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Abstract

We solve the problem of achieving the optimal physical approximation of the transposition for pure states of a
quantum systems for finite and infinite dimensions. A unitary realization is also given for any finite dimension, which p
the optimal quantum cloning map of the ancilla as well.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The formulation of no-go theorems in quantu
information has given new insight in the structure
the quantum theory itself. The most relevant examp
are given by the no-cloning [1,2], no-broadcasting [
no-deleting [4] theorems, along with the impossibil
of measuring the wave-function of a single system
and the debated quantum bit-commitment [6].

A transformation which is not allowed by quantu
mechanics naturally poses the problem of investig
ing about the best approximation that one can ach
in principle. Remarkably, the optimal approximati
of a forbidden transformation may be related to
optimal procedure to perform some information tas
For example, universal cloning is deeply related to
optimal eavesdropping in cryptographic channels
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Moreover, one can infer from the structure of the o
timal approximation of unphysical maps a number
properties about different topics in quantum mech
ics, such as state estimation [8] and signaling [9].

In this Letter we provide the optimal approximatio
of the transposition for pure states both in finite a
infinite-dimensional Hilbert spaces. Transposition—
particular,partial transposition—plays a major ro
in separability criteria for bipartite states [10]. It
the simplest example of a positive map, which is
completely positive. In fact, such a map is antiline
and for qubits it is related to the more famili
U -not transformation that maps any arbitrary st
to its orthogonal. Of course, for systems with high
dimension theU -not map is not uniquely defined
because more than one state is orthogonal to a g
one, whereas the transposition map depends o
choice of basis.

The Letter is organized as follows. In Section
we derive the optimal transposition map for pu
states in terms of fidelity for the case of arbitra
.
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finite-dimensional Hilbert spaces. The derivation
obtained by means of group representation theory
Section 3 we give explicitly a unitary realization
the optimal map for any dimension. Such a unita
realization provides also the optimal quantum clon
from one to two copies. This result proves that
recent experimental scheme proposed in Ref. [
where the optimalU -not and two optimal clone
are created for qubits simultaneously by the sa
machine, can be generalized to quantum syst
with arbitrary dimension. Section 3 is devoted to t
continuous variables case. Similarly, as for the clon
map, one has to restrict the covariance group un
which the map is universal. We consider the case
Weyl–Heisenberg group, which provides the optim
transposition map for coherent and squeezed state

2. Optimal transposition for finite dimension

It is well known that the transposition map

(1)ρ �−→ ρT

is not physical since it is not completely positive (CP
As stated in the introduction the problem natura
arises to find the optimal physical, i.e., CP mapM
whose output has maximal fidelity with the transpos
input. We consider pure input states, for which
fidelity writes

(2)F = Tr
[
ρTM(ρ)

]
.

We settle here some useful notation that w
be used along the Letter. A generic vector in
bipartite Hilbert spaceH ⊗ H, with dim(H) = d ,
can be expanded on a fixed factorized orthonor
basis as

∑d−1
i,j=0 Ψij |i〉|j 〉. This naturally defines a on

to one correspondence between vectors inH ⊗ H
and linear operators inL(H). The operatorΨ =∑d−1

i,j=0 Ψij |i〉〈j | can be used to label the state
follows

(3)|Ψ 〉〉 =
d−1∑
i,j=0

Ψij |i〉|j 〉.

In this framework one can easily verify the use
identities [12]

A ⊗ C|B〉〉 = ∣∣ABCT
〉〉
,

Tr1
[|A〉〉〈〈B|]= AT B∗,

(4)Tr2
[|A〉〉〈〈B|]= AB†,

where T and ∗ denote transposition and compl
conjugation with respect to the orthonormal ba
{|i〉}. The set of possible mapsM can be parametrize
using the isomorphism [13] between CP maps
positive operators

RM =M⊗ I
(|I 〉〉〈〈I |),

(5)M(ρ) = Tr2
[(

I ⊗ ρT
)
RM

]
.

Using Eq. (5), the expression for the fidelity writes

(6)F = Tr
[(

ρT ⊗ ρT
)
RM

]
,

where RM is a positive operator that satisfies t
constraint

(7)Tr1[RM] = I2,

because of the trace-preserving condition of the m
M. We pose the further constraint thatM is universal,
namely that it is covariant under the action of the gro
SU(d). On physical grounds this means that we rest
attention to maps that equally well approximate
transposition, independently of the input pure sta
The covariance property for the transposition m
reads

(8)M
(
UρU†)= U∗M(ρ)UT , ∀U ∈ SU(d),

and this is equivalent to the following condition o
RM [14]

(9)(U∗ ⊗ U∗)RM
(
UT ⊗ UT

)= RM.

Since for SU(d) the representationU∗ ⊗ U∗ can be
decomposed into two inequivalent irreducible rep
sentations supported by the totally symmetric and
tally antisymmetric subspaces ofH ⊗ H, according
to Schur’s lemma, condition (9) implies the followin
form for RM

(10)RM = cAPA + cSPS.

The operatorsPS and PA are the projectors on th
totally symmetric and totally antisymmetric spac
respectively, and can be written as

PS = 1

2
(I + E),

(11)PA = 1
(I − E),
2
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where E denotes the swap operator onH ⊗ H,
namely E|φ〉|ψ〉 = |ψ〉|φ〉 for all φ,ψ ∈ H. The
trace-preserving condition in Eq. (7), along with t
positivity constraint rewrite

(12)cS
d + 1

2
+ cA

d − 1

2
= 1, cS, cA � 0.

Due to the covariance condition, the fidelityF is
independent of the input stateρ. Using Eq. (10) one
has

F = cS Tr
[(

ρT ⊗ ρT
)
PS

]
(13)+ cA Tr

[(
ρT ⊗ ρT

)
PA

]= cS.

Upon maximizingcS with the constraints in Eq. (12
the optimal map is obtained for

(14)cS = 2

d + 1
, cA = 0.

Correspondingly, one hasRM = (2/(d + 1))PS , and
hence

M(ρ) = 2

d + 1
Tr2
[(

I ⊗ ρT
)
PS

]
(15)= 1

d + 1

(
I + ρT

)
.

The optimal fidelity is then given by

(16)F = 2

d + 1
Tr
[(

ρT ⊗ ρT
)
PS

]= 2

d + 1
.

The state in Eq. (15) coincides with the anticlo
state of Ref. [15] for the universal cloning machi
from one to two copies. Moreover, the mapM is
the same as the “structural physical approximati
of the transposition of Ref. [16]. Here, we prov
the optimality ofM without assumptions, thus als
showing that the anticlone corresponds to the opti
transposed state.

A Kraus decomposition of the mapM can be
obtained by diagonalizingRM as follows

RM = 1

d + 1
(I + E)

= 1

d + 1

d−1∑
m,n=0

(|m〉〈m| ⊗ |n〉〈n|
+ |m〉〈n| ⊗ |n〉〈m|)

= 1

2(d + 1)

d−1∑
m,n=0

(|mn〉〉 + |nm〉〉)(〈〈mn| + 〈〈nm|)
(17)=
d−1∑

m,n=0

∣∣MS
mn

〉〉〈〈
MS

mn

∣∣,
whereMS

mn = (1/
√

2(d + 1) )(|m〉〈n| + |n〉〈m|). The
Kraus decomposition is then given by

(18)M(ρ) =
d−1∑

m,n=0

MS
mnρMS

mn.

A Stinespring form of the mapM can be written
for an ancilla in the Hilbert spaceH⊗2 as follows

(19)M(ρ) = Tr2,3
[
VρV †],

whereV denotes the isometry

(20)V =
d−1∑

m,n=0

MS
mn ⊗ |mn〉〉23.

We can verify thatV is also an isometric extensio
for the realization of the optimal universal clonin
from one to two copies. In fact, upon tracing out t
system 1, one obtains the optimal cloning map in
Werner expression [17]

(21)C(ρ) = Tr1
[
VρV †]= 2

d + 1
PS23(I2 ⊗ ρ3)PS23.

This result also shows that the recent experim
tal scheme proposed in Ref. [11], where the optim
U -not and two optimal clones are created for qubits
multaneously by the same machine, can be genera
to quantum systems with arbitrary dimension. Not
that the cloning map is basis independent, wherea
transposition map depends on the choice of the b
which is reflected by the particular Stinespring ext
sion.

In the following we explicitly derive a unitary
realization of the optimal map in Eq. (15).

3. Unitary realization

The isometry in Eq. (20) provides the optim
universal transposition map or the optimal univer
cloning from one to two copies, by tracing ov
the ancilla spaces 2 and 3 or the input space
respectively. Starting from the isometryV , we look
for a unitary interactionU between the system and
fixed preparation of the ancilla that dilatesV . For the
explicit construction of the unitary dilationU , we will
follow the general framework of Ref. [18].
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First, notice that we can rewrite Eq. (20) as

V =
√

2

d + 1

d−1∑
m,n=0

|m〉 |m〉|n〉 + |n〉|m〉
2

〈n|

=
√

2

d + 1

×
d−1∑

m,q=0

|m〉 |m〉|m ⊕ q〉 + |m ⊕ q〉|m〉
2

〈m ⊕ q|

(22)=
√

2

d + 1

(
V0,0 + 1√

2

d−1∑
q=1

V
(S)
0,q

)
,

where we defined the operators

Vp,p =
d−1∑
k=0

|k〉|k ⊕ p〉|k ⊕ p〉〈k ⊕ p|,

(23)

V (S)
p,q = 1√

2

d−1∑
k=0

|k〉(|k ⊕ p〉|k ⊕ q〉

+ |k ⊕ q〉|k ⊕ p〉)〈k ⊕ q|,
with p �= q and p,q = 0, . . . , d − 1. In order to
construct a unitary realizationU , we also define

(24)

V (A)
p,q = 1√

2

d−1∑
k=0

|k〉(|k ⊕ p〉|k ⊕ q〉

− |k ⊕ q〉|k ⊕ p〉)〈k ⊕ q|.
One can easily verify that

V †
p,pV

(S)
q,r = V †

p,pV
(A)
s,t = V (S)†

q,r V
(A)
s,t = 0,

∀p,q, r, s, t = 0, . . . , d − 1,

V †
p1,p1

Vp2,p2 = δp1,p2IH, ∀p1,p2,

V (S)†
q1,r1

V (S)
q2,r2

= δq1,q2δr1,r2IH, ∀q1 < r1, q2 < r2,

(25)V
(A)†
s1,t1

V
(A)
s2,t2

= δs1,t2δs1,t2IH, ∀s1 < t1, s2 < t2,

namely, the three sets

{Vp,p}, {
V (S)

p,q

}
p<q

and
{
V (A)

p,q

}
p<q

are orthogonal sets of orthogonal isometries. Hen
the following operator

U =
d−1∑
p=0

Vp,p ⊗ 〈p|〈p|
+
d−1∑

p,q=0
p<q

V (S)
p,q ⊗ 〈p|〈q| + 〈q|〈p|√

2

(26)+
d−1∑

p,q=0
p<q

V (A)
p,q ⊗ 〈p|〈q| − 〈q|〈p|√

2

satisfies the unitarity condition

(27)U†U = UU† = IH ⊗ (PS23 + PA23) = IH⊗3.

The optimal universal transposition map can be
tained as follows

(28)M(ρ) = Tr2,3
[
U
(
ρ ⊗ |φ〉〉〈〈φ|)U†],

where |φ〉〉 ∈ H⊗2 is the fixed normalized totally
symmetric ancilla state

(29)|φ〉〉 =
√

2

d + 1
PS23

d−1∑
r=0

|0〉2|r〉3.

As noted above, the unitaryU provides the optima
universal cloning as well, namely one has

(30)C(ρ) = Tr1
[
U
(
ρ ⊗ |φ〉〉〈〈φ|)U†].

For qubits, i.e.,d = 2, we obtain the network mode
of Ref. [19], with

(31)U =




1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0




,

and|φ〉〉 = (1/
√

6)(2|0〉2|0〉3 + |0〉2|1〉3 + |1〉2|0〉3).

4. Continuous variables optimal transposition

In the limit of dimensiond → ∞, the fidelity
F for the universal transposition map goes to ze
However, as regards infinite-dimensional systems
can look for transposition maps that are not univer
but covariant just for a group with reduced symme
The typical covariance group for infinite-dimension
quantum systems is the Weyl–Heisenberg group
the representation of displacement operatorsD(α) =
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exp(αa† − α∗a), with α ∈ C, and a and a† being
the annihilation and creation operators. The covar
transposition map acts with the same fidelity over a
state obtained from a given pure state by applica
of the displacement operator with arbitrary amplitu
Such a covariance condition reads

(32)

M
(
D(α)ρD†(α)

)= D∗(α)M(ρ)DT (α), ∀α ∈ C,

which rewrites for the operatorRM as follows

(33)
[
D∗(α) ⊗ D∗(α),RM

]= 0, ∀α ∈ C.

The operatorRM can be expanded on the basis
displacement operators, which are a spanning se
Hilbert–Schmidt operators onH, namely

(34)RM =
∫
C

d2α

π

∫
C

d2β

π
r(α,β)D(α) ⊗ D(β).

The condition in Eq. (33) is then equivalent to∫
C

d2α

π

∫
C

d2β

π
r(α,β)eγ (α+β)−γ ∗(α∗+β∗)D(α) ⊗ D(β)

(35)

=
∫
C

d2α

π

∫
C

d2β

π
r(α,β)D(α) ⊗ D(β), ∀γ ∈ C,

and this is possible forr(α,β) = πr(α)δ2(α + β),
with r(α) complex function ofα, thus giving

(36)RM =
∫
C

d2α

π
r(α)D(α) ⊗ D†(α).

The trace-preserving condition Tr1[RM] = I2 corre-
sponds tor(0) = 1. Upon introducing the 50/50 beam
splitter operatorV = exp[(π/4)(a†b − ab†)], we can
write

RM = V

∫
C

d2α

π
r(α)

[
D(

√
2α) ⊗ I

]
V †

(37)≡ 1

2
V (ξ ⊗ 1)V †,

and RM is positive if and only if the following
operator

(38)ξ ≡
∫
C

d2α

π
r

(
α√
2

)
D(α)
is positive. Sincer(0) = 1, then Tr[ξ ] = 1, namelyξ
is a state. For the covariance condition in Eq. (33),

fidelity of the map with the state[D(α)ρD†(α)]T is
independent ofα and just depends on the seedρ. One
has

(39)F = 1

2
Tr
[(

ρT ⊗ ρT
)
V (ξ ⊗ 1)V †].

Eq. (39) is linear inξ , which lies in a convex se
The maximum fidelity is then achieved by a pure st
ξ = |χ〉〈χ |, and the optimal map is given by

(40)RM = 1

2
V
(|χ〉〈χ | ⊗ 1

)
V †.

The vector|χ〉 can be determined as the eigenvec
corresponding to the maximum eigenvalue of the s

(41)Tr2
[
V †(ρT ⊗ ρT

)
V
]
.

The explicit form of the map acting on a general st
σ is given by

(42)M(σ ) = 1

2
Tr2
[(

1 ⊗ στ
)
V
(|χ〉〈χ | ⊗ 1

)
V †],

and provides the optimal transposition for any p
state. We remind that|χ〉 depends on the seed stateρ.
Notice that for coherent states, namely forρ = |0〉〈0|,
the optimal transposed state can be obtained as
anticlone from the optimal covariant cloning from o
to two copies [20], with optimal fidelityF = 1/2,
generalizing the result for the finite-dimensional ca
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