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Abstract
We briefly review the derivation from first principles of the quantum cellular automata, from
which the free quantum field theory (Weyl, Dirac and Maxwell) emerges in the relativistic limit.
We illustrate the deviations from the relativistic dynamics occuring at the Planck scale in terms
of the main vectors that rule the evolution of wave packets.
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1. Introduction

The revolution in physics that started at the beginning of the
20th century with the invention of quantum mechanics led to
one of the most astonishing paradigm shifts in the history of
science. The amount and relevance of the commonly held
beliefs that quantum mechanics forces us to abandon is so
significant that even after a century of experimental success,
many physicists still feel uncomfortable with the theory.

In the last two decades, the a`dvent of quantum infor-
mation theory provided an unprecedented advance in the
understanding of the conceptual structure of quantum theory
[1]. This happened by thinking of quantum systems as
abstract, hardware-independent information carriers, rather
than just mathematical descriptions of particles, in the very
same way as bits in classical information theory. Looking at
quantum systems in this way provides us with a new, lucid,
nonparadoxical perspective for the abstract and elusive theory
of Hilbert spaces, which can now be derived from down-to-
earth principles [2]—a result that was unsuccessfully sought
for several decades after the fertile Birkhoffʼs and Von
Neumannʼs quantum logic program [3].

The above research experience has demonstrated the
astonishing power of regarding information as more funda-
mental than matter—the informational paradigm by Wheeler
[4] and Feynman [5]. Quantum theory is indeed a theory of
information, as it can be axiomatically derived from six
axioms of pure information-theoretical nature [2, 6]. The
axioms describe six information processing tasks, and pos-
tulate their achievability or impossibility.

The first five of the postulates are shared by classical
information theory. The one that singles out quantum theory
is the principle of purification [13]. Quantum theory is a
special operational probabilistic theory, which means that it
describes processes in terms of circuits of input–output rela-
tions between events (i.e., transformations—) and associates
probabilities to closed circuits between preparations and
observations. The postulates that pin down the full quantum
theory of abstract systems do not have any effect on the
mechanical part of the theory, which is thus undetermined at
this stage. The gap left in the informational formulation of
quantum mechanics calls for new principles that lead to
quantum field theory.

In a series of papers, some of which were presented at
previous editions of the Vaxjo conference of the present
volume [7–12], one of the authors of this paper proposed
the extension of the information-theoretic axiomatization
program to quantum field theory, and, therefore, to the
whole of physics. Some additional axioms have been
introduced to the informational axioms of quantum theory;
these axioms, concern the network of the information-pro-
cessing that describes the physical law. The general prin-
ciple is the minimization of the algorithmic complexity of
the information processing that describes the physical law.
This implies minimizing the dimension of the denumerable
quantum systems in interaction. A huge reduction of
the algorithmʼs complexity is achieved by requiring line-
arity, unitarity, locality, homogeneity, and isotropy of
the interactions. This reduces the the physical law to a
quantum cellular automaton (QCA). The lattice of the
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automaton represents the topological structure of the com-
putation, which has no ‘physical’ location; space and time
—along with the physical law and its relativistic covariance
—emerge from the computation. In [13], a clear-cut deri-
vation of Weylʼs and Diracʼs equations have been given,
following the new additional information-theoretic
principles.

From the above assumptions, only two QCA follow, and
Lorentz covariance is broken. Both automata converge to the
Weyl equation in the relativistic limit of small wave vectors.
In the opposite regime of ultrarelativistic wave vectors, Lor-
entz covariance is distorted, and one has additional invariants
in terms of energy and length scales [14]. This feature is the
characteristic trait of the deformed space–time of doubly
special relativity by Amelino-Camelia [15] or the deformed
Lorentz symmetry by Smolin and Magueijo [16]. It was
proved in the literature that these deformed Lorentz symme-
tries exhibit the phenomenon of relative locality [17, 18],
which consists of the observer-dependence of coincidence in
space, generalizing the relativity of the simultaneity of special
relativity.

The QCA thus provides an extended quantum field the-
ory that unifies the Planck scale with the Fermi scale. Starting
from the Weyl automaton pair as the building block, one can
build other QCA pairs by direct sum and tensor products. In
this way, one achieves automata that give the Diracʼs and the
Maxwell field equations in the relativistic limit. The free
electromagnetic field is recovered in the form of the neutrino
theory of light [19] of De Broglie [20], considered also by
Jordan [21], Born and Nagendra Nath [22, 23], and Kronig
[24], and rediscovered in more recent times by Perkins [25].
With the principle of bounded information density, bosonic
fields also become an emergent notion, and they are ulti-
mately based on Fermionic systems evolved by the
automaton.

The discreteness of the lattice avoids all problems that
plague quantum field theory arising from the continuum,
especially the problem of localization. Most relevantly, the
theory is quantum ab initio, with no need of quantization
rules. This is the bonus of regarding information as more
fundamental than matter.

2. Quantum systems in interaction

The starting point for the construction of space–time and the
physical laws therein is an unstructured, countably infinite
set, G, of local Fermionic modes. These must be thought of
as elementary quantum information carriers, as in the Fer-
mionic quantum computation of [28–29], with labels that
are logical addresses and do not represent space coordi-
nates. Indeed, space will emerge from the evolution of the
Fermionic systems, rather than being their container. It is
natural to wonder why we introduce Fermionic quantum
systems instead of qubits at this stage. The reason is that a
register of qubits is incompatible with the requirements that

we will impose in the following, and in particular in line-
arity. The fermionic nature of field follows from the iso-
tropy requirement along with the minimality of the field
dimension. The derivation of Fermionic quantum theory
from information theoretic axioms, namely as an opera-
tional probabilistic theory, can be achieved following
methods very similar to those in [29].

Fermionic modes are conveniently described by the field
operators, ψ ∈{ }g s g G, , satisfying the usual anticommutation
relations

ψ ψ ψ ψ δ δ= =′ ′ ′ ′ ′ ′{ } { } I, 0, , . (1)g l g l g l g l g g l l, , , ,
†

, ,

Note that we introduce the label ⩽ ⩽l s1 because in general
we allow the site, g, to host a finite number ⩾s 1 of local
modes. In the following, we will denote the formal column
vector by the symbol ψg
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The requirements of unitarity, linearity, locality, homo-
geneity, and isotropy on the QCA expressing the dynamics of
the Fermionic modes provide the set, G, with a finitely pre-
sented group structure [13], with generator set ∪= + −S S S ,
with = ∈− − +S h h S: { , }1 . Moreover, if we draw a colored
arrow from g to ′g iff ′ =g gh for h∈S+, with colors corre-
sponding to generators h∈S+, we build up a Cayley graph of
group G.

We express linearity of the cellular automaton as follows

∑ψ ψ+ =
∈

t A t( 1) ( ). (3)g
h S

h gh

The isotropy requirement consists of the existence of
a group, L, of permutations, acting transitively on +S , that
is a graph automorphism of the Cayley graph of G, with
a (possibly projective) unitary representation, V, such that

∀ ∈ = ∀ ∈ +l L A V A V h S: , . (4)l h l h l( )
†

The unitarity requirement corresponds the unitarity of the
following operator on &⊗ℓ G( ) s2

∑= ⊗
∈

A T A: , (5)
h S

h h

where the unitary representation, T, of G on ℓ G( )2 is con-
veniently defined by the right multiplication 〉 = 〉T g gh| : |h ,
with 〉 ∈g{| } g G denoting the canonical orthonormal basis of

ℓ G( )2 . This operator acts on a single copy of the field, ψ,
which is considered to be an element of &⊗ℓ G( ) s2 . By
linearity, the action over N copies of the field is just the Nth
tensor power of A. The operator, A, is what is usually called
the quantum walk. However, here it also defines the full
QCA, due to linearity.

We now focus on the case where the group, G, can be
quasi-isometrically embedded in 5d . In such a case, group
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G is a virtually Abelian group, having =d as the Abelian
subgroup of finite index, iG (namely with a finite number of
cosets)1. It is possible to prove that an automaton with such
a G can be recast as an automaton on =d with the field-array
dimension, ′ =s siG. Among the infinitely many Cayley
graphs of G, we will restrict our attention to those for which
the embedding is also isotropic, namely the action of L does
not change the length in the embedding space.

For the above reasons, we will restrict our attention to the
group ==G d, and, in particular, d = 32. We will therefore
adopt the additive composition notation. The isotropy
requirement restricts Cayley graphs of =3 to the three-
dimensional Bravais lattices.

Being =3 Abelian, the operators Thi = +Sh{ }i can be
jointly diagonalized, and the automaton can be expressed in
terms of the s × s unitary matrices, =∑ ∈

−A A˜ : eSk h
h k

h
i ·

i
i

i l
acting on the eigenspaces of ⊗T Ihi . In this case, one can
prove that a nontrivial unitary automaton can exist only for

>s 1 [13]. In particular, if we take the minimal dimension
s = 2, the unitarity condition is satisfied only by the body-
centered cubic (BCC) lattice Cayley graph, whose generators
are =+S h h h h{ , , , }1 2 3 4 , related by the following constraint

+ + + =h h h h 0. (7)1 2 3 4

There are only two unitary automata, ±A , for s = 2 on the
BCC lattice, corresponding to the matrices

σ= −± ± ± ±A d I n˜ : i ˜ · , (8)k k k
( )

= ∓±d c c c s s s: , (9)x y z x y zk

= ±±( ) s c c c s sñ : , (10)
x x y z x y zk

= ∓±( ) c s c s c sñ : , (11)
y x y z x y zk

= ±±( ) c c s s s cñ : , (12)
x x y z x y zk

where σ σ=+ :i i
( ) and σ σ=− :i i

( ) * are conjugated representa-
tions of the Pauli matrices, =s : sini

k

3
i and =c : cosi

k

3
i . The

eigenvalues of ±Ãk are ω ω− ± ±
e , ei ik k , with dispersion relations

ω =± ±d: arccosk k . If we define parity reflection, P, by
→ −k k, we can observe that the two Weyl automata are

converted into each other by the P symmetry followed by a σy

rotation.
If we interpolate the discrete dynamics by a continuous

time, we can express the evolution of the automaton through

the following differential equation

σψ ψ∂ = ± ±ni · , (13)t t tk k k, ,

with = ω±
−

±±

±
n n: ˜

d
k k

1 k
2

. If we now interpolate the lattice by the

continuum 53, allowing for real coordinates, the equation
describes a spinorial plane wave whose phase velocity is ω ±

k ,
as in Weylʼs equation, with polarizations described by the
generalized helicity σ± ±n ·k , representing the projection of
spin along ±nk instead of the wave vector, k. Moreover, in the
limit of small wave vector ≪k| | 1 one can easily verify that
the differential equation becomes exactly Weylʼs equation

σψ ψ∂ = ±ki
1
3

· . (14)t t tk k, ,

It is worth stressing that if we take the time step of the order
of the Planck time, tP, and the lattice step of the order of the
Planck length, lP, the small-wave-vector limit encompasses all
relativistic regimes tested so far in high-energy physics
experiments (for a detailed estimation of the order of mag-
nitude of first-order corrections, see [13]).

According to equation (14) the evolution of a wave
packet that peaked around the wave vector, k, is ruled by the
group velocity

ω=± ±�v : , (15)k k k

which is the speed of translation of the wave packet in the
position representation. In the relativistic limit ≪k| | 1, this
amounts to

=±v
k
k

1
3

, (16)k

whose modulus is clearly constant. In order to have =± cv| |k
in the relativistic limit, it is then necessary to take the ratio
between the lattice-step, a0, and the time-step, t0, as

=a t c30 0 ; if we keep =t tP0 , then =a l3 P0 ; it is half of
the BCC cell edge. This choice removes the factor 1

3
in

equation (14) when converting to dimensionful units. The
automaton then introduces corrections to physical predictions
from the standard model. The main correction consists of the
first-order correction to the relativistic group velocity of Weyl
spinors of equation (16), which reads

= ∓ ×
+±( ) ( )k k k k

k
v

k

k

k3

1 3
. (17)

i

x y z i

i
k 2

2

This term is clearly anisotropic, as expected from the very
beginning due to the breaking of rotational symmetry by the
lattice structure. The appearance of this kind of anisotropy
was predicted in Feynmanʼs proposal of a QCA model for the
simulation of quantum physics in [5].

We now consider the Dirac automata ±E , defined by the
matrices, ±Ẽk , obtained as a direct sum of two Weyl automata,
with a term independent of k representing a local coupling, as

1 The embedding, T, of a group, G, in a metric space, R, is quasi-isometric if
the following bounds hold

T T− ⩽ ⩽ +
a

d g f b d g f ad g f b
1

( , ) ( ( ), ( )) ( , ) , (6)G R G

for some constants 5∈a b, , where d x y( , )R is the distance in R while
d x y( , )G is the distance induced by the word-metric in G. Moreover, the
distance of any element of R from the image of G is uniformly bounded.
2 It is still not proved that the automaton on the Abelian subgroup retains the
isotropy property.
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follows

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=±

±

±E
nA mI

mI nA
˜

˜ i

i ˜
, (18)k

k

k
†

with + =n m 12 2 . If we now define charge conjugation by
conjugation with γ γ0 2, parity reflection by → −k k, and time
reversal by the adjoint of the unitary operators ±Ãk , the two
automata are interchanged by charge conjugation, parity and
time reversal (CPT).

Also, in this case the dynamics is determined by the
eigenvalues of ±Ek which can be expressed as ω ω− ± ±

e , ei ik k with

ω = −± ±( )m d: arccos 1 . (19)k k
2

For the Dirac automata, the interpolating Hamiltonian
gives the following differential equation

αφ β φ∂ = +± ±( )n mni · , (20)t t tk k k, ,

where φ is now a Fermionic field with s = 4, and the matrices
α and β are given by α σ σ= ⊗± ±:i z i , and β σ= ⊗ Ii x . Upon
defining γ β=:0 and γ βα=:i

i, we obtain the Weyl repre-
sentation of Diracʼs matrices, γ μ, satisfying γ γ η=μ ν μνI{ , } 2 .
In the relativistic limit ≪k| | 1, and for small values of m, one
has n = 1 at the first-order expansion in m, and the differential
equation becomes

⎛
⎝⎜

⎞
⎠⎟αφ β φ∂ = +± mki

1
3

· i , (21)t t tk k, ,

which is Diracʼs equation in the wave-vector representation.

3. Conclusion

We reviewed the derivation of Weylʼs and Diracʼs equations
as approximate laws ruling the propagation of information on
two Fermionic QCAs, which can be derived as the only two
possible automata satisfying unitarity, linearity, homogeneity,
and isotropy on a three-dimensional Bravais lattice. The
geometry of the lattice is determined by the requirement of
quasi-isometric embedding in the Euclidean space, 53.
Remarkably, we obtain relativistically invariant equations
without assuming relativity at any step. This implies that the
Lorentz symmetry is recovered as an emergent feature of our
dynamical laws, which is only approximately valid in the
relativistic limit of small wave vectors. On the other hand, the
Lorentz symmetry is generally violated both by Weylʼs and
Diracʼs automata, as can be expected by observing the vio-
lation of charge conjugation and parity and CPT by the Weyl
and Dirac automata, respectively. The way in which the

Lorentz invariance is distorted in the one-dimensional case is
the subject of [14], where an instance of doubly special
relativity is derived from the automaton dynamics. A similar
analysis can be carried out also in the three-dimensional case.
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