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There Exist Nonorthogonal Quantum Measurements that are Perfectly Repeatable
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We show that, contrary to the widespread belief, in quantum mechanics repeatable measurements are
not necessarily described by orthogonal projectors—the customary paradigm of observable.
Nonorthogonal repeatability, however, occurs only for infinite dimensions. We also show that, when
a nonorthogonal repeatable measurement is performed, the measured system retains some ‘‘memory’’
of the number of times that the measurement has been performed.
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position and momentum—no projection postulate can and occurs with probability given by the Born rule,
The main paradigm of quantum mechanics is the un-
avoidable disturbance of the measurement on the mea-
sured system. This has obvious disruptive consequences
for an objective interpretation [1] of the physical experi-
ment. In order to retain some objectivity, one supposes the
feasibility of some ‘‘canonical’’ measurements that can be
actually regarded as the process of ‘‘seizing’’ a property
or quantity possessed by the system independently of the
measurement, thus assuming the existence of perfect
measurements that satisfy the repeatability hypothesis
formulated by von Neumann [2]: If a physical quantity
is measured twice in succession in a system, then we get
the same value each time. From this hypothesis, it is then
concluded that the state after the measurement is the
eigenvector corresponding to the measurement outcome
as the eigenvalue. In the conventional approach to quan-
tum measurements, this is the content of the so-called
von Neumann ‘‘collapse’’ postulate, which von Neumann
posed as a kind of universal law, based on the Compton
and Simmons experiment.

Actually, as von Neumann himself admitted, for a
degenerate observable there are many different ways of
satisfying the repeatability hypothesis, with the state
after the measurement given by any mixture of eigen-
states corresponding to the same outcome. The concept of
degenerate observable is crucial at the foundational level
(i.e., to define local measurements on many particles)
and, in order to retain repeatability, further physical
hypotheses are needed to characterize a canonical mea-
surement. Such an additional hypothesis was introduced
by Lüders [3] in the form of a requirement of least
disturbance, leading to the von Neumann-Lüders projec-
tion postulate, according to which the measurement of a
discrete observable projects the state orthogonally on the
eigenspace corresponding to the outcome.

In the modern formulation of quantum measurement
based on ‘‘instruments’’ by Davies and Lewis [4], repeat-
able measurements are just a special type of measurement,
and generally the state change after the measurement —
the so-called ‘‘state reduction’’—is not presupposed.
However, for continuous spectrum observables—such as
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apply, since the eigenvectors are not normalizable,
whence they do not correspond to any physical state (in
their place the notion of ‘‘posterior states’’ determined by
the instrument was introduced by Ozawa [5]). As con-
jectured by Davies and Lewis [4] and then proven by
Ozawa in full generality [5,6], for a continuous spectrum
no instrument can satisfy a repeatability hypothesis, even
in its weakest conceivable form.

In the above scenario, the orthogonal projection gen-
erally remained synonymous of repeatability [7]: How-
ever, as we will show here, repeatable measurements are
not necessarily associated with orthogonal projectors. In
the following, we will completely characterize all non-
orthogonal quantum measurements which are perfectly
repeatable, also providing explicit examples. We will then
show that, due to their particular structure, nonorthogo-
nal repeatable measurements somehow ‘‘memorize’’ on
the system how many times the measurement has been
performed.

Because of the mentioned impossibility theorem for a
continuous spectrum [5,6], we will consider a measure-
ment with discrete sample space H � f1; 2; 3; . . .g as a
denumerable collection of compatible elementary events,
hereafter referred to as ‘‘outcomes.’’ For our purpose,
we can also restrict the attention to the case of pure
measurements, i.e., which keep an input pure state as
pure: The generalization to mixing measurement is
straightforward.

A pure measurement with discrete sample space H on
a quantum system is fully described by a set of contrac-
tions fMeg on the Hilbert space H of the system for each
measurement outcome e 2 H (‘‘contraction’’ means that
the operator norm is bounded as kMek � 1. We remind
that the squared norm kAk2 of an operator A is defined as
the supremum of h jAyAj i over all normalized vectors
j i 2 H). The state after the measurement with outcome
e is given by

j i � j ie �
Mej i

kMej ik
; (1)
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p�e� � kMej ik
2: (2)

Normalization of probabilities implies the completeness
X

e2H

My
eMe � I: (3)

We now want to determine the most general conditions
under which the measurement is perfectly repeatable.
This means that the conditional probability p�fje� of
obtaining the outcome f at a repetition of the measure-
ment, given the previous outcome was e, is the Kronecker
delta p�fje� � �ef. In simple words, once any outcome is
obtained, all repetitions will give the same result. In
terms of the state reduction (1), we have

p�fje� �
kMfMej ik

2

kMej ik
2 � �ef 8 j i 2 H;

8 e; f 2 H ;
(4)

and, in particular, for e � f, Eq. (4) simplifies as

kM2
ej ik � kMej ik: (5)

We will now prove three lemmas, which provide a
thorough mathematical characterization of repeatable
measurements, and will be helpful in reconstructing the
general form of the measurement contractions. The reader
who is not interested in the mathematical treatment and is
seeking an intuitive understanding can jump directly to
the examples in Eqs. (14) and (23), and check the repeat-
ability condition (4). For the reader who is also interested
in the mathematics, only the basic theory of operators on
the Hilbert spaces will be needed.

Before stating the lemmas, we will introduce some
notation. The symbol Ker�O� will denote the kernel of
the operator O, namely, the space of all vectors on which
O is null. The symbol Supp�O� denotes the support of O,
i.e., the orthogonal complement of the kernel, which by
definition is a subspace. Finally, Rng�O� denotes the
range of O, i.e., the space of all output vectors ji �
Oj i for any j i in the Hilbert space H. Since any con-
traction is bounded and defined on all H, its kernel and
range are both closed subspaces of H, whence in the
following we will use their respective symbols to denote
their closures. Also, we will use the symbol PK to denote
the orthogonal projector on a subspace K � H.

Lemma 1.—With the normalization condition (3), the
repeatability condition (4) is equivalent to

My
eMejRng�Me�

� PRng�Me�
: (6)

Moreover, one has MfMe � 0 for e � f.
Proof.—That repeatability implies Eq. (6) follows

from identity (5). In fact, by posing j’i � Mej i, one
has kMej’ik2 � kj’ik2 for any j’i 2 Rng�Me�, which
implies that My

eMe is the identity when restricted to
Rng�Me�. To prove the converse implication, we first see
that Eq. (6) implies that kM2

ej ik2 � kMej ik2 for j i 2
Rng�Me�. Then, by applying the normalization condition
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(3) and identity (6), one has

My
eMej i � j i �

X

f

My
fMfj i; (7)

which implies that
P
f�eM

y
fMfj i � 0, and since the

operators My
fMf are all positive, one has My

fMfj i �
0 8 f � e, then the only possibility is that j i 2
Ker�Mf� for all f � e [due to the inclusion Rng�O� �
Ker�Oy�?, which holds for any operator O]. Therefore,
one has MfMej’i � 0 for all j’i 2 H.

An equivalent lemma is the following.
Lemma 2.—With the normalization condition (3), the

repeatability condition (4) is equivalent to

Rng�Me� � Ker�Mf�; (8)

for all f � e.
Proof.—That repeatability implies Eq. (8) is an imme-

diate consequence of the previous lemma. To prove the
converse statement, consider a vector j i 2 Rng�Me�.
Now, Eqs. (3) and (8) imply Eq. (7). This means that
My
eMe acts as the identity on Rng�Me�, namely Eq. (6),

which according to the previous lemma is equivalent to
repeatability.

Finally, we have a necessary but not sufficient condi-
tion expressed by the following lemma.

Lemma 3.—With the normalization condition (3),
the repeatability condition (4) implies that 8 e; f 2 H ,
e � f

Rng�Me� � Supp�Me�; Rng�Me� ? Rng�Mf�: (9)

Proof.—We can decompose the Hilbert space H as a
direct sum

H � Ker�Me� � Supp�Me� (10)

for all e 2 H . Now suppose by absurdum that a vector
j i 2 H exists such that

Mej i � jvi � j 0i; (11)

with jvi 2 Ker�Me� and j 0i 2 Supp�Me�. Then, since
kMek � 1, using Eq. (5) we have

k 0k2 � kMe 0k2 � kM2
e k2 � kMe k2

� kvk2 � k 0k2; (12)

and this is possible if and only if jvi � 0. Therefore, we
have Rng�Me� � Supp�Me�. This relation along with
Eq. (8) gives the orthogonality between the closures of
the ranges, since Rng�Me� � Ker�Mf� � Supp�Mf�

? �
Rng�Mf�

?.
From the last lemma, it follows that only for finite

dimensional H we have the customary orthogonal mea-
surement paradigm.

Corollary 1.—For finite dimensional H a measurement
is repeatable iff it is orthogonal.

Proof.—For finite dimensional H, the support and the
range of any operator have the same dimension, and this
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fact along with the first condition in Eq. (9) implies
Rng�Me� � Supp�Me�. Thus, the operators My

eMe � Pe,
for e 2 H , form an orthogonal projective POVM,
namely,

PePf � �efPf: (13)

For infinite dimensional H, on the contrary, we cannot
draw the same conclusion, since a subspace can have the
same (infinite) dimension of a space in which it is strictly
included. In fact, it is easy to construct counterexamples
of repeatable measurements, as that given in the follow-
ing, which satisfy conditions (6) or (8), and do not satisfy
the stronger orthogonality condition (13).

Example.—The following set of contractions

Ml �
�����
pl

p
jlih0j �

X1

j�0

jn�j� 1� � lihnj� lj;

1 � l � n;

(14)

with pl � 0,
P
lpl � 1, and jni a generic discrete basis for

the Hilbert space, defines a perfectly repeatable pure
measurement with sample space H � f1; 2; . . . ; ng.

That the set of operators fMeg in Eqs. (14) actually
describes a measurement follows by just checking the
normalization (3). Moreover, the set of operators satisfies
condition (6), as well as condition (8), whence they de-
scribe a repeatable measurement. On the other hand, the
measurement is not orthogonal, since the corresponding
positive operator valued measurement (POVM) is given
by

Pl � plj0ih0j �
X1

j�0

jnj� lihnj� lj; 1 � l � n:

(15)

We emphasize that the same POVM also describes a
nonrepeatable measurement, such as that corresponding
to the set of contractions

Nl �
�����
pl

p
j0ih0j �

X1

j�0

jnj� lihnj� lj; 1 � l � n:

(16)

This fact evidences that repeatability is a feature which is
obviously related to the state reduction of the measure-
ment, not to the POVM, e.g., one can have an orthogonal
POVM for a nonrepeatable measurement.

At this point, the question is how to characterize a
generic nonorthogonal repeatable measurement, namely,
which is the general form of the contractions fMeg that
satisfies Eq. (6) or (8). The necessary conditions (9)
now come at hand: If we exclude the case of orthogonal
measurements, then there must exist at least one Mi such
that one has the strict inclusion Rng�Mi� � Supp�Mi�. We
can now decompose the subspace Supp�Mi� in orthogonal
components as follows:

S upp�Mi� � Rng�Mi� � C�Mi�; (17)
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where C�Mi� is the orthogonal complement of Rng�Mi� in
Supp�Mi�. The operator Mi on its support can then be
written as

Mi � Vi �Wi; (18)

with Supp�Vi� � Rng�Mi� and Supp�Wi� � C�Mi�. The
normalization of the POVM implies

X

e

�Vy
e Ve �Wy

e We � Vy
e We �Wy

e Ve� � I: (19)

Since they represent off-diagonal operators, the cross
terms must be null. More precisely, one must have
Wy
e Ve � 0 for each term separately, since due to ortho-

gonality of supports for different e these terms are all
linearly independent, and similarly Vy

e We � 0 by ortho-
gonality of ranges. These facts along with Eq. (6)—
which states that Mi is isometric on its range —implies
that Vi is a partial isometry,

Vy
i Vi � Pi � PRng�Mi�

; (20)

and we can rewrite the normalization condition (3) as
X

e

Pe �
X

f

Wy
fWf � I: (21)

The only conditions that the operators We must obey are
then

S upp�We� � C�Me�;

Rng�We� � Rng�Me� ) Wy
f We � 0; e � f;X

e

Wy
e We � PK;

(22)

where PK is the projection on the intersection space K �
��eRng�Me��

?. For some events f, the operator Wf could
be null, namely, Supp�Mf� � Rng�Mf�: When this holds
for all events f 2 H , the described measurement is just
the conventional orthogonal one. Summarizing, for a
nonorthogonal repeatable measurement, the contractions
Me have supports that intersect, at least for a couple of
events e, but their ranges fall outside the intersection, as
represented in Fig. 1.

They act as an isometry on their ranges, while on the
intersection space K it is the sum ofWy

e We that acts as the
identity. Notice that each operator We needs not be sin-
gularly proportional to a partial isometry, as in the ex-
ample given before. In fact, consider the binary
measurement described by the contractions

M1 �
������
p1

p
j2ih0j �

������
p2

p
j4ih1j �

X1

n�1

j2�n� 2�ih2nj;

M2 �
���������������
1� p1

p
j3ih0j �

���������������
1� p2

p
j5i

� h1j �
X1

n�1

j2�n� 2� � 1ih2n� 1j:

(23)

The corresponding POVM is given by
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FIG. 1. Illustration of the relations between supports and
ranges of the contractions of a generic repeatable nonorthogo-
nal measurement with three outcomes.
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P1 � p1j0ih0j � p2j1ih1j �
X1

n�1

j2nih2nj;

P2 � �1� p1�j0ih0j � �1� p2�j1i

� h1j �
X1

n�1

j2n� 1ih2n� 1j:

(24)

In this case

Wy
1W1 � p1j0ih0j � p2j1ih1j;

Wy
2W2 � �1� p1�j0ih0j � �1� p2�j1ih1j;

(25)

while, clearly,

Wy
1W1 �Wy

2W2 � j0ih0j � j1ih1j � PK: (26)

We are now in position to state the general form of a
POVM fPeg admitting a repeatable measurement. One
must have

Pe � Ze � Te; e 2 H ; ZeTf � TfZe � 0;

8 e; f 2H ; Te � 0;
X

e2H

Te � Z!;

ZeZf � Ze�ef; 8 e; f 2 H [ f!g;

(27)

with the normalization
P
e2HPe � Z! �

P
e2HZi � I.

The orthogonal case corresponds to Te � 0, 8 e 2 H .
Let us now see how a memory of the number of

performed repetitions is associated to a nonorthogonal
repeatable measurement. This is a consequence of a theo-
rem by Wold and von Neumann [9,10] which states that
every isometry can be written as a direct sum of unilat-
eral shift operators and possibly a unitary (a unilateral
shift S can always be written in the form S �

P
1
j�1 jj�

kihjj, k � 1, for a suitable orthonormal basis fjjig). The
operators Ve in Eq. (18) can then be further separated in
the direct sum Ve �Ue � Se of a unitary Ue and a pure
isometry Se, and we have

Me � Ve �We � Ue � Se �We: (28)

Let us now consider an initial state j i with nonvanishing
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component in the support of Me, and suppose that the
outcome e occurred. Since Vy

e We � 0, one can equiva-
lently write SyeWe � 0 and Uy

eWe � 0. The latter identity
implies that the range of We is orthogonal to Supp�Uy

e � �
Supp�Ue�, and thus the conditional state j ei �
�Mej i�=�kMej ik� cannot be in the support of Ue,
namely, it must belong to the support of Se. Therefore,
for the successive measurements, we will effectively have
Me � Se, and successive applications will shift the ob-
servable fjjihjjg to fjj� kihj� kjg, where fjjig is the
orthonormal shifted basis for any chosen unilateral shift
component of Se. Notice that the index j can be checked
without affecting the repeatability of the outcome e.

In summary, we have shown that there exist nonor-
thogonal perfectly repeatable measurements, and only for
finite dimensions repeatability is equivalent to orthogon-
ality. On the contrary, for infinite dimension there exist
nonorthogonal repeatable measurements, of which we
have given the most general form, based on necessary
and sufficient conditions, and providing some explicit
examples. Finally, we have shown how the measured
system undergoing such a measurement must retain
some memory of the number of times that the measure-
ment was performed.
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