved that
when the bound is tight the maximum-likelihood estimator sat-
urates asymptotically for large N .

The maximization of the functionalL[ρ] is a nonlinear convex
programming problem, and can be solved numerically. Conver-
gence is assured by convexity and differentiability of the func-
tional to be maximized over the convex set of states. However,
the derivatives of L[ρ] with respect to some of the parameters
defining ρ can be very small, so that very different values of the
parameters will give almost the same likelihood, thus making
it hard to judge whether the point reached at a given iteration
step is a good approximation of the point corresponding to the
maximum: in such case the problem becomes numerically ill
conditioned, with an extremely low convergence rate.

C. Unbiasing Known Noise

In this section, we will show how the unbiased averaging
method explained in Section V-A can be applied also in the
presence of a known noise disturbing the measurement, pro-
vided that the quantum channel describing the noise is invert-
ible [35]. The unbiasing method is the following. Suppose that
the noisy channel N (in the Heisenberg picture) affects the sys-
tem before it is measured by the detector corresponding to the
POVM {Pl}. Then, the measured POVM is actually {N(Pl)},
which for invertible N is still informationally complete. The
reconstruction formula (3) then becomes

X = NN−1(X) = N
(∑

l

fl [N−1(X)]Pl

)

=
∑

l

fl [N−1(X)]N(Pl). (35)

Using the statistics from the measurement of {N(Pl)}, it is
then possible to unbias the noise N by averaging the func-
tions f [N−1(X)]. In all known cases, the coefficients fl [Z] are
obtained as fl [Z] = Tr[Q†

l Z] for a dual frame {Ql}, and con-
sequently, the coefficients for unbiasing are Tr[Q†

l N
−1(Z)] =

Tr[N∗
−1(Q†

l )Z], where N∗ denotes the Schrödinger picture
of the channel N. As we will see in the following, usually the
procedure for unbiasing the noise increases the statistical error.
For examples of noise unbiasing, see [97] and [98].
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VI. QUANTUM SYSTEMS

A. Qubits

The case of a 2-D quantum system (qubit) is the easiest ex-
ample. Any operator on a qubit space can be written as

X =
1
2

(
Tr[X]I +

3∑
i=1

Tr[Xσi ]σi

)
(36)

where σi are the Pauli matrices. The reconstruction of the ex-
pectation 〈X〉ρ can be obtained by measuring the observables σi

(namely the POVM collecting their eigenstates, 1/3|ψi±〉〈ψi±|),
and then averaging the function

fi±[X] =
1
2
(±3Tr[Xσi ] + Tr[X]). (37)

Also noise unbiasing is particularly easy in this case. Consider,
for example, a depolarizing channel Dp acting in the Heisenberg
picture as

Dp(X) = (1 − p)X +
p

2
Tr[X]I (38)

with 0 ≤ p < 1. The unbiased estimator is then given by

fi±[X] = ± 3
2(1 − p)

Tr[Xσi ] +
1
2
Tr[X]. (39)

The physical realization of a qubit in quantum optics is the
dual rail encoding involving two modes (typically two different
polarization in the same spatial mode) with the logical states
|0〉L and |1〉L corresponding to |0〉|1〉 and |1〉|0〉, respectively.

B. Continuous Variables

The term continuous variables in the literature has become a
synonym of quantum mechanics of a radiation mode (harmonic
oscillator) with creation and annihilation operators a and a†.
A spanning set of observables for linear operators on such sys-
tem is the displacement representation D(α) := eαa†−α∗a of the
Weyl–Heisenberg group, parametrized by α ∈ C, for which the
following identity holds:∫

C

d2α

π
|D(α)〉〉〈〈D(α)| = I. (40)

Note that we use of the term observable to designate any normal
operator X such that [X,X†] = 0, so that its real and imag-
inary parts (X† + X)/2 and i(X† − X)/2, respectively, are
simultaneously diagonalizable, and unitary operators like D(α)
are indeed normal. The measure d2α on the complex plane C

is unnormalizable, and plays the role of the measure dω of
(15). However, for α with argument arg α = φ − π/2, we have
[D(α),Xφ ] = [ei|α |Xφ ,Xφ ] = 0, where Xφ := (1/2)(a†eiφ +
ae−iφ) are the field quadratures. Thus, we can take {D(α)}
as the set {Fω} of (15), and the quadratures Xφ as the quo-
rum observables Xξ . The integral

∫
C
(d2α)/π can be separated

as
∫ π

0 (dφ/π)
∫ +∞
−∞ (|k|/4)dk, and since the integral over dk is

included in the definition of the estimators fφ(Xφ,X), as in
(17), the remaining integral is the one on dφ, which is bounded
and can be sampled from a uniform distribution on [0, π). The

homodyne technique then consists in measuring the informa-
tionally complete POVM |x〉〈x|φdx((dφ)/π) (where |x〉φ are
Dirac eigenvectors of the quadrature Xφ ), for suitably sampled
values of φ, and then averaging the estimators. The final recon-
struction formula is the following:

〈X〉ρ =
∫ π

0

dφ

π

∫ ∞

−∞
dx fφ(x,X)〈|x〉〈x|φ〉ρ (41)

with fφ(x,X) =
∫ +∞
−∞

|k |
4 dk Tr[D†(keiφ)X]eikx .

VII. TOMOGRAPHY OF DEVICES

Since the publication of [44] and [47], most of the efforts
in quantum tomography were directed to the reconstruction of
devices that consists in using the techniques for state recon-
struction to the problem of characterizing the behavior of a
quantum device, like a channel [46], a quantum operation [53],
or a POVM [52]. In the following sections, we will review the
main issues of these techniques.

A. Tomography of Channels

A quantum channel describes the most general evolution that a
quantum system can undergo. It must satisfy three main require-
ments: linearity, complete positivity, and preservation of trace
(the physical motivation of complete positivity is that the trans-
formation must preserve positivity of states also when applied
locally to a bipartite system). Probabilistic transformations—
so-called quantum operations—enjoy linearity and complete
positivity, but generally decrease the trace.

The tomography of channels is strictly related to the possibil-
ity of imprinting all the information about a quantum transfor-
mation on a quantum state [47], formally expressed by the Choi–
Jamiołkowski correspondence between a channel C : L(H0) →
L(H1) and a positive operator RC ∈ L(H1 ⊗H0) defined as

RC := (C ⊗ I)(|I〉〉〈〈I|) (42)

where I is the identity map and |I〉〉 ∈ H0 ⊗H0 . The corre-
spondence can be inverted as follows:

C(ρ) = Tr0[(I ⊗ ρT )RC] (43)

and this implies that determining RC is equivalent to deter-
mining C. While complete positivity of C corresponds to pos-
itivity of RC, trace preservation corresponds to the condi-
tion Tr1[RC] = I . The reconstruction of the channel C can
then be obtained by preparing the maximally entangled state
1/d(|I〉〉〈〈I|), applying the channel locally, and then reconstruct-
ing the output state d−1RC. More generally, it can be shown that
one can use any bipartite input state R as an input state, as long
as it is connected to the maximally entangled state 1/d(|I〉〉〈〈I|)
by an invertible channel [50]. Such a state is called faithful.
This situation is actually forced in the infinite-dimensional case,
where the vector |I〉〉 is not normalizable and, e.g., one can use
the twin-beam T (λ) = (1 − |λ|2)|λa†a〉〉〈〈λa†a | [50], [51] as a
faithful state.
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B. Tomography of Measurements

The statistics and dynamics of a general quantum measure-
ment are described by a quantum instrument, i.e., a set of quan-
tum operations Ei such that

∑
i Ei = E is trace preserving. Their

Choi operators satisfy RE =
∑

i REi
, and the POVM describing

the statistics of the measurement is provided by Pi := Tr1[REi
].

Similarly to the case of quantum channels, one can reconstruct
quantum operations, along with the whole instrument corre-
sponding to a measurement [53]. The tomography of the POVM
can be obtained also for measurements that destroy the system
(such as in photodetection), exploiting the following argument
introduced in [52]. If we consider a faithful state T , then measur-
ing the POVM {Pi} on H1 , we have the following conditional
state on H0 :

ρi :=
Tr1[(Pi ⊗ I)T ]
Tr[(Pi ⊗ I)T ]

. (44)

Tomographing ρi and collecting the statistics of outcomes i, one
can reconstruct Pi by inverting the map T(P ) = Tr[(P ⊗ I)T ]
as follows:

Pi = Tr[(Pi ⊗ I)T ]T−1(ρi). (45)

VIII. OPTIMIZATION

In this section, we will show the full optimization of quantum
tomographic setups for finite-dimensional states, channels, and
measurements, according to the figure of merit defined in (27).
Optimizing quantum tomography is a complex task that can be
divided in two main steps.

The first optimization stage involves a fixed detector, and only
regards the data processing, namely the choice of the inverse Γ
used to determine the expansion coefficients f [X] for a fixed X .
As we will prove in the following, Γ is independent of X and
depends only on the ensemble E.

The second stage consists in optimizing the average statistical
error on a determined set of observables with respect to the
POVM, namely the detector itself.

A. Optimization of Data Processing

In this section, we review the data processing optimization,
giving the full derivation in the case of state tomography. Opti-
mizing the data processing means choosing the best Γ according
to the figure of merit. As proposed in Section V-A, a natural fig-
ure of merit for the estimation of the expectation 〈X〉ρ of an
observable X is the average statistical error; this is given by the
variance δ(X)E of the random variable fl [X] with probability
distribution Tr[ρEPi ], namely δ(X)E defined in (27). The only
term in (27) that depends on f [X] is

∑
l |fl [X]|2p(l|ρE), which

can be expressed as a norm in the space K of coefficients∑
l

|fl [X]|2p(l|ρE) = ||f [X]||2π (46)

where ||c||2π :=
∑

lm c∗l πlm cm , with

πlm = δlm p(l|ρE). (47)

Fig. 1. Quantum comb with N slots. Information flows from left to right. The
causal structure of the comb implies that the input system m cannot influence
the output system n if m > n.

It is now clear that minimizing the statistical error in (27) is
equivalent to minimizing the norm ||f [X]||π . In terms of π, we
define the minimum-norm-generalized inverses Γ: this a gener-
alized inverse that satisfies [87]

πΓΛ = Λ†Γ†π. (48)

Γ has the property that for all A ∈ Rng(Λ), f [A] = Γ(A) is
a solution of the equation Λf [A] = A with minimum norm.
Note that the present definition of minimum-norm-generalized
inverse requires that the norm is induced by a scalar product (in
our case a·b :=

∑
lm a∗

l πlm bm ).
It can be shown that the minimum norm Γ is unique and does

not depend on X; the corresponding optimal dual is given by [7]

Γ = Λ‡ − ([(I − M)π(I − M)]‡πM)Λ‡ (49)

where M := Λ‡Λ and Λ‡ denotes the Moore–Penrose-
generalized inverse of Λ, satisfying Λ‡ΛΛ‡ = Λ‡ and Λ‡Λ =
(Λ‡Λ)†. We would like to stress that as long as the figure of
merit can be expressed as a norm in K induced by a scalar prod-
uct, the optimal processing represented by Γ does not depend
on X . The minimum of the expression (46) can be rewritten as
follows [99]:

δ(X)E = 〈〈X|Y −1 |X〉〉 − |〈X〉|2E (50)

where we defined

Y =
∑

j

|Pj 〉〉〈〈Pj |
Tr[ρEPj ]

. (51)

B. Optimization of the Setup

1) Short Review on Quantum Comb Theory: In this section,
we give a brief review of the general theory of quantum circuits,
as developed in [9], [81] and [100].

A quantum comb describes a quantum circuit board, namely
a network of quantum devices with open slots in which variable
subcircuits can be inserted. A board with (N − 1) open slots
has N input and output systems, labeled by even numbers from
0 to 2N − 2, and by odd numbers from 1 to 2N − 1, respec-
tively, as shown in Fig. 1. The internal connections of the circuit
board determine a causal structure, according to which the in-
put system m cannot influence the output system n if m > n.
Moreover, two circuit boards C1 and C2 can be connected by
linking some outputs of C1 with inputs of C2 , thus forming a
new board C3 := C1 ∗ C2 . We adopt the convention that wires
that are connected are identified by the same label (see Fig. 2).

The quantum comb associated to a circuit board with N in-
put/output systems is a positive operator acting on the Hilbert
spaces Hout ⊗Hin , where Hout :=

⊗N −1
j=0 H2j+1 and Hin :=



BISIO et al.: OPTIMAL QUANTUM TOMOGRAPHY 1655

Fig. 2. Linking of two combs. We identify the wires with the same label.

⊗N −1
j=0 H2j , with Hn being the Hilbert space of the nth system.

For a deterministic circuit board (i.e., a network of quantum
channels), the causal structure is equivalent to the recursive nor-
malization condition

Tr2k−1 [R(k) ] = I2k−2 ⊗ R(k−1) , k = 1, . . . , N (52)

where R(N ) = R, R(0) = 1, R(k) ∈ L(
⊗2k−1

n=0 Hn ), H2n de-
noting the Hilbert space of the nth input and H2n+1 that of the
nth output. We call a positive operator R satisfying (52), a de-
terministic quantum comb. We can also consider probabilistic
combs, which are defined as the Choi–Jamiołkowski operators
of probabilistic circuit boards (i.e., network of quantum oper-
ations). A network containing measuring devices will be then
described by a set of probabilistic combs {Ri}, where the index
i represents a classical outcome. The normalization of probabil-
ities implies that the summation over all outcomes R =

∑
i Ri

has to be a deterministic quantum comb.
The connection of two circuit boards is represented by the

link product of the corresponding combs R1 and R2 , which is
defined as

R1 ∗ R2 = TrK[RθK
1 R2 ] (53)

with θK denoting partial transposition over the Hilbert space
K of the connected systems (recall that we identify with the
same labels the Hilbert spaces of connected systems). Note
that (43), which gives the action of a channel C on a state ρ
in term of the Choi operator C, can be rewritten using the link
product as C(ρ) = C ∗ ρ. Moreover, when variable circuits with
Choi operators Cj ∈ L(H2j ⊗HH2 j −1 ), j = 1, . . . , N − 1, are
inserted as inputs in the slots of the circuit board, one obtains
the quantum operation C′ as output, which is given by

C ′ = R ∗ C1 ∗ C2 ∗ · · · ∗ CN −1 . (54)

According to the previous equation, quantum combs describe
all possible manipulations of quantum circuits, thus generaliz-
ing the notions of quantum channel and quantum operation to
the case of transformations where the input is not a quantum
system, but rather a set of quantum operations. An important
example of such transformations is that of quantum testers, i.e.,
transformations that take circuits as the input and provide proba-
bilities as the output. A tester is a set of probabilistic combs {Πi}
with 1-D spaces H0 and H2N −1 , with the sum Π =

∑
i Πi be-

ing a deterministic comb satisfying (52). When connecting the
tester with another circuit board R, we obtain the probabili-
ties pi = Πi ∗ R = Tr[ΠT

i R], which, a part from the transpose

(which can be reabsorbed into the definition of the tester), is
nothing but the generalization of the Born rule for quantum net-
works. In the particular case of testers with a single slot, the
tester is a set of probabilistic combs {Πi ∈ L(Hout ⊗Hin)},
and its normalization becomes∑

i

Πi = Iout ⊗ σ, σ ≥ 0,Tr[σ] = 1. (55)

When connecting a channel C to the tester, the latter provides
the outcome i with probability

pi = Tr[RCΠi ] (56)

where RC is the Choi operator of C.
It is easy to see that every tester {Πi} can be realized

with the following physical scheme: 1) prepare the pure state
|
√

σT 〉〉 ∈ L(Hin ⊗Hin); 2) apply the channel C on one side of
the entangled state; and 3) measure the joint POVM {Pi =
Π−1/2ΠiΠ−1/2}, where Π−1 is the g-inverse Π. With this
scheme, one has indeed

pi = Tr[Pi(C ⊗ I)(|
√

σT 〉〉〈〈
√

σT |)] = Tr[ΠiRC]. (57)

Tomographing a quantum transformation means using a suit-
able tester Πi such that the expectation value of any other possi-
ble measurement can be inferred by the probability distribution
pi = Tr[RT Πi ]. In order to achieve this task, we have to require
that {Πi} is an operator frame for L(Hout ⊗Hin). This means
that we can expand any operator on Hout ⊗Hin as follows:

A =
∑

l

〈〈∆l |A〉〉Πl , A ∈ B(Hout ⊗Hin) (58)

where we use the fact that for all generalized inverses Γ one
has fl [X] = Tr[∆†

l X] with {∆l} a possible dual spanning set
of {Πl} satisfying the condition

∑
i |Πi〉〉〈〈∆i | = Iout ⊗ Iin .

Optimizing the tomography of quantum transformations
means minimizing the statistical error in the determination of
the expectation of a generic operator A, as in (58). The opti-
mization of the dual frame follows exactly the same lines as for
state tomography and gives the same result of (50), provided
that: 1) the POVM {Pi} is replaced by the tester {Πi} and 2)
the ensemble E becomes an ensemble E = {Rk , pk} of possible
transformations and the average state ρE becomes the average
Choi operator RE .

2) Derivation of the Optimized Setup: In this section, we
address the problem of the optimization of the tester {Πi}.
A priori one can be interested in some observables more than
other ones, and this can be specified in terms of a weighted
set of observables G = {Xn, qn}, with weight qn > 0 for the
observable Xn . The optimal tester depends on the choice of G,
as we will prove in the following. We can assume that we have
already optimized the data processing, so that the minimum
statistical error is averaged over G, thereby leading to

δE ,G :=
∑

n

〈〈Xn |Y −1 |Xn 〉〉 −
∑

n

qn |〈Xn 〉|2E . (59)

Note that only the first addendum of (59) depends on the tester,
so we just have to minimize

ηE ,G := Tr[Y −1G] (60)
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where G =
∑

n qn |Xn 〉〉〈〈Xn |.
In the following, for the sake of clarity, we will consider

dim(H1) = dim(H2) =: d, and focus on the “symmetric” case
G = I; this happens, for example, when the set {Xn} is an or-
thonormal basis, whose elements are equally weighted. More-
over, we assume that the averaged channel of the ensemble E
is the maximally depolarizing channel, whose Choi operator
is RE = d−1I ⊗ I . Since RE is invariant under the action of
SU(d) × SU(d), we now show that it is possible to impose the
same covariance also on the tester without increasing the value
of ηE ,G . Let us define

Πi,g ,h := (Ug ⊗ Vh)Πi(U †
g ⊗ V †

h ) (61)

∆i,g ,h := (Ug ⊗ Vh)∆i(U †
g ⊗ V †

h ). (62)

It is easy to check that ∆i,g ,h is a dual of Πi,g ,h . In fact, using
identity in (20), we have

∑
i

∫
dgdh |Πigh〉〉〈〈∆igh | (63)

=
∫

dgdhWgh

(∑
i

|Πi〉〉〈〈∆i |
)

W †
gh = d−1I ⊗ I (64)

where dg and dh denote the Haar measure normalized to unit,
and Wgh := (Ug ⊗ Vh) ⊗ (U ∗

g ⊗ V ∗
h ). Then, we observe that

the normalization of Πi,g ,h gives

∑
i

∫
dgdh Πi,g ,h = d−1I ⊗ I (65)

corresponding to σ = d−1I in (55), namely one can choose
ν = d−1 |I〉〉〈〈I|. It is easy to verify that the figure of merit for
the covariant tester is the same as for the noncovariant one, when,
without loss of generality, we optimize the covariant tester. The
condition that the covariant tester is informationally complete
w.r.t. the subspace of transformations to be tomographed will
be verified after the optimization.

We note that a generic covariant tester is obtained by (61),
with operators Πi becoming seeds of the covariant POVM, and
now being required to satisfy only the normalization condition

∑
i

Tr[Πi ] = d (66)

(analogous of covariant POVM normalization in [6] and [101]).
With the covariant tester and the assumptions G = I , RE = I,
(60) becomes

ηE ,G = Tr[Ỹ −1 ] (67)

where

Ỹ =
∑

i

∫
dgdh

d|Πi,g ,h〉〉〈〈Πi,g ,h |
Tr[Πi,g ,h ]

=
∫

dgdh Wg,hXW †
g ,h

(68)

with Y =
∑

i d|Πi〉〉〈〈Πi |/Tr[Πi ]. Using Schur’s lemma, we
have

Ỹ = P1 + AP2 + BP3 + CP4

P1 = Ω13 ⊗ Ω24 , P2 = (I13 − Ω13) ⊗ Ω24

P3 = Ω13 ⊗ (I24 − Ω24) , P4 = (I13 − Ω13) ⊗ (I24 − Ω24)

(69)

having posed Ω = |I〉〉〈〈I|/d and

A =
1

d2 − 1

{∑
i

Tr[(Tr2[Πi ])2 ]
Tr[Πi ]

− 1

}

B =
1

d2 − 1

{∑
i

Tr[(Tr1[Πi ])2 ]
Tr[Πi ]

− 1

}

C =
1

(d2 − 1)2

{∑
i

dTr[Π2
i ]

Tr[Πi ]
− (d2 − 1)(A + B) − 1

}

(70)

one has

Tr[Ỹ −1 ] = 1 + (d2 − 1)
(

1
A

+
1
B

+
(d2 − 1)

C

)
. (71)

Note that if the ensemble of transformations is contained
in a subspace V ⊆ B(H2 ⊗H2), the figure of merit becomes
η = Tr[Ỹ ‡QV ]. We now carry on the minimization for three
relevant subspaces

Q = B(H2 ⊗H1), C = {R ∈ Q, Tr2[R] = I1}
U = {R ∈ Q, Tr2[R] = I1 ,Tr1[R] = I2} (72)

corresponding, respectively, to quantum operations, general
channels, and unital channels. The subspaces C and U are in-
variant under the action of the group {Wg,h}, and thus, the
respective projectors decompose as

QC = P1 + P2 + P4 , QU = P1 + P4 . (73)

Without loss of generality, we can assume the operators {Πi}
to be rank 1. In fact, suppose that Πi has rank higher than
1. Then, it is possible to decompose it as Π =

∑
j Πi,j with

Πi,j rank 1. The statistics of Πi can be completely achieved
by Πi,j through a suitable postprocessing. For the purpose of
optimization, it is then not restrictive to consider rank 1 Πi ,
namely Πi = αi |Ψi〉〉〈〈Ψi |, with

∑
i αi = d. Note that all mul-

tiple seeds of this form lead to testers satisfying (66). In the
three cases under examination, the figure of merit is then given
by

ηQ = Tr[Ỹ −1 ] = 1 + (d2 − 1)
(

2
A

+
(d2 − 1)2

1 − 2A

)

ηC = Tr[Ỹ ‡QC ] = 1 + (d2 − 1)
(

1
A

+
(d2 − 1)2

1 − 2A

)

ηU = Tr[Ỹ ‡QU ] = 1 + (d2 − 1)
(

(d2 − 1)2

1 − 2A

)
(74)
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where 0 ≤ A = (d2 − 1)−1(
∑

i αiTr[(Ψi Ψ†
i )

2 ] − 1) ≤
(1/(d + 1)) < 1/2. The minimum can simply be determined
by derivation with respect to A, obtaining A = 1/(d2 + 1)
for quantum operations, A = 1/(

√
2(d2 − 1) + 2) for general

channels, and A = 0 for unital channels. The corresponding
minimum for the figure of merit is given by

ηQ ≥ d6 + d4 − d2

ηC ≥ d6 + (2
√

2 − 3)d4 + (5 − 4
√

2)d2 + 2(
√

2 − 1)

ηU ≥ (d2 − 1)3 + 1. (75)

The same result for quantum operations and for unital channels
has been obtained in [102] in a different framework.

These bounds are simply achieved by a single seed Π0 =
d|Ψ〉〉〈〈Ψ|, with

Tr[(ΨΨ†)2 ] =
2d

d2 + 1
,

√
2(d2 − 1) + 1 + d2

d(
√

2(d2 − 1) + 2)
,

1
d
(76)

for quantum operations, general channels, and unital channels,
respectively, namely with

Ψ = [d−1(1 − β)I + β|ψ〉〈ψ|]1/2 (77)

where β = [(d + 1)/(d2 + 1)]1/2 for quantum operations, β =
[(d + 1)/(2 +

√
2(d2 − 1))]1/2 for general channels, and β = 0

for unital channels, and |ψ〉 is any pure state. The informational
completeness is verified if the operator

F =
∫

dgdh |Π0gh〉〉〈〈Π0gh | (78)

is invertible, namely (see [6]) if, for every i

〈〈Ψ|〈〈Ψ|Pi |Ψ〉〉|Ψ〉〉 �= 0 (79)

which is obviously true for Ψ defined in (77).
The same procedure can be carried on when the operator G

has the more general form G = g1P1 + g2P2 + g3P3 + g4P4 ,
where Pi are the projectors defined in (69). In this case, (71)
becomes

Tr[Ỹ −1G] = g1 + (d2 − 1)
(

g2

A
+

g3

B
+

(d2 − 1)g4

C

)
(80)

which can be minimized along the same lines as previously
followed. G has this form when optimizing measuring proce-
dures of this kind: 1) preparing an input state randomly drawn
from the set {UgρU †

g} and 2) measuring an observable chosen

from the set {UhAU †
h}. With the same derivation, but keeping

dim(H1) �= dim(H2), one obtains the optimal tomography for
general quantum operations. The special case of dim(H2) = 1
[one has P3 = P4 = 0 in (69)] corresponds to optimal tomogra-
phy of states, whereas case dim(H2) = 1 (P2 = P4 = 0) gives
the optimal tomography of POVMs.

3) Experimental Realization Schemes: We now show how
the optimal measurement can be experimentally implemented.
Referring to Fig. 3, the bipartite system carrying the Choi oper-
ator of the transformation is indicated with the labels S1 and S2 .
We prepare a pair of ancillary systems A1 and A2 in the joint

Fig. 3. Physical implementation of optimal quantum transformation tomog-
raphy. The two measurements are Bell’s measurements preceded by a random
unitary. The state |Ψ〉〉 depends on the prior ensemble.

state |Ψ〉〉〈〈Ψ|, and then we apply two random unitary transfor-
mations U1 and U2 to S1 and S2 ; finally, we perform a Bell
measurement on the pair A1S1 and another Bell measurement
on the pair A2S2 . This experimental scheme realizes the con-
tinuous measurement by randomizing among a continuous set
of discrete POVM; this is a particular application of a general
result proved in [104]. The scheme proposed is feasible using,
e.g., the Bell measurements experimentally realized in [103].
We note that choosing |Ψ〉〉 maximally entangled (as proposed,
for example, in [63]) is generally not optimal, except for the
unital case.

The experimental schemes for POVMs/states are obtained
by removing the upper/lower for branch quantum operations,
respectively. In the remaining branch, the bipartite detector be-
comes monopartite, performing a von Neumann measurement
for the qudit, preceded by a random unitary in SU(d). Moreover,
for the case of POVM, the state |Ψ〉〉 is missing, whereas, for
state tomography, both bipartite states are missing. The optimal
ηE ,G in (67) is given by η = d3 + d2 − d, in both cases (for state
tomography compare with [79]).
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