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Summary. — Recently the new information-theoretic paradigm of physics advo-
cated by John Archibald Wheeler and Richard Feynman has concretely shown its
full power, with the derivation of quantum theory and of free quantum field the-
ory from informational principles. The paradigm has opened for the first time the
possibility of avoiding physical primitives in the axioms of the physical theory, al-
lowing a re-foundation of the whole physics over logically solid grounds. In addition
to such methodological value, the new information-theoretic derivation of quantum
field theory is particularly interesting for establishing a theoretical framework for
quantum gravity, with the idea of obtaining gravity itself as emergent from the
quantum information processing, as also suggested by the role played by informa-
tion in the holographic principle. In this lecture notes I review how free quantum
field theory is derived without using mechanical primitives, including space-time,
special relativity, Hamiltonians, and quantization rules. The theory is provided by
the simplest quantum algorithm encompassing a countable set of quantum systems
whose network of interactions satisfies the three following simple principles:

(∗) The present notes contain only the second of the two lectures delivered by the author at
the Varenna School, Course 197 “Foundations of Quantum Theory” (2016): for the first lecture
see the textbook [1]. The present notes are an adapted version of the original review [2] in
memoriam of David Finkelstein (D’Ariano G. M., Int. J. Theor. Phys., 56, Issue 1 (2017) 97,
c© 2016, Springer Nature).
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homogeneity, locality, and isotropy. The inherent discrete nature of the informa-
tional derivation leads to an extension of quantum field theory in terms of a quan-
tum cellular automata and quantum walks. A simple heuristic argument sets the
scale to the Planck one, and the currently observed regime where discreteness is
not visible is the so-called “relativistic regime” of small wave vectors, which holds
for all energies ever tested (and even much larger), where the usual free quantum
field theory is perfectly recovered. In the present quantum discrete theory Einstein
relativity principle can be restated without using space-time in terms of invariance
of the eigenvalue equation of the automaton/walk under change of representations.
Distortions of the Poincaré group emerge at the Planck scale, whereas special rel-
ativity is perfectly recovered in the relativistic regime. Discreteness, on the other
hand, has some plus compared to the continuum theory: 1) it contains it as a spe-
cial regime; 2) it leads to some additional features with GR flavor: the existence of
an upper bound for the particle mass (with physical interpretation as the Planck
mass), and a global De Sitter invariance; 3) it provides its own physical standards
for space, time, and mass within a purely mathematical adimensional context. The
lecture ends with future perspectives.

1. – Introduction

The logical clash between General Relativity (GR) and Quantum Field Theory (QFT)
is the main open problem in physics. The two theories represent our best theoretical
frameworks, and work astonishingly well within the physical domain for which they have
been designed. However, their logical clash requires us to admit that they cannot be
both correct. One could argue that there must exist a common theoretical substratum
from which both theories emerge as approximate effective theories in their pertaining
domains—though we know very little about GR in the domain of particle physics.

What we should keep and what we should reject of the two theories? Our experi-
ence has thought us that of QFT we should definitely keep the Quantum Theory (QT)
of abstract systems, namely the theory of the von Neumann book [10] stripped of its
“mechanical” part, i.e. the Schrödinger equation and the quantization rules. This leaves
us with the description of generic systems in terms of Hilbert spaces, unitary transfor-
mations, and observables. In other words, this is what nowadays is also called Quantum
Information, a research field indeed very interdisciplinary in physics.

There are two main reasons for keeping QT as valid. First, it has been never falsified
in any experiment in the whole physical domain—independently of the scale and the kind
of system. This has lead the vast majority of physicists to believe that everything must
behave according to QT. The second and more relevant reason is that QT, differently
from any other chapter of physics, is well axiomatized, with purely mathematical axioms
containing no physical primitive. So, in a sense, QT is as valid as a piece of pure
mathematics. This must be contrasted with the mechanical part of the theory, with
the bad axiomatic of the so-called “quantization rules”, which are extrapolated and
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generalized starting from the heuristic argument of the Ehrenfest theorem, which in
turn is based on the superseded theory of classical mechanics, and with the additional
problem of the ordering of canonical non-commuting observables(1). No wonder then
that the quantization procedure doesn’t work well for gravity!

To what we said above we should add that today we know that the QT of von
Neumann can be derived from six information-theoretical principles [3, 1], whose episte-
mological value is not easy to give up(2). On the contrary, it is the mechanical part of
QFT that rises the main inconsistencies, e.g. the Malament theorem [13], which makes
any reasonable notion of particle untenable [14].

The logical conclusion is that what we need is a field theory that is quantum ab initio.
But how to avoid quantization rules? The idea is simply to consider a countable set of
quantum systems in interaction, and to make the easiest assumptions on the topology
of their interactions. These are: locality, homogeneity, and isotropy. Notice that we are
not using any mechanics, nor relativity, and not even space and time. And what we get?
We get: Weyl, Dirac [4], and Maxwell [7]. Namely: we get free quantum field theory!

The new general methodology suggested to the above experience is then the follow-
ing: 1) no physical primitives in the axioms; 2) physics only as interpretation of the
mathematics (based on experience, previous theories, and heuristics). In this way the
logical coherence of the theory is mathematically guaranteed. In this paper we will see
how the proposed methodology can be actually carried out, and how the informational
paradigm has the potential of solving the conflict between QFT and GR in the case of
special relativity, with the latter emergent merely from quantum systems in interaction:
Fermionic quantum bits at the very tiny Planck scale. In synthesis the program is an
algorithmization of theoretical physics, aimed to derive the whole physics from quantum
algorithms with finite complexity, upon connecting the algebraic properties of the algo-
rithm with the dynamical features of the physical theory, preparing a logically coherent
framework for a theory of quantum gravity [8, 9].

Section 2 is devoted to the derivation from principles of the quantum-walk theory.
More precisely, from the requirements of homogeneity and locality of the interactions of
countably many quantum systems one gets a theory of quantum cellular automata on the
Cayley graph of a group G. Then, upon restricting to the simple case of evolution linear
in the discrete fields, the quantum automaton becomes what is called in the literature
quantum walk. We further restrict to the case with physical interpretation in an Euclidean
space, resorting to considering only Abelian G.

In sect. 3 the quantum walks with minimal field dimension that follow from the
principles of sect. 2 are reported. These represent the Planck-scale version of the Weyl,
Dirac, and Maxwell quantum field dynamics, which are recovered in the relativistic regime
of small wave vectors. Indeed, the quantum-walk theory, being purely mathematical—
and so adimensional—nevertheless contains its own physical LTM standards written in

(1) The problem of ordering is avoided miraculously thanks to the fortuitous non-occurrence in
nature of Hamiltonians with products of conjugated observables.
(2) For short reviews, see also refs. [11,12].
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the intrinsic discreteness and non-linearities of the theory. A simple heuristic argument
based on the notion of mini black-hole (from a matching of GR-QFT) leads to the Planck
scale. It follows that the relativistic regime contains the whole physics observed up to
now, including the most energetic events from cosmic rays.

In addition to the exact dynamics in terms of quantum walks, a simple analytical
method is also available in terms of a dispersive Schrödinger equation, suitable to the
Planck-scale physics for narrow-band wave-packets. As a result of the unitarity constraint
for the evolution, the particle mass turns out to be upper bounded (by the Planck mass),
and has domain in a circle, corresponding to having also the proper time (which is
conjugated to the mass) as discrete. Effects due to discreteness that are in principle
visible are also analyzed, in particular a dispersive behavior of the vacuum, that can be
detected by deep-space ultra-high energy cosmic rays.

Section 4 is devoted to how special relativity is recovered from the quantum-walk
discrete theory, without using space-time and kinematics. It is shown that the trans-
formation group is a non-linear version of the Poincaré group, which recovers the usual
linear group in the relativistic limit of small wave vectors. For non-vanishing masses
generally also the mass gets involved in the transformations, and the De Sitter group
SO(1, 4) is obtained.

This lecture note end with a brief section on the future perspectives of the theory.
Most of the results reported in the present review have been originally published in

refs. [4-7, 15-20] coauthored with members of the QUit group in Pavia.

2. – Derivation from principles of the quantum-walk theory

The derivation from principles of quantum field theory starts from considering the
unitary evolution A of a countable set G of quantum systems, with the requirements of
homogeneity, locality, and isotropy of their mutual interactions. These will be precisely
defined and analyzed in the following dedicated subsections. All the three requirements
are dictated from the general principle of minimizing the algorithmic complexity of the
physical law. The physical law itself is described by a finite quantum algorithm, and
homogeneity and isotropy assess the universality of the law.

The quantum system labeled by g ∈ G can be either associated to an Hilbert space
Kg, or to a set of generators of a C∗-algebra(3)

(1) ψg ≡ {ψν
g}, g ∈ G, ν ∈ [sg] := {1, 2, . . . , sg}, sg < ∞.

The evolution occurs in discrete identical steps(4)

(2) A ψg = UψgU
†, U unitary,

(3) The two associations can be connected through the GNS construction.
(4) More generally the map A is an automorphism of the algebra.
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describing the interactions among systems. When the unitary evolution is also local,
namely A ψg is spanned by a finite subset Sg ⊂ G, then A is called Quantum Cellular
Automaton. We restrict to evolution linear in the generators, namely

(3) A ψg = UψgU
† =

∑
g′

Ag,g′ψg′ ,

where Ag,g′ is an sg×sg′ complex matrix called transition matrix. Here in all respects the
quantum cellular automaton is described by a unitary evolution on a (generally infinite)
Hilbert space H =

⊕
g∈G Hg, with Hg = Span{ψν

g}ν∈[sg]. In this case the quantum
cellular automaton is called quantum walk. Here the system simply corresponds to a
finite-dimensional block component of the Hilbert space, regardless the bosonic/fermionic
nature of the field. In the derivation of free quantum field theory from principles, the
quantum walk corresponds to the evolution on the single-particle sector of the Fock space,
whereas for the interacting theory a generally non-linear quantum cellular automaton is
needed. Simple generalization to Fock-space sectors with fixed number of particles are
also possible.

2.1. The quantum system: qubit, fermion or boson? – At the level of quantum walks,
corresponding to the Fock space description of cellular quantum automata (leading to
free QFT in the non-relativistic limit), it does not make any difference which kind of
quantum system is evolving. Indeed one can symmetrize or anti-symmetrize products
of wave functions, as it is done in usual quantum mechanics, or else just take products
with no symmetrization. Things become different when the vacuum is considered, and
particles are created and annihilated by operating with algebra generators on the vacuum
state, as in the interacting theory. Therefore, as far as we are concerned with free
QFT, which kind of quantum system should be used is a problem that can be safely
postponed.

However, there are still motivations for adopting a kind of quantum system instead of
another. For example, a reason for discarding qubits as algebra generators is that there is
no easy way of expressing the operator U making the evolution in eq. (3) linear, whereas,
when ψg is bosonic or fermionic this is always possible choosing U exponential of bilinear
forms in the fields. On the other hand, a reason to chose fermions instead of bosons is the
requirement that the amount of information in a finite number of cells be finite, namely
one has finite information density in space(5). The relation between Fermionic modes
and finite-dimensional quantum systems, say qubits has been studied in the literature,
and the two theories have been proven to be computationally equivalent [22]. However,
the quantum theory of qubits and the quantum theory of fermions differ in the notion
of what are local transformations [23, 24], with local fermionic operations mapped into
non-local qubit transformations and vice versa.

(5) Richard Feynman is reported to like the idea of finite information density, because he felt
that: “There might be something wrong with the old concept of continuous functions. How could
there possibly be an infinite amount of information in any finite volume?” [21].
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Fig. 1. – The linear eq. (3) endows the set G with a directed graph structure. We build a directed
graph with an arrow from g to g′ wherever the two are connected by a non-null matrix Agg′ in
eq. (3).

In conclusion, the derivation from informational principles of the fundamental particle
statistics still remains an open problem. One could promote the finite information density
to the level of a principle, or motivate the Fermionic statistics from other principles
of the same nature of those in ref. [3] (see e.g. refs. [23, 24]), or derive the Fermionic
statistics from properties of the vacuum (e.g. having a localized non-entangled vacuum
in order to avoid the problem of particle localization), and then recover the bosonic
statistics as a very good approximation, with the Bosonic mode corresponding to a special
entangled state of pairs of Fermionic modes [7], as it will be reviewed in subsect. 3.9. This
hierarchical construction will also guarantee the validity of the spin-statistic connection
in QFT.

2.2. Quantum walks on Cayley graphs(6). – The linear eq. (3) endows the set G with a
directed graph structure Γ(G,E), with vertex set G and edge set E = {(g, g′)|Ag,g′ �= 0}
directed from g to g′ (see fig. 1). In the following we will denote by Sg := {Ag,g′ �= 0} the
set of non-null transition matrices with first index g, and by Ng := {g′ ∈ G|Ag,g′ �= 0}
the neighborhood of g.

2.2.1. The homogeneity principle. The assumption of homogeneity is the requirement
that every two vertices are indistinguishable, namely for every g, g′ ∈ G there exists a
permutation π of G such that π(g) = g′ which commute with any discrimination proce-
dure consisting of a preparation of local modes followed by a general joint measurement.
In ref. [19] it is shown that this is equivalent to the following set of conditions ∀g ∈ G

one has

H1 sg = s;

H2 there exists a bijection Ng ↔ N with a fixed set N ;

H3 Sg contains the same s × s transition matrices, namely Sg = S := {Ah1}
|N |
i=1;

H4 Ag,g′ = Ahi
∈ S ⇒ Ag′,g = Ahj

∈ S;

(6) This subsection is based on results of refs. [4] and [18].
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Condition H2 states that Γ(G,E) is a regular graph—i.e. each vertex has the same
degree. Condition H3 makes Γ(G,E) a colored directed graph, with the arrow directed
from g to g′ for Ag,g′ = Ah ∈ S and the color associated to h(7). Condition H3 introduces
the following formal action of symbols hi ∈ S on the elements g ∈ G as

(4) Agg′ = Ahi
⇒ ghi = g′.

Clearly such action is closed for composition. From condition H4 one has that

(5) Ag′g = Ahj
⇒ g′hj = g,

and composing the two actions we see that ghihj = g, and we can write the label hj

as hj =: h−1
i . We thus can build the free group F of words made with the alphabet S.

Each word corresponds to a path over Γ(G,E), and the words w ∈ F such that gw = g

correspond to closed paths (also called loops). Notice that by construction, one has
Aπ(g)π(f) = Agf = Ahi

, which implies that π(g)hi = π(f) = π(ghi), from which one can
prove that f ′w = π(f)w = π(fw) = π(f) = f ′ (see [19]). Thus we have the following:

H5 If a path w ∈ F is closed starting from f ∈ G, then it is closed also starting from
any other g ∈ G.

The subset R ⊂ F of words w such that gw = g is obviously a group. Moreover R is a
normal subgroup of G, since gwrw−1 = (gw)rw−1 = (gw)w−1 = g, namely wrw−1 ∈ R

∀w ∈ F,∀r ∈ R. Obviously the equivalence classes are just elements of G, which means
that G = F/R is a group. Pick up any element of G as the identity e ∈ G. It is clear
that the elements of the quotient group F/R are in one-to-one correspondence with the
elements of G, since for every g ∈ G there is only one class in F/R whose elements lead
from e to g (write g = ew for every w ∈ F , w representing a path leading from e to
g). The graph Γ(G,E) is thus what is called in the literature the Cayley graph of the
group G (see the definition in the following). The Cayley graph is in correspondence
with a presentation of the group G. This is usually given by arbitrarily dividing the set
as S = S+ ∪ S− with S− := S−1

+ (8), and by considering a set W of generators for the
free group of loops R. The group G is then given with the presentation G = 〈S+|W 〉,
in terms of the set of its generators S+ (which along with their inverses S− generate the
group by composition), and in terms of the set of its relators W containing group words
that are equal to the identity, with the goal of using these words in W to establish if any

(7) If two transition matrices Ah1 = Ah2 are equal, we conventionally associate them with two
different labels h1 �= h2 in such a way that

P

f∈Nπ(g)
Aπ(g)fψπ−1(f) =

P

f∈Ng
Agfψf . If such

choice is not unique, we will pick an arbitrary one, since the homogeneity requirement implies
that there exists a choice of labeling for which all the construction that will follow is consistent.
(8) The above arbitrariness is inherent the very notion of group presentation and corresponding
Cayley graph, and will be exploited in the following, in particular in the definition of isotropy.
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two words of elements of G correspond to te same group element. The relators can also
be regarded as a set of generators for R.

The definition of Cayley graph is then the following.

Cayley graph of G.. Given a group G and a set S+ of generators of the group, the Cayley
graph Γ(G,S+) is defined as the colored directed graph with vertex set G, edge set
{(g, gh); g ∈ G,h ∈ S+} with the edge directed from g to gh with color assigned by h

(when h = h−1 we conventionally draw an undirected edge).
Notice that a Cayley graph in addition to being a regular graph, it is also vertex-

transitive—i.e. all sites are equivalent, in the sense that the graph automorphism group
acts transitively upon its vertices. The Cayley graph is also called arc-transitive when its
group of automorphisms acts transitively not only on its vertices but also on its directed
edges.

2.2.2. The locality principle. Locality corresponds to require that the evolution is com-
pletely determined by a rule involving a finite number of systems. This means having
each system interacting with a finite number of systems (i.e.|N | < ∞ in H2), and having
the set of loops generating F as finite and containing only finite loops. This corresponds
to the fact that the group G is finitely presented, namely both S+ and W are finite in
G = 〈S+|W 〉.

The quantum walk then corresponds to a unitary operator over the Hilbert space
H = �2(G) ⊗ C

s of the form

(6) A =
∑
h∈S

Th ⊗ Ah,

where T is the right-regular representation of G on �2(G), Tg|g′〉 = |g′g−1〉.

2.2.3. The isotropy principle. The requirement of isotropy corresponds to the statement
that all directions on Γ(G,S+) are equivalent. Technically the principle affirms that there
exists a choice of S+, a group L of graph automorphisms on Γ(G,S+) that is transitive
over S+ and with faithful unitary (generally projective) representation U over C

s, such
that the following covariance condition holds:

(7) A =
∑
h∈S

Th ⊗ Ah =
∑
h∈S

Tl(h) ⊗ UlAhU†
l , ∀ l ∈ L.

As a consequence of the linear independence of the generators Th of the right regular
representation of G one has that the above condition (7) implies

(8) Al(h±1) = UlAh±1U†
l .

Equation (8) implies that the principle of isotropy requires the Cayley graph Γ(G,S+)
to be arc-transitive (see subsect. 2.2.1).
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We remind that the split S = S+ ∪ S− is non-unique (and in addition one may
add to S the identity element e corresponding to zero-length loops on each element
corresponding to self-interactions). Therefore, generally the quantum walk on the Cayley
graph Γ(G,S+) satisfies isotropy only for some choices of the set S+. It happens that
for the known cases satisfying all principles along with the restriction to quasi-isometric
embeddability of G in Euclidean space (see subsect. 2.3) such choice is unique.

2.2.4. The unitarity principle. The requirement that the evolution be unitary translates
into the following set of equations bilinear in the transition matrices as unknown

(9)
∑
h∈S

A†
hAh =

∑
h∈S

AhA†
h = Is,

∑
h,h′∈S

h−1h′=h′′

A†
hAh′ =

∑
h,h′∈S

h′h−1=h′′

Ah′A†
h = 0.

Notice that the structure of equations already satisfy the homogeneity and locality prin-
ciples. The solution of the systems of equations (9) is generally a difficult problem.

2.3. Restriction to Euclidean emergent space. – How a discrete quantum algorithm
on a graph can give rise to a continuum quantum field theory on space-time? We re-
mind that the flow of the quantum state occurs on a Cayley graph and the evolution
occurs in discrete steps. Therefore the Cayley graph must play the role of a discretized
space, whereas the steps play the role of a discretized time, namely the quantum automa-
ton/walk has an inherent Cartesian-product structure of space-time, corresponding to a
particular chosen observer. We will then need a procedure for recovering the emergent
space-time and a re-interpretation of the notion of inertial frame and of boost in the
discrete, in order to recover Poincaré covariance and the Minkowski structure. The route
for such procedure is opened by geometric group theory, a field in pure mathematics ini-
tiated by Mikhail Gromov at the beginning of the nineteen(9). The founding idea is the
notion of quasi-isometric embedding, which allows us to compare spaces with very differ-
ent metrics, as for the cases of continuum and discrete. Clearly an isometric embedding
of a space with a discrete metric (as for the word metric of the Cayley graph) within a

(9) The absence of the appropriate mathematics was the reason of the lack of consideration of a
discrete structure of space-time in earlier times. Einstein himself was considering this possibility
and lamented such lack of mathematics. Here a passage reported by John Stachel [25]:
“But you have correctly grasped the drawback that the continuum brings. If the molecular view
of matter is the correct (appropriate) one, i.e., if a part of the universe is to be represented by
a finite number of moving points, then the continuum of the present theory contains too great
a manifold of possibilities. I also believe that this too great is responsible for the fact that our
present means of description miscarry with the quantum theory. The problem seems to me how
one can formulate statements about a discontinuum without calling upon a continuum (space-
time) as an aid; the latter should be banned from the theory as a supplementary construction not
justified by the essence of the problem, which corresponds to nothing “real”. But we still lack the
mathematical structure unfortunately. How much have I already plagued myself in this way!”
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space with a continuum metric (as for a Riemaniann manifold) is not possible. However,
what Gromov realized to be geometrically relevant is the feature that the discrepancy
between the two different metrics is uniformly bounded over the spaces. More precisely,
one introduces the following notion of quasi-isometry.

Quasi-isometry . Given two metric spaces (M1, d1) and (M2, d2), with metric d1 and d2,
respectively, a map f : (M1, d1) → (M2, d2) is a quasi-isometry if there exist constants
A ≥ 1, B,C ≥ 0, such that ∀g1, g2 ∈ M1 one has

(10)
1
A

d1(g1, g2) − B ≤ d2(f(g1), f(g2)) ≤ Ad1(g1, g2) + B,

and ∀m ∈ M2 there exists g ∈ M1 such that

(11) d2(f(g),m) ≤ C.

The condition in eq. (11) is also called quasi-onto.
It is easy to see that quasi-isometry is an equivalence relation. It can also be proved

that the quasi-isometric class is an invariant of the group, i.e. it does not depend on
the presentation, i.e. on the Cayley graph. Moreover, it is particularly interesting for
us that for finitely generated groups, the quasi-isometry class always contains a smooth
Riemaniann manifold [26]. Therefore, for a given Cayley graph there always exists a
Riemaniann manifold in which it can be quasi-isometrically embedded, which is unique
modulo quasi-isometries, and which depends only on the group G of the Cayley graph.
Two examples are graphically represented in fig. 2.

2.3.1. Geometric group theory. With the idea of quasi-isometric embedding, geometric
group theory connects geometric properties of the embedding Riemaniann spaces with
algebraic properties of the groups, opening the route to a geometrization of group theory,
including the generally hard problem of establishing properties of a group that is given
by presentation only(10).

The possible groups G that are selected from our principles are infinitely many, and we
need to restrict this set to start the search for solutions of the unitarity conditions (2.3)
under the isotropy constraint. Since we are interested in a theory involving infinitely
many systems (we take the world as infinite!), we will consider infinite groups only. This
means that when we consider an Abelian group, we always take it as free, namely its only
relators are those establishing the Abelianity of the group. This is the case of G = Z

d,
with d ≥ 1.

A paradigmatic result [26] of geometric group theory is that an infinite group G is
quasi-isometric to an Euclidean space R

d if and only if G is virtually-Abelian, namely
it has an Abelian subgroup G′ ⊂ G isomorphic to Z

d of finite index (namely with

(10) One should consider that the Dehn’s problem of establishing if two words of generators
correspond to the same group element is generally undecidable. The same is true for the problem
of establishing if the presentation corresponds to the trivial group!
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Fig. 2. – From ref. [19] (colors online). Given a group G and a set S+ of generators, the Cayley
graph Γ(G, S+) is defined as the colored directed graph having set of nodes G, set of edges
{(g, gh); g ∈ G, h ∈ S+}, and a color assigned to each generator h ∈ S+. Left figure: the
Cayley graph of the Abelian group Z

2 with presentation Z
2 = 〈a, b|aba−1b−1〉, where a and

b are two commuting generators. Right figure: the Cayley graph of the non-Abelian group
G = 〈a, b|a5, b5, (ab)2〉. The Abelian-group graph is embedded into the Euclidean space R

2, the
non-Abelian G into the Hyperbolic space H2 with negative curvature.

a finite number of cosets). Another result is that a group has polinomial growth iff it is
virtually-nihilpotent, and if it has exponential growth then it is not virtually-nihilpotent,
and in particular non-Abelian, and is quasi-isometrically embeddable in a manifold with
negative curvature.

In the following we will restrict to groups that are quasi-isometrically embeddable
in Euclidean spaces. As we will see soon, such restriction will indeed lead us to free
quantum field theory in Euclidean space. It would be very interesting to address also the
case of curved spaces, to get hints about quantum field theory in curved space. Unfor-
tunately, the case of negative curvature corresponds to groups, as the Fuchsian group in
fig. 2, whose unitary representations (that we need here) are still unknown [27-29]. The
virtually-nihilpotent case also would be interesting, since it corresponds to a Riemani-
ann manifold with variable curvature [29], however, a Cayley graph that can satisfy the
isotropy constraint could not be found yet [30].

I close this section with some comments about the remarkable closeness in spirit
between the present program and the geometric group theory program. The main general
goal of geometric group theory is the geometrization of group theory, which is achieved
studying finitely-generated groups G as symmetry groups of metric spaces X, with the
aim of establish connections between the algebraic structure of G with the geometric
properties of X [31]. In a specular way the present program is an algorithmization of
theoretical physics, with the general goal of deriving QFT (and ultimately the whole
physics) from quantum algorithms with finite complexity, upon connecting the algebraic
properties of the algorithm with the dynamical features of the physical theory. This will
allow a coherent unified axiomatization of physics without physical primitives, preparing
a logically coherent framework for a theory of quantum gravity.
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3. – Quantum walks on Abelian groups and free QFT as their relativistic
regime

As seen in subsect. 2.3, from the huge and yet mathematically unexplored set of
possibilities for the group G of the quantum walk, we restrict to the case of G virtually-
Abelian, which corresponds to G quasi-isometrically embeddable in a Euclidean space.
As we will see in the present section, the free QFT that will be derived from such choice
exactly corresponds to the known QFT in Euclidean space.

Since we are interested in the physics occurring in R
3, we need to classify all possible

Cayley graphs of G having Z
3 as subgroup with finite index, and then select all graphs

that allow the quantum walk to satisfy the conditions of isotropy and unitarity. We
can proceed by considering increasingly large dimension s > 0 (defined in H1), which
ultimately corresponds to the dimension of the field—e.g. a scalar field for s = 1, a spinor
field for s = 2, etc.

3.1. Induced representation, and reduction from virtually-Abelian to Abelian quantum
walks. – An easy way to classify all quantum walks on Cayley graphs with virtually-
Abelian groups is provided by a theorem in ref. [20], which establishes the following:

A quantum walk on the Cayley graph of a virtually-Abelian group G with Abelian
subgroup H ⊂ G of finite index iH and dimension s is also a quantum walk on the
Cayley graph of H with dimension s′ = siH .

This is just the induced-representation theorem [32-34] in group theory, here applied
to quantum walks. The multiple dimension s′ = sih corresponds to tiling the Cayley
graph of G with a tile made with a particular choice of the cosets of H. The new set of
transition matrices of the new walk for H can be straightforwardly evaluated in terms of
those for G (generally self-interactions within the same tile can occur, corresponding to
zero-length loops in the Cayley graph). In fig. 3 two examples of such tiling procedure
are given.

The induced-representation method guarantees that scanning all possible virtually-
Abelian quantum walks for increasing s is equivalent to scan all possible Abelian quantum
walks, since e.g. the set of Abelian walks of dimension s = nm will contain all virtually-
Abelian walks with s = n and index m, etc. We therefore resort to consider only Abelian
groups.

3.2. Isotropy and orthogonal embedding in R
3. – We will also assume that the repre-

sentation of the isotropy group L in (7) induced by the embedding in R
3 is orthogonal,

which implies that the graph-neighborhood is embedded in a sphere S2 ⊂ R
3 (we want

homogeneity and isotropy to hold locally also in the embedding space R
3). We are then

left with the classification of the Cayley graphs of Z
3 satisfying the isotropic embedding

in R
3: these are just the Bravais lattices.

3.3. Quantum walks with Abelian G. – When G is Abelian we can greatly simplify the
study of the quantum walk by using the wave vector representation, based on the fact
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Fig. 3. – From ref. [20] (colors online). Two examples of reduction of a quantum walk on the
Cayley graph of a virtually-Abelian group G to that of a quantum walk on the Cayley graph
of an Abelian subgroup H ⊂ G with finite index iH . The graphs on the left of the figures
are the Cayley graph of G (it is easy to see that both groups are non-Abelian). The graphs
on the right represents a choice of the Cayley graph of the subgroup H = Z

2, with the tiling
corresponding to the induced representation (the elements of H are the black bullets). Top
figures: G = 〈a, b | a4, b4, (ab)2〉. The index is iH = 4. The subgroup generators are hx = a−1b
and hy = ba−1. The tiling is defined by the coset representatives e, a, a2, a3. Bottom figures:
G = 〈a, b | a2b−2〉. The index is iH = 2. The subgroup generators are h1 = ba and h2 = a2 (or
h1 = ba and h3 = ab−1), with the tiling the cosets representatives e, a.

that the irreducible representations of G are one-dimensional. The interesting case is for
d = 3, but what follows holds for any dimension d. We will label the group elements
by vectors g ∈ Z

d, and use the additive notation for the group composition, whereas
the right-regular representation of Z

d on �2(Zd) will be written as Th|g〉 = |g − h〉.
This can be diagonalized by Fourier transform, corresponding to write the operator A in
block-form in terms of the following direct integral:

(12) A =
∫

B

d3k |k〉〈k| ⊗ Ak, Ak :=
∑
h∈S

e−ik·hAh, |k〉 :=
1√
|B|

∑
g∈G

e−ik·g|g〉,

where B is the Brillouin zone, and |k〉 is a plane wave(11). Notice that the quantum
walk is unitary if and only if Ak is unitary for every k ∈ B.

(11) The Brillouin zone is a compact subset of R
3 corresponding to the smallest region containing

only inequivalent wave vectors k. (See ref. [4] for the analytical expression.)
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3.4. Dispersion relation. – The spectrum {e−iω
(i)
k } of the operator Ak is usually given

in terms of the so-called dispersion relations ω
(i)
k versus k. As in usual wave-mechanics,

the speed of the wave-front of a plane wave is given by the phase velocity ω
(i)
k /|k|, whereas

the speed of a narrow-band packet peaked around the value wave vector k0 is given by
the group velocity ∇kω

(i)
k evaluated at k0.

3.5. The relativistic regime. – As we will see in subsect. 3.8.3 an heuristic argument
will lead us to set the scale of discreteness of the quantum walk (and similarly the
quantum cellular automaton for the interacting theory) at the Planck scale. The domain
|k| � 1 then corresponds to wave vectors much smaller than the Planck vector, which is
much higher than any ever observed wave vector(12). Such regime includes that of usual
particle physics, and is called relativistic regime. To be precise, the regime is defined by
a set of wave-packets that are peacked around k = 0 with r.m.s. value much smaller than
the Planck wave vector, which we will refer shortly to as narrow-band wave-packets.

I want to emphasize here that we have never used any mechanical concept in our
derivation of the quantum walk, including the notion of Hamiltonian: the dynamics is
given in term of a single unitary operator A. A notion of effective Hamiltonian could be
considered as the logarithm of A, which would correspond to an Hamiltonian providing
the same unitary evolution, and which would even interpolate it between contiguous
steps. For this reason we will call such an operator interpolating Hamiltonian. In the
Fourier direct-integral representation of the operator, the interpolating Hamiltonian will
be given by the identity e−iH(k) := Ak. It is easy to see that the relativistic limit
H0(k) of H(k), corresponding to consider narrow-band wave-packets centered at k = 0,
is achieved by expanding it at the first order in |k|, i.e. H(k) = H0(k) + O(|k|2). The
interpolated continuum-time evolution in the relativistic regime will be then given by the
first-order differential equation in the Schrödinger form

(13) i∂tψ(k, t) = H0(k)ψ(k, t).

Rigorous quantitative approaches to judge the closeness between free QFT and the rel-
ativistic regime of the quantum walk have been provided in ref. [6] in terms of channel
discrimination probability, and in ref. [4] in terms of fidelity between the two evolutions.
Numerical values will be provided at the end of subsect. 3.8.

3.6. Schrödinger equation for the ultra-relativistic regime. – In the ultra-relativistic
regime of wave vectors comparable to the Planck vector, an obvious option is that of
evaluating the evolution by a numerical evaluation of the exact quantum walk(13). How-
ever, even in such regime we still have an analytical method available for evaluating the

(12) The highest momentum observed is that of a ultra-high-energy cosmic ray, which is k ∼
10−8.
(13) A fast numerical technique to evaluate the quantum walk evolution numerically exploits the
Fourier transform. For an application to the Dirac quantum walk see ref. [35].
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Fig. 4. – From ref. [6] (colors online). Test of the quality of the approximation of the Schrödinger
equation (14) at for different time t of the Dirac quantum walk with mass m = 0.6 in one space
dimension of ref. [6]. Comparison of the probability distribution (in red) and the solution of the
Schrödinger equation (in blue). Right figures: the state is a superposition of Hermite functions
multiplied by the Gaussian peaked around momentum k0 = 3π/10, for drift and diffusion
coefficients v = 0.73 and D = 0.31, respectively. The mean value moves at the group velocity
given by the drift coefficient v. The approximation remains accurate even for position spread
σ̂ = 20 Planck lengths. Left figures: The same four times comparison for the quantum walk
with m = 0.4, and an initial Gaussian state peaked around the momentum k0 = 0.1. In this
case the drift velocity and the diffusion coefficient are respectively v = 0.22 and D = 2.30.
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evolution of some common physical states. Indeed, for narrow-band wave-packets cen-
tered around any value k0 one can write a dispersive Schrödinger equation by expanding
the interpolating Hamiltonian H(k) around k0 at the second order, thus obtaining

(14) i∂tψ̃(x, t) = ±
[
v · ∇ + 1

2D · ∇∇
]
ψ̃(x, t),

where ψ̃(x, t) is the Fourier transform of ψ̃(k, t) := e−ik0·x+iω0tψ(k, t), v = (∇kω)(k0) is
the drift vector, and D = (∇k∇kω)(k0) is the diffusion tensor. This equation approxi-
mates very well the evolution, even in the Planck regime and for large numbers of steps,
depending on the bandwith (see an example in fig. 4 from ref. [6]).

3.7. Recovering the Weyl equation(14). – In subsect. 3.2 we were left with the classi-
fication of the Cayley graphs of Z

3 satisfying the isotropic embedding in R
3, which are

just the Bravais lattices. For dimension s = 1 it is easy to show that the only solution
of the unitarity constraints gives the trivial quantum walk A = I(15). We then consider
s = 2. Now, the only inequivalent isotropic Cayley graphs are the primitive cubic (PC)
lattice, the body centered cubic (BCC), and the rhombohedral. However only in the BCC
case, whose presentation of Z

3 involves four vectors S+ = {h1,h2,h3,h4} with relator
h1 + h2 + h3 + h4 = 0, one finds solutions satisfying all the assumptions of sect. 2. The
isotropy group is given by the group L of binary rotations around the coordinate axes,
with the unitary projective representation on C

2 given by {I, iσx, iσy, iσz}. The group
L is transitive on the four BCC generators of S+. There are only four solutions (modulo
unitary conjugation) that can be divided in two pairs A± and B±. The two pairs of
solutions are connected by transposition in the canonical basis, i.e. A±

k = (B±
k )T . The

solutions B±
k can be also obtained from the solution A±

k by shifting the wave vector k
inside the Brillouin zone(16) to the vectors [4]

(15) k1 =
π

2
(1, 1, 1), k2 = −π

2
(1, 1, 1), k3 = −π

2
(1, 0, 0).

The A±
k solutions in the wave vector representation are

(16) A±
k = Iu±

k − iσ± · ñ±
k

with

(17) ñ±
k :=

⎛
⎝sxcycz ∓ cxsysz

cxsycz ± sxcysz

cxcysz ∓ sxsycz

⎞
⎠ , u±

k := cxcycz ± sxsysz,

(14) This section is a synthesis of the results of ref. [4]. It should be noticed that there isotropy
is not even assumed in solving eqs. (9). A simplified derivation making use of isotropy and full
detailed analysis of all possible Cayley graphs will be available soon [30].
(15) Also more generally one has A = Th.

(16) The first Brillouin zone B for the BCC lattice is defined in Cartesian coordinates as −
√

3π ≤
ki ± kj ≤

√
3π, i �= j ∈ {x, y, z}.
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where ci := cos(ki/
√

3), si := sin(ki/
√

3), and σ+ = σ, σ− = σT . The spectrum of A±
k

is {e−iω±

k }, with dispersion relation given by

(18) ω±
k = arccos(cxcycz ∓ sxsysz).

It is easy to get the relativistic limit of the quantum walk using the procedure in sub-
sect. 3.5. This simply corresponds to substituting ci = 1 and si = ki/

√
3 in eq. (17),

thus obtaining

(19) i∂tψ(k, t) =
1√
3
σ± · kψ(k, t).

Equation (19) are the two Weyl equations for the left and the right chiralities. For G = Z
d

with d = 1, 2 one obtains the Weyl equations in dimension d = 1, 2, respectively [4]. All
the three quantum walks have the same form in eq. (16), namely

(20) Ak = ukI − iσ · ñk,

with dispersion relation

(21) ωk = arccos uk,

and with the analytic expression of uk and nk depending on d and on the chirality
(see ref. [4]). Since the quantum walks in eq. (17) or (20) have the Weyl equations as
relativistic limit, we will also call them Weyl quantum walks.

The interpolating Hamiltonian is H(k) = σ · nk, with nk := (ωk/ sin ωk)ñk playing
the role of an helicity vector, and with relativistic-limit being given by H0(k) = 1√

d
σ ·k,

which coincides with the usual Weyl Hamiltonian in d dimensions upon interpreting the
wave vector k as the particle momentum.

We conclude the present subsection by emphasizing that one additional advantages
of the discrete framework is that the Feynman path-integral is well defined, and it is also
exactly calculated analytically in some cases. Indeed, in refs. [36] and [37] the discrete
Feynman propagator for the Weyl quantum walk has been analytically evaluated with
a closed form for dimensions d = 1 and d = 2, and the case of dimension d = 3 will be
published soon [38].

3.8. Recovering the Dirac equation. – From subsect. 3.7 we know that all quantum
walks derivable from our principles for s = 2 give the Weyl equation in the relativistic
limit. We now need to increase the dimension s of the field beyond s = 2. However, the
problem of solving the unitarity equations (9) becomes increasingly difficult, since the
unknown are matrices of increasingly larger dimension s ≥ 3 (we remind that the equa-
tions are bilinear non-homogeneus in the unknown transition matrices, and a canonical
procedure for the solution is unknown). What we can do for the moment is to provide
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only some particular solutions using algebraic techniques. Two ways of obtaining solu-
tions for s = 4 is to start from solutions in dimension s = 2 and built the direct-sum
and tensor product of two copies of the quantum walk in such a way that the obtained
quantum walk for dimension s = 4 still satisfies the principles. We will see that the quan-
tum walks that we obtain in the relativistic limit give the Dirac equation when using the
direct sum, whereas they give the Maxwell equation (plus a static scalar field) when we
use the tensor product.

When building a quantum walk in 2× 2 block form, all four blocks must be quantum
walks themselves. The requirement of locality of the coupling leads to off-diagonal blocks
that do not depend on k. A detailed analysis of the restrictions due to the unitarity
conditions (9) shows that, modulo unitary change of representation independent on k(17),
we can take the off-diagonal matrix elements as proportional to the identity, whereas the
diagonal blocks are just given by the chosen quantum walk and its adjoint, respectively.
We then need to weight the diagonal blocks with a constant n and the off-diagonal
identities with a constant m, and unitarity requires having |n|2+|m|2 = 1. Then, starting
from the walk Ak that leads us to the Weyl equations for all dimension d = 1, 2, 3, the
walk, modulo unitary equivalence(18), can be recast in the form [4]

(22) Dk :=
(

nAk im

im nA†
k

)
, n2 + m2 = 1, n ∈ R

+, m ∈ R.

Also the sign of m can be changed by a unitary equivalence (a “charge-conjugation”),
however, we keep m with changing sign for reasons that will explained in subsect. 3.8.2.
The walk (22) with s = 4 can be conveniently expressed in terms of gamma matrices in
the spinorial representation as follows:

(23) Dk := nIuk − inγ0γ · ñk + imγ0,

where the functions uk and ñk depend on the choice of Ak in eq. (22), i.e. on d = 1, 2, 3.
The dispersion relation of the quantum walk (23) is simply given by

(24) ωk = arccos[
√

1 − m2uk].

We will see now that the quantum walks in eq. (22) in the small wave vector limit and
for m � 1 all give the usual Dirac equation in the respective dimension d, with m

corresponding to the particle rest mass, whereas n works as the inverse of a refraction
index of vacuum. In fact, the interpolating Hamiltonian H(k) is given by

(25) H(k) =
ωk

sinωk
(nγ0γ · ñk − mγ0),

(17) This can also be e.g. the case of an overall phase independent of k.
(18) Also the solutions with walk B± = (Ak)T are contained in eq. (22), since they can be
achieved either by a shift in the Brillouin zone or as σyB±σy = A±†, with the exchange of the
upper and lower diagonal blocks that can be done unitarily.
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with relativistic limit given by

(26) H0(k) =
n√
d
γ0γ · k + mγ0,

and to the order O(m2) we get the Dirac Hamiltonian

(27) H0(k) =
1√
d
γ0γ · k + mγ0.

One has the Dirac Hamiltonian, with the wave vector k interpreted as momentum and the
parameter m interpreted as the rest mass of the particle. In the relativistic limit (26) the
parameter n plays the role of the inverse of a refraction index of vacuum. In principle this
can produce measurable effects from bursts of high-energy particles of different masses
at the boundary of the visible universe, and would be complementary to the dispersive
nature of vacuum (see subsects. 3.8.3 and 3.9.2).

In the following we will also call the quantum walk in eq. (22) Dirac quantum walk(19).
In ref. [36] the discrete Feynman propagator for the Dirac quantum walk has been

analytically evaluated with a closed formal for dimension d = 1, generalizing the solution
of ref. [39] for fixed mass value.

3.8.1. Discriminability between quantum walk and quantum field dynamics. In sub-
sect. 3.5 we mentioned that rigorous quantitative approaches to judge the closeness
between the two dynamics have been provided in ref. [6], and in ref. [4] in terms of
fidelity between the two unitary evolutions. For the Dirac quantum walk for a pro-
ton mass one has fidelity close to unit for N � m−3 = 2.2 ∗ 1057, corresponding to
t = 1.2 ∗ 1014s = 3.7 ∗ 106 years. The approximation is still good in the ultra-relativistic
case k � m, e.g. for k = 10−8 (as for an ultra-high-energy cosmic ray), where it holds
for N � k−2 = 1016 steps, corresponding to 5 ∗ 10−28 s. However, one should notice that
practically the discriminability in terms of fidelity corresponds to having unbounded
technology, and such a short time very likely corresponds to unfeasible experiments. On
the other hand, for a ultra-high-energy proton with wave packet width of 100 fm the time
required for discriminating the wave packet of the quantum walk from that of QFT is
comparable with the age of the universe.

(19) For d = 1, modulo a permutation of the canonical basis, the quantum walk corresponds
to two identical and decoupled s = 2 walks. Each of these quantum walks coincide with the
one dimensional Dirac walks derived in ref. [6]. The last one was derived as the simplest s = 2
homogeneous quantum cellular walk covariant with respect to the parity and the time-reversal
transformation, which are less restrictive than isotropy that singles out the only Weyl quantum
walk in one space dimension.
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3.8.2. Mass and proper-time. The unitarity requirement in eq. (22) restrict the rest
mass to belong to the interval

(28) m ∈ [−1, 1].

At the extreme points ±1 of the interval the corresponding dynamics Dk = ±iγ0 are
identical (they differ for an irrelevant global phase factor). This means that the domain
of the mass has actually the topology of a circle, namely

(29) m ∈ S1.

From the classical relativistic Hamiltonian [40]

(30) H = 
p · 
q + c2mτ − L,

with 
p and 
q canonically conjugated position and momentum and L the Lagrangian, we
see that the proper time τ is canonically conjugated to the rest mass m. This suggests
that the Fourier conjugate of the rest mass in the quantum walk can be interpreted as
the proper time of a particle evolution, and being the mass a variable in S1, we conclude
that the proper time is discrete, in accordance with the discreteness of the dynamical
evolution of the quantum walk. This result constitutes a non-trivial logical coherence
check of the present quantum walk theory.

3.8.3. Physical dimensions and scales for mass and discreteness. We want to emphasize
that in the above derivation everything is adimensional by construction. Dimensions
can be recovered by using as measurement standards for space, time, and mass the
discreteness scale for space a∗ and time t∗ (a∗ is half of the BCC cell side, t∗ the time-
length of the unit step), along with the maximum value of the mass m∗ (corresponding
to |m| = 1 in eq. (22)). From the relativistic limit, the comparison with the usual
dimensional Dirac equation leads to the identities

(31) c = a∗/t∗, � = m∗a∗c,

which leave only one unknown among the three variables a∗, t∗ and m∗. At the maximum
value of the mass |m| = 1 in eq. (22) we get a flat dispersion relation, corresponding to
no flow of information: this is naturally interpreted as a mini black-hole, i.e. a particle
with Schwarzild radius equal to the localization length, i.e. the Compton wavelength.
This leads to an heuristic interpretation of m∗ as the Planck mass, and from the two
identities in eq. (31) we get the Planck scale for discreteness. Notice that the value of
m∗ can be in principle obtained from the dispersion of vacuum as m∗ � 1√

3
�k

c(k)−c(0) for
small k, which can be in principle measured by the Fermi telescope from detection of
ultra high energy bursts coming from deep space.
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3.9. Recovering Maxwell fields(20). – In subsects. 3.7 and 3.8 we showed how the
dynamics of free quantum fields can be derived starting from a countable set of quantum
systems with a network of interactions satisfying the principles of locality, homogeneity,
and isotropy. Within the present finitistic local-algorithmic perspective one also considers
each system as carrying a finite amount of information, thus restricting the quantum field
to be Fermionic (see also subsect. 2.1). However, one may wonder how the physics of the
free electromagnetic field can be recovered in such a way and, generally, how Bosonic fields
are recovered from Fermionic ones. In this section we answers to these questions. The
basic idea behind is that the photon emerges as an entangled pair of Fermions evolving
according to the Weyl quantum walk of sect. 3.7. Then one shows that in a suitable
regime both the free Maxwell equation in 3d and the Bosonic commutation relations are
recovered. Since in this subsection we are actually considering operator quantum fields,
we will use more properly the quantum automaton nomenclature instead of the quantum
walk one.

Consider two Fermionic fields ψ(k) and ϕ(k) in the wave vector representation, with
respective evolutions given by

(32) ψ(k, t + 1) = Wkψ(k, t), ϕ(k, t + 1) = W ∗
kϕ(k, t).

The matrix Wk can be any of the Weyl quantum walks for d = 3 in eq. (16), (the whole
derivation is independent on this choice), whereas W ∗

k = σyWkσy denotes the complex
conjugate matrix. We introduce the bilinear operators

(33) Gi(k, t) := ϕT
(
k
2 , t

)
σiψ

(
k
2 , t

)
= ϕT (k, 0)

(
W †

k
2

σiWk
2

)
ψ

(
k
2 , 0

)

by which we construct the vector field

(34) G(k, t) := (G1(k, t), G2(k, t), G3(k, t))T

and the transverse field

(35) GT (k, t) := G(k, t) −
(

nk
2

|n k
2
| · G(k, t)

)
nk

2

|n k
2
| ,

with nk := (ωk/ sin ωk)ñk and ñk given in eq. (17). By construction the field GT (k, t)
satisfies the following relations:

nk
2
· GT (k, t) = 0,(36)

GT (k, t) = Exp
(
−i2nk

2

· Jt

)
GT (k, 0),(37)

(20) The entire subsection is a short review of ref. [7].
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where we used the identity

(38) exp
(
− i

2v · σ
)
σ exp

(
i
2v · σ

)
= Exp(−iv · J)σ,

the matrix Exp(−iv ·J) acting on σ regarded as a vector, and J = (Jx, Jy, Jz) represent-
ing the infinitesimal generators of SU(2) in the spin 1 representation. Taking the time
derivative of eq. (37) we obtain

(39) ∂tGT (k, t) = 2nk
2

× GT (k, t).

If EG and BG are two Hermitian operators defined by the relation

(40) EG := |nk
2

|(GT + G†
T ), BG := i

∣∣∣∣nk
2

∣∣∣∣ (G†
T − GT ),

then eq. (36) and eq. (39) can be rewritten as

∂tEG = i2nk
2

× BT (k, t), ∂tBG = −i2nk
2

× ET (k, t),(41)

2nk
2

· EG = 0, 2nk
2

· BG = 0.

Equations (41) have the form of distorted Maxwell equations, with the wave vector k
substituted by 2nk

2

, and in the relativistic limit |k| � 1 one has 2nk
2

∼ k and the usual

free electrodynamics is recovered.

3.9.1. Photons made of pairs of fermions. Since in the Weyl equation the field is
fermionic, the field defined in eqs. (35) and (40) generally does not satisfy the correct
bosonic commutation relations. The solution to this problem is to replace the operator
G defined in eq. (35) with the operator F defined as

(42) F(k) :=
∫

dq
(2π)3

fk(q)ϕ
(
k
2 − q

)
σ ψ

(
k
2 + q

)
,

where
∫

dq
(2π)3 |fk(q)|2 = 1,∀k. In terms of F(k), we can define the polarization operators

εi(k) of the electromagnetic field as follows:

εi(k) := ui
k · F(k, 0), i = 1, 2,(43)

ui
k · nk = u1

k · u2
k = 0, |ui

k| = 1, (u1
k × u2

k) · nk > 0.(44)

In order to avoid technicalities from continuum of wave vectors, we restrict to a discrete
wave vector space, corresponding to confinement in a cavity. Moreover we assume |fk(q)|2
to be uniform over a region Ωk which contains Nk modes, i.e.

(45) |fk(q)|2 =

⎧⎨
⎩

1
Nk

, if q ∈ Ωk,

0, otherwise.
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Fig. 5. – From ref. [7] (colors online). Left: In a rectilinear polarized electromagnetic wave, the
polarization plane (in green) is slightly tilted with respect the plane orthogonal to k (in gray).
Right: vector 2nk

2

(in green), which is orthogonal to the polarization plane; wave vector k (in

red) and group velocity (in blue) for the value |k| = 0.8 and different directions. Notice that
the three vectors are not parallel (the angles between them depend on k).

Then, for a given state ρ of the field we denote by Mϕ,k (respectively, Mψ,k) the mean
number of type ϕ (respectively, ψ) Fermionic excitations in the region Ωk. One can then
show that, for states such that Mξ,k/Nk ≤ ε � 1 for both ξ = ϕ,ψ and forall k we have

(46) [εi(k), εj†(k′)]− = δi,jδk,k′ ,

i.e. the polarization operators are Bosonic operators.

3.9.2. Vacuum dispersion. According to eq. (41) the angular frequency of the electro-
magnetic waves is given by the modified dispersion relation

(47) ω(k) = 2
∣∣∣∣nk

2

∣∣∣∣ ,

which recovers the usual relation ω(k) = |k| in the relativistic regime. In a dispersive
medium, the speed of light is the group velocity ∇kω(k) of the electromagnetic waves,
and eq. (47) predict that the vacuum is dispersive, namely the speed of light generally
depends on k (see fig. 5 for directions of vectors). Such dispersion phenomenon has been
already analyzed in some literature on quantum gravity, where several authors considered
how a hypothetical invariant length (corresponding to the Planck scale) could manifest
itself in terms of modified dispersion relations [41-45]. In these models the k-dependent
speed of light c(k), at the leading order in k := |k|, is expanded as c(k) ≈ 1 ± ξkα,
where ξ is a numerical factor of the order 1, while α is an integer. This is exactly
what happens in our framework, where the intrinsic discreteness of the quantum cellular
automata A±

k leads to the dispersion relation of eq. (47) from which one obtains the
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following k-dependent speed of light:

(48) c∓(k) ≈ 1 ± 3
kxkykz

|k|2 ≈ 1 ± 1√
3
k.

Equation (48) is obtained by evaluating the modulus of the group velocity and expanding
in powers of k with the assumption kx = ky = kz = 1√

3
k, (k = |k|)(21). Notice that the

dispersion is not isotropic, and can also be superluminal, though uniformly bounded [4] by
a factor

√
d (which coincides with the uniform bound of the quasi-isometric embedding).

The prediction of dispersive behavior, as for the present automata theory of quantum
fields, is especially interesting since it is experimentally falsifiable, and, as mentioned in
subsect. 3.8.3, allows to experimentally set the discreteness scale. In fact, differently to
the other mentioned birefringence effects, the disperision effect, although is extremely
small in the relativistic regime, it accumulates and become magnified during a huge
time of flight. For example, observations of the arrival times of pulses originated at
cosmological distances (such as in some γ-ray bursts [46-49]), have sufficient sensitivity
to detect corrections to the relativistic dispersion relation of the same order as in eq. (48).

4. – Recovering special relativity in a discrete quantum universe(22)

We have seen how relativistic mechanics, and more precisely free QFT, can be re-
covered without using any mechanical primitive, and without making any use of special
relativity, including the relativity principle itself. However, one may wonder how dis-
creteness can be reconciled with Lorentz transformations, and most importantly, how
the relativity principle itself can be restated in purely mathematical terms, without us-
ing the notions of space-time and inertial frame. In this section we will see how such goal
can be easily accomplished.

The relativity principle is expressed by the statement:

Galileo’s Relativity Principle: The physical law is invariant with the inertial frame.

Otherwise stated: the physics that we observe, or, equivalently, its mathematical repre-
sentation, is independent on the inertial frame that we use.

What is a frame? It is a mathematical representation of physical laws in terms of
space and time coordinates. What is special about the inertial frame? A convenient way
of answering is the following:

Inertial frame: a reference frame where energy and momentum are conserved for
an isolated system.

(21) Notice that, depending on the quantum walk A+(k) of A−(k) in eq. (16) we obtain correc-
tions to the speed of light with opposite sign.
(22) This entire section is a review of the main results of ref. [18].
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When a system is isolated? This is established by the theory. In classical mechanics,
a system is isolated if there are no external forces acting on it. In quantum theory a
system is isolated when its dynamical evolution is described by a unitary transformation
on the system’s Hilbert space. At the very bottom of its notion, the inertial frame is
the mathematical representation of the physical law that makes its analytical form the
simplest. In classical physics, if we include the Maxwell equations among the invariant
physical laws, what we get from Galileo’s principle is Einstein’s special relativity.

The quantum walk/automaton is an isolated system (it evolves unitarily). Mathemat-
ically the physical law that brings the information about the constants of the dynamics
in terms of their Hilbert eigenspaces is provided by the eigenvalue equation. For the case
of virtually-Abelian group G (which ultimately leads to physics in Euclidean space) the
eigenvalue equation has the general form corresponding to eqs. (19) and (21)

(49) Akψ(ω,k) = eiωψ(ω,k),

with the eigenvalues usually collected into s dispersion relations (the two functions ω±(k)
for the Weyl quantum walk). This translates into the following re-interpretation of
representations of the eigenvalue equation:

Quantum-digital inertial frame: Representation in terms of eigen-spaces of the
constants of the dynamics of the eigenvalue equation (49).

Using such notion of inertial frame, the principle of relativity is still the Galileo’s prin-
ciple. The group of transformations that connect different inertial reference frames will
be the quantum digital-version of the Poincaré group:

Quantum-digital Poincaré group: group of changes of representations in terms of
eigenspaces of the dynamical constants that leave the eigenvalue equation (49)
invariant.

It is obvious that the changes of representations make a group. Since the constants of
dynamics are k and ω±, a change of representation corresponds to an invertible map
k → k′(k), where with k we denote the four-vector k := (ω,k).

In the following subsection we will see how the inherent discreteness of the algorithmic
description leads to distortions of the Lorentz transformations, visible in principle at huge
energies. Nevertheless, Einstein’s special relativity is perfectly recovered for |k| � 1,
namely at energy scales much higher than those ever tested.

On the other hand, as we will see in the following, discreteness has some plus compared
to the continuum theory, since it contains the continuum theory as a special regime, and
moreover it leads to some additional features with GR flavor: 1) it has a maximal particle
mass with physical interpretation in terms of the Planck mass; 2) it leads to a De Sitter
invariance (see subsect. 4.2). And this, in addition to providing its own physical standards
for space, time, and mass within a purely mathematical context (subsect. 3.8.3).
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4.1. Quantum-digital Poincaré group and the notion of particle(23). – The eigenvalue
equation (49) can now be rewritten in “relativistic notation” as follows:

(50) nμ(k)σμψ(k) = 0,

upon introducing the four-vectors

(51) k = (ω,k), n(k) = (sin ω,n(k)), σ = (I, σ), σ = (σx, σy, σz),

where the vector n(k) is defined in eq. (16), namely

(52) n(k) · σ :=
i

2
(Ak − A†

k).

As already mentioned, since the constants of dynamics are k and ω±, a change of repre-
sentation corresponds to a map k �→ k′(k). Now the principle of relativity corresponds
to the requirement that the eigenvalue equation (50) is preserved under a change of
representation. This means that the following identity must hold:

(53) nμ(k)σμ = Γ̃−1
k nμ(k′)σμ Γk,

where Γk, Γ̃k are invertible matrices representing the change of representation.
The simplest example of change of observer is the one given by the trivial relabeling

k′ = k and by the matrices Γk = Γ̃k = eiλ(k), where λ(k) is an arbitrary real function
of k. When λ(k) is a linear function we recover the usual group of translations. The
set of changes of representation k �→ k′(k) for which eq. (53) holds are a group, which
is the largest group of symmetries of the dynamics. In covariant notation the dispersion
relations are rewritten as follows:

(54) n±
μ (k)nμ±(k) = 0,

and in the small wave vector regime one has n(k) ∼ k, recovering the usual relativistic
dispersion relation.

In addition to the neighbour of the wave vector k0 = (0, 0, 0), the Weyl equations can
be recovered from the quantum walk (16) also in the neighborhood of the wavevectors
in eq. (15). The mapping between the vectors ki exchange chirality of the particle and
double the particles to four species in total: two left-handed and two right-handed(24).

(23) For a simpler analysis in one space dimensions and the connection with doubly-special
relativity and relative locality, see ref. [50]. For a connection with Hopf algebras for position
and momentum see ref. [51].
(24) Discreteness has doubled the particles: this corresponds to the well-known phenomenon of
fermion doubling [52].
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In the following we will therefore more generally refer to the relativistic regime as the
neighborhoods of the vectors {ki}3

i=0.
The group of symmetries of the dynamics of the quantum walks (16) contains a non-

linear representation of the Poincaré group, which exactly recovers the usual linear one
in the relativistic regime. For any arbitrary non-vanishing function f(k) one introduces
the four-vector

(55) p(f) = D (f)(k) := f(k)n(k)

and rewrite the eigenvalue equation (50) as follows:

(56) p(f)
μ σμψ(k) = 0.

Upon denoting the usual Lorentz transformation by Lβ for a suitable f [18] the Brillouin
zone splits into four regions Bi, i = 1, . . . , 4 centered around ki i = 0, . . . 3, such that the
composition

(57) L
(f)
β := D (f)−1LβD (f)

is well defined on each region separately. The four invariant regions corresponding to
the four different massless Fermionic particles show that the Wigner notion of “particle”
as invariant of the Poincaré group survives in a discrete world. For fixed function f the
maps L

(f)
β provide a non-linear representation of the Lorentz group [53-55]. In figs. 6

the orbits of some wave vectors under subgroups of the non-linear Lorentz group are
reported. The distortion effects due to underlying discreteness are evident at large wave
vectors and boosts. The relabeling k → k′(k) = L

(f)
β (k) satisfies eq. (53) with Γk = Λβ

and Γ̃k = Λ̃β for the right-handed particles, and Γk = Λ̃β and Γ̃k = Λβ for the left-handed
particles, with Λβ and Λ̃β being the (0, 1

2 ) and (1
2 , 0) representation of the Lorentz group,

independently of k in each pertaining region.
For varying f , one obtains a much larger group, including infinitely many copies of

the non-linear Lorentz one. In the small wave vector regime the whole group collapses
to the usual linear Lorentz group for each particle.

4.2. De Sitter group for non-vanishing mass. – Up to now we have analyzed what
happens with massless particles. For massive particles described by the Dirac walk (22),
the rest-mass m gets involved into the frame transformations, and their group becomes a
non-linear realization of the De Sitter group SO(1, 4) with infinite cosmological constant,
where the rest mass m of the particle plays the role of the additional coordinate. One
recovers the previous non-linear Lorentz group at the order O(m2).

5. – Conclusions and future perspectives: the interacting theory, . . . , gravity?

The logical connections that have lead us to build up our quantum-walk theory of fields
leading to free QFT are summarized in fig. 7. The free relativistic quantum field theory
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Fig. 6. – From ref. [18] (colors online). The distortion effects of the Lorentz group in the present
quantum walk theory leading to the Weyl quantum field in the relativistic limit. Top left figure:
the orbit of the wave vectors k = (kx, 0, 0), with kx ∈ {.05, .2, .5, 1, 1.7} under the rotation around
the z-axis. Top right figure: the orbit of wave vectors with |k| = 0.01 for various directions in
the (kx, ky)-plane under the boosts with β parallel to k and |β| ∈ [0, tanh 4]. Bottom figure: the
orbit of the wave vector k = (0.3, 0, 0) under the full rotation group SO(3).

emerges as a special regime (the relativistic regime) of the evolution of countably many
Fermionic quantum bits, provided that their unitary interactions satisfy the principles of
homogeneity, locality, and isotropy, and with the restrictions of linearity of the evolution
and of quasi-isometric embedding of the graph of interaction in an Euclidean space.

We are left now with the not easy task of recovering also the interacting relativis-
tic quantum field theory, where particles are created and annihilated. We will need to
devise which additional principles are missing that will lead to the interacting theory,
breaking the linearity assumption. This is likely to be related to the nature of a gauge
transformation. How can this be restated in terms of a new principle? From the point
of view of a free theory, the interaction can be viewed as a violation of homogeneity,
corresponding to the presence of another interacting field—namely the gauge-field. The
gauge-field can be regarded as a restoration of homogeneity by a higher-level homoge-
neous “meta-law”. For example, one can exploit the arbitrariness of the local bases of
the Hilbert block subspaces C

s for the Weyl automata, having the bases dependent on
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Fig. 7. – Logical scheme of the derivation from principles of the present quantum-walk theory of
fields, with the known free quantum field theory as its relativistic limit. The top six principles
from which quantum theory of abstract system is derived are not discussed in the present lecture,
and can be found in refs. [3, 1].

the local value of the wave function of the gauge automaton made with pairs of entangled
Fermions, as for the Maxwell automaton. In order to keep the interaction local, one can
consider an in situ interaction. In such a way one would have a quantum ab initio gauge
theory, without the need of artificially quantizing the gauge fields, nor of introducing
mechanical Lagrangians. A d = 1 interacting theory of the kind of a Fermionic Hub-
bard quantum cellular automaton, has been very recently analytically investigated by
the Bethe ansatz [56], and two-particle bound states have been established. It should be
emphasized that for d = 3 just the possibility of recovering QED in the relativistic regime
would be very interesting, since it will provide a definite procedure for renormalization.
Very interesting will be also the analysis of the full dynamical invariance group, leading
also to a non-linear version of the Poincaré group, with the possibility that this restricts
the choice of the function f in eq. (55). Studying the full symmetry group of the inter-
acting theory will also have the potential of providing additional internal symmetries,
e.g. the SU(3) symmetry group of QCD, with the Fermion doubling possibly playing
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the role in adding physical particles. The mass as a variable quantum observable (as
in subsects. 3.8.2 and 4.2) may provide rules about the lifetimes of different species of
particles. The additional quasi-static scalar mode entering in the tensor-product of the
two Weyl automata that give the Maxwell field in subsect. 3.9 may turn out to play a
role in the interacting theory, e.g. playing the role of a Higg boson providing the mass
value, or even being pivotal for gravitation. But for now we are just in the realm of
speculations.

What we can say for sure is that it is not just a coincidence that so much physics
comes out from so few general principles. How amazing is the whole resulting theory
which, in addition to having a complete logical coherence by construction, it also winks
at GR through the two non-trivial features of the maximum mass, and the De Sitter
invariance. And with special relativity derived without space-time and kinematics, in a
fully quantum ab initio theory. So much from so little? This is the power of the new
information-theoretical paradigm.
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