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I. INTRODUCTION

In quantum mechanics to any physical system there is associated a Hilbert spaceH: the states
are described by positive trace-class trace-one operatorsT on H, the physical quantities by self
adjoint operatorsA onH, and the physical content of the theory is given by the expectation va
Tr (AT). The stateT is completely determined by Tr (QnT) for Qn running on a suitable set$Qn%
of observables and, for arbitrary operatorA, Tr (AT) can be computed in terms of Tr (QnT). In
order to implement this scheme one has to estimate Tr (QnT) experimentally, facing the problem
arising from statistical errors and instrumental noise. Moreover, the number of experiment
servations is clearly finite, whileA andT are operators on an infinite dimensional Hilbert spa
and the set$Qn% is infinite.

The problem of determining the state of a quantum system entered the realm of experi
in the last decade, in the domain of quantum optics. Many authors, see e.g., Refs. 1–4, pr
and used various techniques to reconstruct the density operator of a single mode of the e
magnetic field from the probability distributions of its quadratures. These methods were orig
based on the use of the Radon transform, as in medical tomographic imaging. Due to this a
the namequantum tomographyis currently used to refer to these techniques. Their comm
feature, for a review see Ref. 5, is the use of a set of observables$Qn :nPX%, calledquorum,
parametrized by a spaceX endowed with a probability measurem. The fundamental property o
the quorum is that any observableA can be expressed as anintegral transformon the spaceX,

A5E
X
E@A#~n!dm~n!,
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in such a way that, for allnPX, the operatorE@A#(n) is a function ofQn in the sense of the
functional calculus. Then, ifT is the state, one has

Tr ~AT!5E
X3R

s~A!~n,l!v~n,l!dm~n!dl, ~1!

wherel°v(n,l) is the probability density ofQn in the stateT, i.e.,

Tr ~TQn!5E
R
lv~n,l!dl,

andl°s(A)(n,l) is the function defined byE@A#(n) using the functional calculus, i.e.,

Tr ~TE@A#~n!!5E
R
s~A!~n,l!v~n,l!dl

~in the above-mentioned formulas we assumed for simplicity that eachQn has an absolutely
continuous spectrum!. Selecting randomlyQn in the quorum according to the probability measu
m and measuring it, the probability of obtaining a value in the interval (l2 1

2dl,l1 1
2dl) is given

by v(n,l)dm(n)dl. Then, by means of Eq.~1!, the expectation value Tr (AT) can be recon-
structed, by averaging the functions(A) over X3R endowed with the probability measur
v dm dl. We notice that the functions(A), called theestimatorof A, does not depend onT, and
that the same set of data can be used to estimate all the expectation values Tr (AT).

In Refs. 6 and 7 a general method has been proposed to realize a quorum and define esti
in terms of suitable unitary representations of Lie groups~for a self-contained concise expositio
see Refs. 8 and 9!. The present paper is concerned with laying the mathematical foundatio
this method based on the theory of square-integrable representations of unimodular Lie gro
Sec. II we present the mathematical theory and in Sec. III we apply it to two examples
homodyne tomography related to the Weyl–Heisenberg group and the angular momentum
raphy associated with the rotation group.

II. GROUP-DYNAMICAL QUORUM

In this section we define a quorum associated with a square-integrable representation o
group.

Let G be a unimodular connected Lie groupG andK a central closed subgroup. The quotie
spaceH5G/K is a unimodular connected Lie group. We denote byH its Lie algebra, bym11 the
~real! dimension ofH as a vector space, bydv a Lebesgue measure onH; and bydh a Haar
measure onH, uniquely defined up to a positive constant, which will be fixed in the followin

Denote by exp the exponential map fromH to H; we assume that there is an open subsetV of
H such that exp(V) is open inH, its complement has zero measure with respect todh, and exp is
a diffeomorphism fromV onto exp(V). This hypothesis implies that, givenf PL1(H,dh),

E
H

f ~h! dh5DE
H

f ~exp~v !!udet~d~exp!v!uxV~v ! dv, ~2!

whered(exp)v is the differential of the exponential map atvPH, i.e.,

d~exp!v~w!5S d

dt
exp~2v !exp~v1tw! D

t50

wPH,

det (•) is the determinant andD is a positive constant, see, e.g., Theorem 1.14, Chapter I of
10. We normalize the Haar measuredh of H in such a way thatD51.
ed 19 Jan 2001  to 192.84.142.17.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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Remark 1:The density det (d(exp)v) can be easily computed observing that, ifl1 , . . . ,lm11

are the~possibly repeated! eigenvalues ofd(exp)v , viewed as linear operator onH, then

det~d~exp!v!5
12e2l1

l1
. . .

12e2lm11

lm11
,

with

12e20

0
51,

see, e.g., Theorem 1.7, Chap. I of Ref. 11.
Let U be an irreducible continuous unitary representation ofG. We denote byH the ~complex

separable! Hilbert space where the representation acts and by^•,•& the scalar product onH, linear
in the second argument.

We assume that the representationU is square-integrable moduloK, i.e., there is a nonzero
vectorvPH such that

E
H

u^Uc(h)v,v&u2 dh,`, ~3!

wherec is a section fromH to G, i.e., a measurable mapc:H→G such that

c~eH!5eG ,

p~c~h!!5h, hPH,

with p being the canonical projection fromG to H. Notice that the value of the integral in Eq.~3!
is independent of the choice of the section and that Eq.~3! implies that the function
h°^Uc(h)u,w& is square integrable for allu,wPH.12

We will discuss briefly the meaning and generality of the above-mentioned assumptio
remark 3 in the following.

Remark 2:In many examplesK is trivial, i.e.,K5eG , so thatH5G and Eq.~3! reduces to the
usual notion of square integrability. Nevertheless, there are cases, such as the Weyl–Hei
group, that require the full theory. Moreover, in this framework one can easily consider proje
representations. Indeed, letÛ be a projective representation of a Lie groupĤ with multiplier m.
DefineG as the central extension of the torusK by Ĥ associated withm. ThenK is a central closed
subgroup ofG, H is canonically isomorphic withĤ, and there is a unitary representationU of G
such that

Ûp(g)5Ug , gPG.

Clearly, the fact thatU is square-integrable moduloK is equivalent to the fact thatÛ is a
square-integrable projective representation ofĤ.

If U is square-integrable moduloK, one can prove12 that there is a constantdU.0, calledthe
formal degreeof U, such that, for allu1 ,u2 ,v1 ,v2PH,

E
H

^Uc(h)v1 ,u1& ^Uc(h)v2 ,u2& dh5
1

dU
^u1 ,u2&^v2 ,v1&. ~4!

Using the above-mentioned relation we can represent the Hilbert–Schmidt operators oH as
square integrable functions onH. Indeed, letL 2(H) be the Hilbert space of the Hilbert–Schmi
operators onH with the scalar product
ed 19 Jan 2001  to 192.84.142.17.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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~A,B!°Tr ~A* B!,

where Tr (•) denotes the trace andA* is the adjoint operator ofA. If u,vPH, let u^ v* be the
operator inL 2(H),

~u^ v* !~w!5^v,w&u, wPH.

Given a sectionc, we defineS(u^ v* ) as the function fromH to C given by

S~u^ v* !~h!5^Uc(h)v,u&, hPH.

From Eq.~4!, it follows thatS(u^ v* ) is square integrable with respect todh and

iS~u^ v* !iL2(H,dh)
2

5
1

dU
iui2ivi25

1

dU
iu^ v* iL 2(H)

2 .

Taking into account that the set$u^ v* :u,vPH% is total in L 2(H), it follows that S is
defined uniquely by continuity onL 2(H) and, if A,BPL 2(H),

Tr ~A* B!5dU^S~A!,S~B!&L2(H,dh) . ~5!

Moreover, ifA is of trace-class, then for almost allhPH,

S~A!~h!5Tr ~Uc(h)21A!. ~6!

Indeed, let

A5(
i

l iei ^ f i*

be the canonical decomposition ofA, where (ei) and (f i) are orthonormal sequences inH, (l i) is
an l 1-sequence, and the series converges in trace-norm and, hence, in the Hilbert–Schmid
SinceS is continuous, then

S~A!5(
i

l iS~ei ^ f i* !,

where the series converges inL2(H,dh). On the other hand, fixedhPH, sinceA is of trace class,
so isUc(h)21A, hence

Tr ~Uc(h)21A!5(
i

^ f i ,Uc(h)21A fi&

5(
i

l i^Uc(h) f i ,ei&

5(
i

l iS~ei ^ f i* !~h!,

where the series converges pointwise. The claim is now clear.
We are now ready to define a quorum associated with the square-integrable~modulo K)

representationU of G.
Let T be a state ofH, i.e., a positive trace-class operator of trace one, andA a Hilbert–

Schmidt operator onH. Taking into account Eqs.~5! and ~6!,
ed 19 Jan 2001  to 192.84.142.17.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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Tr ~TA!5dU^S~T!,S~A!&L2(H,dh)

5dUE
H

Tr ~Uc(h)21T! S~A!~h! dh,

so that

Tr ~AT!5dUE
H

S~A!~h!Tr ~TUc(h)! dh.

By means of Eq.~2!, the above-mentioned equation becomes

Tr ~AT!5dUE
H
S~A!~expv !Tr ~TUc(expv)!xV~v !udet~d~exp!v!u dv.

Let Sm be the sphere inH. Then, for allnPSm, the map

t°Uc(exp(tn))

is a projective representation ofR. Since all the multipliers ofR are exact, there is a self-adjoin
unbounded operatorQn and a measurable complex functionan with modulo 1 such that, for all
tPR,

Uc(exp(tn))5an~ t !eitQn. ~7!

Using polar coordinates in Eq.~7!, one has that

Tr ~AT!5dU CmE
Sm

dV~n!E
0

`

dt tmS~A!~exp~ tn!!an~ t !

3Tr ~TeitQn!xV~ tn!udet~d~exp! tn!u, ~8!

wheredV is the normalized surface measure on the sphereSm, Cm is the volume ofSm, anddt
is the Lebesgue measure on the real line. The set of self-adjoint operators$Qn :nPSm%, labeled by
the probability space (Sm,dV), is called thequorumdefined by the representationU. We notice
that Eq.~7! definesQn uniquely up to an additive constant, see, also, Remark 4 in the follow

SinceQn is self-adjoint, we can find by the spectral theorem a projection valued mea
E°Pn(E) defined onR such that

Tr ~TQn!5E
R
ld Tr ~TPn~l!!,

whered Tr (TPn(l)) is the positive bounded measure

E°Tr ~TPn~E!!

on R. Using this equation, one obtains

Tr ~AT!5dU CmE
Sm

dV~n!E
0

`

dtE
R
d Tr ~TPn~l!!

3eiltS~A!~exp~ tn!!an~ t !xV~ tn!udet~d~exp! tn!utm. ~9!

In order to obtain a reconstruction formula for Tr (AT), we would like to interchange the integra
in dt and ind Tr (TPn(l)).
ed 19 Jan 2001  to 192.84.142.17.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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We consider first the case whenS(A), which is only square integrable, is in fact integrab
with respect todh, i.e.,

E
H

uS~A!~h!u dh,`. ~10!

By means of Fubini theorem, this condition implies that, for almost allnPSm, the map
t°S(A)(exp(tn)) is integrable with respect to the measure

dtn5xV~ tn!udet~d~exp! tn!utm dt. ~11!

Then the map fromSm3R to C,

s~A!~n,l!5dU CmE
0

`

eiltS~A!~exp~ tn!!an~ t !xV~ tn!udet~d~exp! tn!utm dt, ~12!

is well-defined and it is called theestimatorof the observableA. We notice that the estimator doe
not depend onT and, given the representationU, can be computed analytically.

Since the measured Tr (TPn(l)) is bounded, by means of Fubini theorem, one can in
change the integrals in Eq.~9! obtaining

Tr ~AT!5E
Sm

dV~n!E
R
d Tr ~TPn~l!!s~A!~n,l!. ~13!

The above-mentioned integral transform is the core of thequantum tomographyand is a concrete
realization of the scheme proposed in Sec. I; cf. Eq.~1!. Indeed,dV(n)d Tr (TPn(l)) is the
probability of obtaining a value in (l2 1

2dl,l1 1
2dl) when one measures the observableQn ,

chosen randomly in the quorum according todV. Moreover, by means of Eq.~13!, the expecta-
tion value Tr (AT) can be reconstructed as average of the estimators(A) over many random
measures of the observablesQn in the quorum.

Remark 3:Equation ~13! is the mathematical justification of quantum tomography and
essentially based on formulas~2! and ~4!. The assumptions on the existence of the setV, the
unimodularity ofG, and the square integrability ofU modulo a central subgroup are sufficient
deduce in a simple way these formulas in a fairly general framework. In particular, they gua
the existence of the mapS that allows one to represent the~Hilbert–Schmidt! operators onH as
~square-integrable! functions on the spaceH. In other words,S defines a family of coherent state
in the space of operators. We stress that the existence of a family of coherent states in th
H is not sufficient to defineS. Indeed, the square integrability of the representation providesa set
of families of coherent states$Ugv:gPG% parametrized by the analyzing vectorv running on a
dense subset ofH.

Furthermore, the physical interpretation of Eq.~13! relies on the fact thatd Tr (TPn(l)) is a
probability measure. This holds since, in Eq.~4!, the formal degree is a number. IfG is not
unimodular and/orK is not central, then the formal degree is replaced by an operator and E~4!
becomes

E
H

^Uc(h)v1 ,u1&^Uc(h)v2 ,u2& dh5^u1 ,u2&^Cv2 ,Cv1&,

whereC is a positive, possibly unbounded, operator onH, see Refs. 13 and 14. The mapS can
be defined in this more general setting, however one deduces that

S~T!~exp~ tn!!5E
R
eitld Tr ~CTPn~l!!.
ed 19 Jan 2001  to 192.84.142.17.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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If T andC do not commuted Tr (CTPn(l)) is not a probability measure and Eq.~13! loses its
physical meaning.

Remark 4:There is a choice for the section that simplifies the expression of the estim
Indeed, denote byG the Lie algebra ofG; since the differentialdp of p is a surjective linear map
from G onto H, there is an injective linear mapj from H to G such thatdp( j (v))5v for all v
PH. Since exp is a diffeomorphism fromV onto exp(V), there is defined a smooth mapĉ from
exp(V) to G such that

ĉ~exp~v !!5exp~ j ~v !!, vPH.

Clearly ĉ is a section and the relationUĉ(exp(tn))5Uexp(tj(n)) shows that one can always choo
an(t)51 in Eq. ~7!. HenceUĉ(exp(tn))5eitQn.

One can easily prove that, if one changesj ° j 1 l in such a way thatdp( j (v)1 l (v))5v,
then the quorum transforms according toQn°Qn1qnI . However, in most of the cases, there is
natural choice for the mapj, so that the quorumQn is, in fact, defined uniquely by the represe
tation U.

Remark 5:Once the quorum$Qn% is fixed, Eq.~12! is independent of the choice of the sectio
c. Indeed ifc8 is another section, then, for allhPH, c8(h)5k(h)c(h) andk(h)PK. SinceK is
central in G and U is irreducible, thenUk(h)5b(h)I , where b(h) is a complex number of
modulus one. Hence, with obvious notations, for almost allhPH and for all tPR,

S8~A!~h!5b~h!̄S~A!~h!,

an8~ t !5b~h!an~ t !,

so thats(A) is invariant with respect to the changec°c8.
Remark 6:If A is of trace class and satisfies Eq.~10!, then, using Eq.~6!, one obtains a more

explicit formula for the estimator ofA,

s~A!~n,l!5dU CmE
0

`

eiltTr ~Ae2 i tQn!xV~ tn!udet~d~exp! tn!utm dt.

Moreover, in most examples the setV is sufficiently nice so that the mapn°xV(tn) is continuous
for almost alltPR. In this case, if one chooses the sectionĉ as in Remark 4, taking into accoun
that the functiong°Tr (TUg) is continuous@since the ultraweak operator topology is equivale
to the weak operator topology on the unit ball ofL(H)], it follows that the estimators(A) is
continuous onSm3R. This property is important in order to approximate the integral of Eq.~13!
by a finite sum.

Remark 7:We notice that this procedure isunbiasedsince the observablesQn are chosen
randomly and the integral given by Eq.~13! can be approximated by a finite sum
dV(n)d Tr (TPn(l)) is a probability measure. This means that this approach is not affecte
the systematic errors that were present in the first tomographic scheme1,2 due to the cutoff needed
in the inversion of the Radon transform; see Ref. 3.

Remark 8:If H is compact thendh is finite and any irreducible representation is squ
integrable. Since the Hilbert spaceH where the representation acts is finite dimensional,L 2(H)
coincides with the space of all the operators. Moreover, sinceL2(H,dh),L1(H,dh), Eq. ~10!
holds for every operator.

Remark 9:If U is an integrable representation~modulo K), there exists a dense setS in H
such that, ifu,vPS, thenS(u^ v* ) satisfies Eq.~10!.

If condition ~10! does not hold, it may happen that, for a non-negligible set ofnPSm, the map
t°S(A)(exp(tn)) is not integrable with respect to the measuredtn defined by Eq.~11! ~it is only
square integrable!, so that the estimators(A) given by Eq.~12! is not well defined.
ed 19 Jan 2001  to 192.84.142.17.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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In these cases, in order to define the estimator one has to use a suitable regularization
dure. For example, for a fixedL.0 and allnPSm, lPR, let

sL~A!~n,l!5dU CmE
0

L

eiltS~A!~exp~ tn!!an~ t !xV~ tn!udet~d~exp! tn!utm dt. ~14!

It may be the case that there exists a functions(A) such that

lim
L→`

E
Sm

dV~n!E
R
d Tr ~TPn~l!!sL~A!~n,l!5E

Sm
dV~n!E

R
d Tr ~TPn~l!!s~A!~n,l!.

Then, as an easy consequence of dominated convergence theorem, one has

Tr ~AT!5E
Sm

dV~n!E
R
d Tr ~TPn~l!!s~A!~n,l!.

Analogous regularization procedures could be used to extendS(A) to non-Hilbert–Schmidt op-
erators. Although this problem is physically relevant~many observables of interest are unbound!
it is beyond the scope of the present paper.

III. EXAMPLES

A. The Weyl–Heisenberg group

Let G be the Weyl–Heisenberg group, i.e.,G5R3 with the composition law

~h1 ,a1 ,b1!~h2 ,a2 ,b2!5S h11h21
b1a22a1b2

2
,a11a2 ,b11b2D .

It is known thatG is a connected simply connected nilpotent~hence unimodular! Lie group.
The setK5$(h,0,0):hPR% is clearly a central closed subgroup ofG and the quotient group

H5G/K can be identified with the vector groupR2. One has the following facts.

~1! The canonical projectionp is given byp(h,a,b)5(a,b).
~2! A smooth sectionc is given byc(a,b)5(0,a,b).
~3! A Haar measure onH is the Lebesgue measureda db of R2.
~4! The Lie algebraH of H can be identified withR2 so that the exponential map is the identi

and, for allvPH, det (d(exp)v)51.
~5! The constantD in Eq. ~2! is equal to 1.

It follows that the choiceV5H satisfies the assumptions of Sec. II.
Let U be the representation ofG acting inH5L2(R,dx) as

~U (h,a,b)u!~x!5 l i S h1
ab
2 Deixau~x1b!,

wherexPR,uPL2(R,dx), and (h,a,b)PG. It is known thatU is a unitary continuous irreduc
ible representation ofG, called theSchrödinger representation. It is in fact square-integrable
modulo K and its formal degree isdU51/2p, see for instance Ref. 15. According to Sec. II,
defines a quorum.

In order to make it explicit, we observe that, with the notation of the Sec. II,

Sm5$nFª~cos~F!,sin~F!!:FP@0,2p#%,

m51, C152p, anddV5 dF/2p. Moreover, sincet°Uc(tnF) is a one parameter subgroup, w
have
ed 19 Jan 2001  to 192.84.142.17.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.
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Uc(tnF)5eitYF,

whereYF is a self-adjoint operator@in this exampleanF
(t)51]. If u is a Schwartz function, we

have

YFu5cos~F!Qu1sin~F!Pu,

whereQ is the operator of multiplication byx, i.e., the position operator, andP is 2 i times the
weak derivative operator, i.e., the momentum operator. Hence the quorum defined byU is given
by the set of self-adjoint operators

$YF :FP@0,2p#%

labeled by the space@0,2p# with the uniform measuredF/2p.
The above-mentioned quorum has the following property. For eachFP@0,2p#, there is a

unitary operatorWF such that

YF5WFQWF
21 . ~15!

To prove it, givenFP@0,2p#, let f F from G to G,

f F~h,a,b!5~h,cos~F!a2sin~F!b,sin~F!a1cos~F!b!.

One can easily check thatf F is a continuous automorphism of the groupG, so that
g°Ug

f F:5U f F(g) is a unitary irreducible continuous representation ofG and the restriction toK
is the characterh°eih. From the unicity of the Schro¨dinger representation, it follows that ther
exists a unitary operatorWF such that

U f F5WFUWF
21 .

Then

Uc(tnF)5U (0,t,0)
f F 5WFU (0,t,0)WF

21 ,

and Eq.~15! follows by Stone’s theorem.
Now let T be a state ofH. Recalling that the spectral measurePQ of Q is the one given by the

operators of multiplication by characteristic functions, then, by means of Eq.~15!, for each
FP@0,2p# there is aL1(R,dl) function l°v(F,l) such that

Tr ~TPF~E!!5Tr ~WF
21TWFPQ~E!!5E

E
v~F,l!dl,

whereE°PF(E) is the spectral measure associated withYF . The mapv can always be chose
to be measurable as a function on@0,2p#3R and then it is a probability density on@0,2p#3R
with respect to the measure (dF/2p) dl.

Finally, fix a Hilbert–Schmidt operatorA in H such thatS(A) is integrable with respect to
da db. According to Eq.~12!, the estimator ofA is

s~A!~F,l!5E
0

`

tS~A!~ t cos~F!,t sin~F!!eilt dt

for FP@0,2p# andlPR, and the reconstruction formula Eq.~13! is explicitly given by

Tr ~AT!5E
0

2pE
R
s~A!~F,l!v~F,l!

dF

2p
dl.
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The representationU is actually integrable and, if (un) is the basis of eigenvectors of th
number operator, thenS(un^ un1 l* )PL1(H,dh) and one has the explicit formula

s~un^ un1 l* !~F,l!5
~2 i ! l

2l /2
A n!

~n1 l !!
eil FE

0

`

t l 11Ln
l S t2

2 DexpS 2
t2

4
1 ilt Ddt, ~16!

whereLm
k are the associated Laguerre polynomials. The statistical reliability of Eq.~16! has been

verified in Ref. 3.
This example is physically realized by homodyne tomography.5 The quantum system is th

harmonic oscillator representing a single mode of the e.m. field with annihilation and cre
operatorsâ and â†. In terms of such operators, one has the followingdictionary:

Q5
â1â†

A2
,

P5
â2â†

A2i
,

U (h,a,b)5eihe(aâ†2āâ),

YF5A2
â†eiF1âe2 iF

2
5:A2XF ,

where

H e(aâ†2āâ) ; a5
2b1 ia

A2
PCJ

is the so-calleddisplacement groupandXF is the quadrature with phaseFP@0,2p#.
The measuring apparatus is a homodyne detector with tunable phase with respect to th

oscillator. The functionA2v(F,A2l) is the probability density~with respect todl) to obtain the
valuel measuring the quadratureXF , chosen randomly according to the measuredF/2p. More-
over, the explicit form of the estimator ofA, A being of trace class, is

s~A!~F,A2l!5
1

2E0

`

Tr ~Ae2 i t (XF2l)!t dt.

One could consult16 for an example of an experimental realization of the above-mentioned tom
raphic method.

Remark 10:In this example one is able to obtain an estimator also for monomials inâ and
â†.17,6 For example, one has that

s~ â†â!~F,A2l!52l22 1
2 .

B. The group SU „2…

Let SU~2! be the group of the unitary 232 complex matrices with determinant 1. It is
unimodular connected simply connected compact Lie group. The corresponding Lie algebr

su~2!5H i

2
~xs11ys21zs3!:x,y,zPRJ
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wheres i are the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

In the following we identify su(2) with R3 using the basis (isk/2)k51
3 . Let V5$(x,y,z)

PR3:A(x21y21z2),2p%; it is known thatV is an open neighborhood of 0 such that the exp
nential map restricted toV is a diffeomorphism fromV onto the open set exp(V) and the comple-
ment of exp(V) is negligible with respect to the Haar measure of SU~2!. Moreover one can check
that

detd~exp!(x,y,z)54

sin2SAx21y21z2

2 D
x21y21z2

.

If we choose the Haar measure on SU~2! in such a way that the constantD in Eq. ~2! is 1 one has
that

E
H

1 dh5E
V
ud~exp!(x,y,z)udx dy dz516p2 ~17!

~usually the Haar measure on compact groups is normalized to 1).
Given j such that 2j PN, let D j be the irreducible representation of SU~2! acting onH

5C2 j 11. Since the group is compact,D j is square integrable and the space of the Hilbert–Schm
operators coincides with the space of all operatorsL(C2 j 11).

Since the measure of SU~2! is normalized according to Eq.~17!, it is well known that the
formal degree isdD j5 (2 j 11)/16p2, see, e.g., Ref. 12.

For all nPS2, defineJn as the hermitian matrix such that

D j~exp~ tn!!5eitJn tPR.

Then, the quorum defined byD j is the set of spin operators$Jn :nPS2% labeled by the spaceS2

with the measuredn/4p, dn being the area element of the sphere. It is known that the~simple!
eigenvalues of eachJn are l52 j ,...,j and there exists a unitary operatorWn , unique up to a
phase, such that

Jn5Wn
21JzWn ,

whereJz5J(0,0,1).
Now let APL(C2 j 11); then, according to Eq.~12! and taking into account thatC254p, the

corresponding estimator is

s~A!~n,l!5
2 j 11

p E
0

2p

eilt Tr ~Ae2 i tJn!sin2S t

2Ddt,

wherenPS2 andl52 j ,...,j . Equation~13! becomes

Tr ~TA!5 (
l52 j

j E
S2

s~A!~n,l!u^Wnel ,TWnel&u2
dn

4p
,

where (el)l52 j
j is a basis of eigenvectors ofJz .
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This example is realized experimentally by a Stern–Gerlach machine. The quantum sys
the spin degree of freedom of an elementary particle with spinj and the number
u^Wnel ,TWnel&u2 is the probability to obtain the valuel measuring the spin along the axisn,
chosen randomly according to the measuredn/4p.
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