

JOHN TEMPLETON FOUNDATION

SUPPORTING SCIENCE~INVESTING IN THE BIG QUESTIONS

Quantum walks on Cayley graphs: theoretical physics and geometric group theory

Giacomo Mauro D'Ariano Università degli Studi di Pavia

Topological and Homological Methods in Group Theory Faculty of Mathematics, Bielefeld, April 4-8, 2016

Geometric group theory: summa theologica

Goal of GGT is to study finitely-generated (f.g.) groups G as automorphism groups (symmetry groups) of physical theory

Central question: How algebraic properties of a group G reflect in dynamical properties of a physical theory and, conversely, how dynamics of a reflects in algebraic structure of G. physical theory

This interaction between groups and physics theory is a fruitful 2-way road.

From Lectures on quasi-isometric rigidity, by Michael Kapovich

Program

To derive the whole Physics axiomatically

from "principles" stated in form of purely mathematical axioms (without "physical primitives"), but having a thorough physical interpretation.

Solution: informationalism

The sixth Hilbert problem

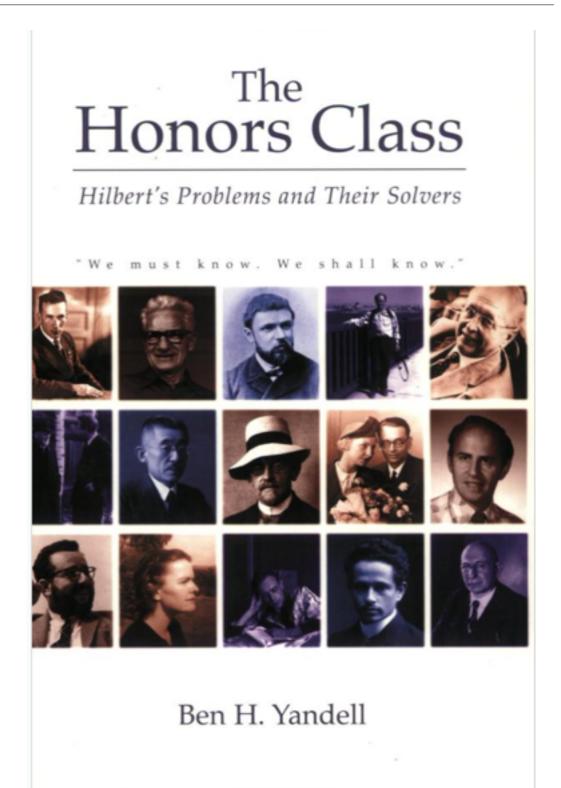
The investigations on the foundations of geometry suggest the problem: To treat in the same manner by means of axioms, those physical sciences in which mathematics plays an important part; in the first rank are the theory of probabilities and mechanics.

David Hilbert

Mechanics: the Trojan horse

Axiomatizing the theory of probabilities was a realistic goal: Kolmogorov accomplished this in 1933. The word 'mechanics' without a qualifier, however, is a Trojan horse."

Benjamin Yandell



Principles for Quantum Theory

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW A **84**, 012311 (2011)

Informational derivation of quantum theory

Giulio Chiribella*

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Ontario, Canada N2L 2Y5

Giacomo Mauro D'Ariano[‡] and Paolo Perinotti[§]

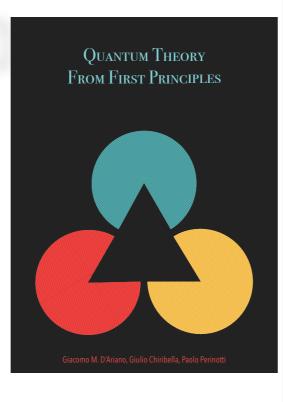
QUIT Group, Dipartimento di Fisica "A. Volta" and INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy (Received 29 November 2010; published 11 July 2011)

We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of theories of information processing that can be regarded as standard. One postulate—purification—singles out quantum theory within this class.

DOI: 10.1103/PhysRevA.84.012311

Principles for Quantum Theory

- P1. Causality
- P2. Local discriminability
- P3. Purification
- P4. Atomicity of composition
- P5. Perfect distinguishability
- P6. Lossless Compressibility



PACS number(s): 03.67.Ac, 03.65.Ta

JOHN TEMPLETON FOUNDATION

SUPPORTING SCIENCE - INVESTING IN THE BIG QUESTIONS

Project: A Quantum-Digital Universe, Grant ID: 43796

Principles for Mechanics

Paolo Perinotti

Alessandro Bisio

Alessandro Tosini

Marco Erba

Franco Manessi

Nicola Mosco

 Mechanics (QFT) derived in terms of countably many quantum systems in interaction

add principles

Min algorithmic complexity principle

- homogeneity
- locality
- isotropy

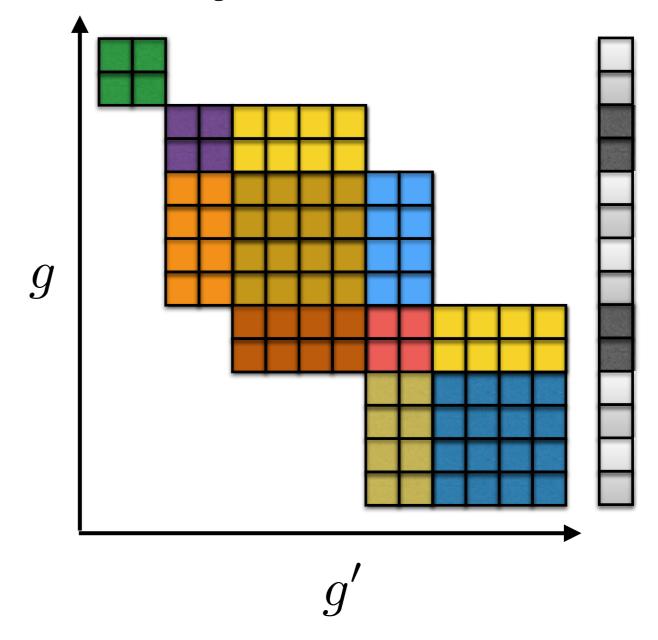
w.l.g. Hilbert space $\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \ s_g\in \mathbb{N}$

Evolution

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{s_g}$$

$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{sg}$$



w.l.g. Hilbert space $\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \ s_g\in \mathbb{N}$

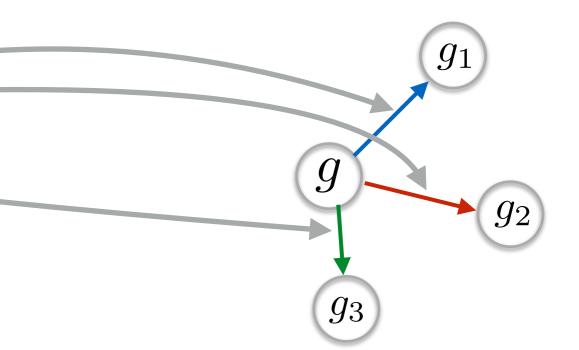
Evolution

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{sg}$$

Build a <u>directed graph</u> with an arrow from *g* to g' wherever they are connected by $A_{gg'} \neq 0$



w.l.g. Hilbert space
$$\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \ s_g\in \mathbb{N}$$

$$|G| \leqslant \aleph, \ s_q \in \mathbb{N}$$

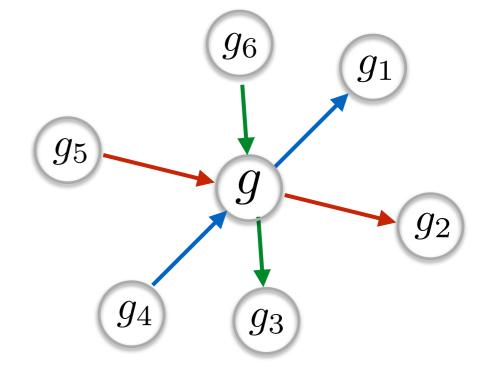
Evolution

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{sg}$$

- 1) <u>Locality</u>: S_g uniformly bounded
- 2) Reciprocity: $A_{gg'} \neq 0 \implies A_{g'g} \neq 0$
- 3) Homogeneity: all $g \in G$ are "equivalent"



w.l.g. Hilbert space
$$\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \ s_g\in \mathbb{N}$$

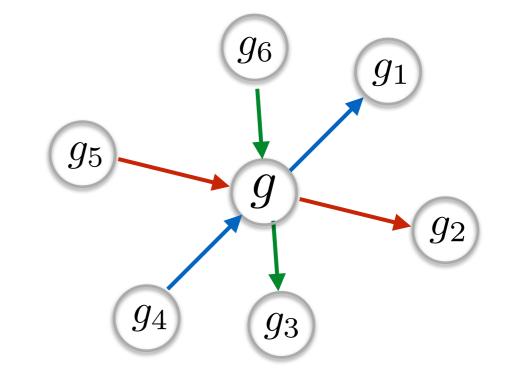
$$|G| \leqslant \aleph, \ s_q \in \mathbb{N}$$

Evolution

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\psi_{g}(t+1) = \sum_{g' \in S_{g}} A_{gg'} \psi_{g'}(t)$$

$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{s_{g}}$$



- 1) <u>Locality</u>: S_q uniformly bounded
- 2) Reciprocity: $A_{gg'} \neq 0 \implies A_{g'g} \neq 0$
- 3) Homogeneity: all $g \in G$ are "equivalent"

$$S_g = S$$
, $s_g = s$... label $A_{gg'} =: A_h$, $h \in: S$

define the "action" on the set of vertices G: gh := g' whenever $A_{gg'} = A_h$

w.l.g. Hilbert space
$$\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \ s_g\in \mathbb{N}$$

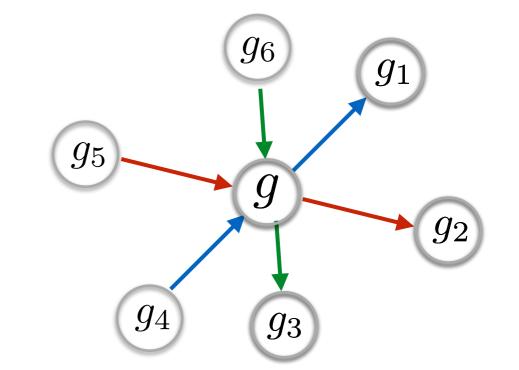
$$|G| \leqslant \aleph, \ s_q \in \mathbb{N}$$

Evolution

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

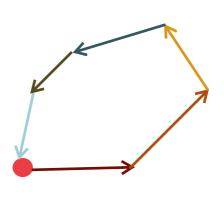
$$g' \in S_g$$

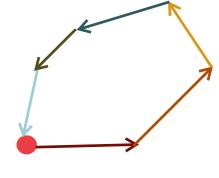
$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{s_g}$$



- 1) <u>Locality</u>: S_q uniformly bounded
- 2) Reciprocity: $A_{gg'} \neq 0 \implies A_{g'g} \neq 0$
- 3) Homogeneity: all $g \in G$ are equivalent

A sequence $A_{h_N}A_{h_{N-1}}\dots A_{h_1}$ connects g to itself, namely $gh_1h_2 \dots h_N = g$, then it must also connect any other g' to itself, i.e. $g'h_1h_2...h_N=g'$.





From 2): two-loop $ghh^{-1}=g$ defines uniquely h^{-1} for h and viceversa

$$A_{gg'} =: A_h, A_{g'g} =: A_{h^{-1}}, h \in S \equiv S_+ \cup S_-, S_- := S_+^{-1}$$

D'Ariano, Perinotti, PRA **90** 062106 (2014)

w.l.g. Hilbert space
$$\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \; s_g\in \mathbb{N}$$

$$|G| \leqslant \aleph, \ s_g \in \mathbb{N}$$

Evolution

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

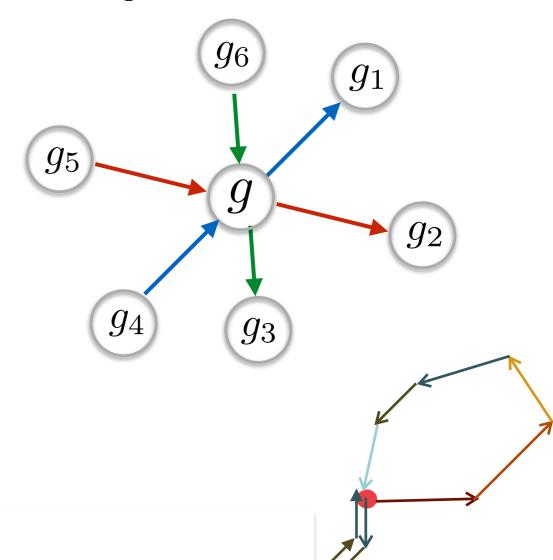
$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{s_g}$$

- 1) <u>Locality</u>: S_g uniformly bounded
- 2) Reciprocity: $A_{gg'} \neq 0 \implies A_{g'g} \neq 0$
- 3) Homogeneity: all $g \in G$ are equivalent

Build the free group *F* of words made with letters:

$$h \in S := S_+ \cup S_-$$

with action on vertices in G:gh:=g' whenever $A_{qq'}=A_h$



D'Ariano, Perinotti, PRA **90** 062106 (2014)

w.l.g. Hilbert space
$$\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \ s_g\in \mathbb{N}$$

$$|G| \leqslant \aleph, \ s_g \in \mathbb{N}$$

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\sum_{g'} A_{gg'} A_{g''g'}^\dagger = \sum_{g'} A_{gg'}^\dagger A_{g''g'} = \delta_{gg''} I_{sg}$$

 $\Gamma(G,S_+)$ colored directed graph with vertices $g \in G$ and edges (g, g') with g' = gh

Either the graph is connected, or it consists of disconnected copies.

W.I.g. assume it as connected.

- 1) <u>Locality</u>: S_g uniformly bounded
- 2) Reciprocity: $A_{gg'} \neq 0 \implies A_{g'g} \neq 0$
- 3) <u>Homogeneity</u>: all $g \in G$ are equivalent

Being H normal, one concludes that:

 $G = F/H = \langle S|R \rangle$ is a group with Cayley graph $\Gamma(G,S_+)$ (the identity any element

w.l.g. Hilbert space
$$\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g} \quad |G|\leqslant \aleph, \ s_g\in \mathbb{N}$$

$$|G| \leqslant \aleph, \ s_g \in \mathbb{N}$$

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{sg}$$

- 1) <u>Locality</u>: S_q uniformly bounded
- 2) Reciprocity: $A_{gg'} \neq 0 \implies A_{g'g} \neq 0$
- 3) Homogeneity: all $g \in G$ are equivalent

iff for Quantum Walk on Cayley graph

w.l.g. Hilbert space
$$\mathcal{H}=\oplus_{g\in G}\mathbb{C}^{s_g}$$

$$|G| \leqslant \aleph, \ s_g \in \mathbb{N}$$

Evolution

$$\psi_g(t+1) = \sum_{g' \in S_g} A_{gg'} \psi_{g'}(t)$$

$$\psi_{g}(t+1) = \sum_{g' \in S_{g}} A_{gg'} \psi_{g'}(t)$$

$$\sum_{g'} A_{gg'} A_{g''g'}^{\dagger} = \sum_{g'} A_{gg'}^{\dagger} A_{g''g'} = \delta_{gg''} I_{s_{g}}$$

The following operator over the Hilbert space $\ell^2(G)\otimes \mathbb{C}^s$ is unitary

$$A = \sum_{h \in S} T_h \otimes A_h$$

where T is the right regular representation of Gon $\ell^2(G)$ acting as

$$T_q|g'\rangle = |g'g^{-1}\rangle$$

- 1) <u>Locality</u>: S_q uniformly bounded
- 2) Reciprocity: $A_{qq'} \neq 0 \implies A_{q'q} \neq 0$
- 3) <u>Homogeneity</u>: all $g \in G$ are equivalent
- 4) Isotropy:

There exist:

- a group L of permutations of S_+ , transitive over S₊ that leaves the Cayley graph invariant
- a unitary s-dimensional (projective) representation $\{L_i\}$ of L such that:

$$A = \sum_{h \in S} T_h \otimes A_h = \sum_{h \in S} T_{lh} \otimes L_l A_h L_l^{\dagger}$$

The quantum walk on the Cayley graph (QWCG) is completely specified as

$$Q = (G, S_+, s, \{A_h\}_{h \in S})$$

In the following we will restrict to Cayley graphs <u>qi-embeddable in R</u>^d

- **Thm.** [Misha Kapovich] G is a finitely-generated group whose Cayley graph qi embeds in R^d iff G contains a free Abelian subgroup H of finite index, with rank(A)=d.
- **Proof.** R^d has polynomial growth, equivalent to x^d . Thus, G also has growth at most x^d . By Gromov's theorem, it follows that G is virtually nilpotent. For nilpotent groups there is a precise formula for growth in terms of their derived series [Bass and Guivarch] which implies that the group has to be virtually Abelian of rank $\leq d$.

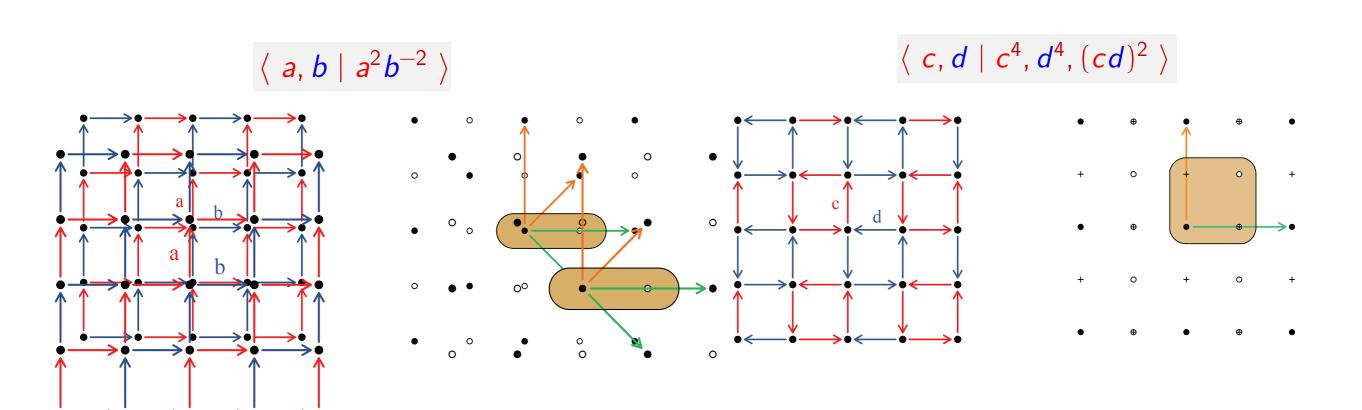
The quantum walk on the Cayley graph (QWCG) is completely specified as

$$Q = (G, S_+, s, \{A_h\}_{h \in S})$$

In the more general case restrict to H with solvable word problem and finite generating set R, i.e. G finitely presented (true for virtually Abelian).

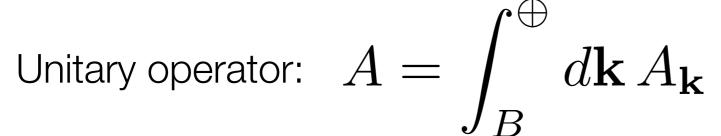
Quantum walk on Cayley graph: "renormalization"

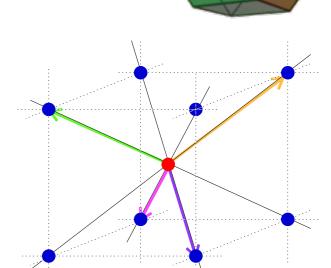
A QWCG $Q=(G,S_+,s,\{A_h\}_{h\in S})$ with G virt. Abelian is equivalent to a QWCG $Q'=(H,S_+,si_H,\{A_h\}_{h\in S})$ with $H\subset G$ with index i_H (induced representation). (but isotropy is not transferred between G and H)

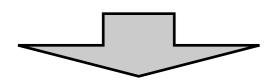


The Weyl QW

- Minimal dimension for nontrivial unitary A: s=2
- Unitarity \Rightarrow for d=3 the only possible G is the BCC!!







Two QWs connected by P

$$A_{\mathbf{k}}^{\pm} = -i\sigma_x(s_x c_y c_z \pm c_x s_y s_z)$$

$$\mp i\sigma_y(c_x s_y c_z \mp s_x c_y s_z)$$

$$-i\sigma_z(c_x c_y s_z \pm s_x s_y c_z)$$

$$+ I(c_x c_y c_z \mp s_x s_y s_z)$$

$$s_{\alpha} = \sin \frac{k_{\alpha}}{\sqrt{3}}$$

$$c_{\alpha} = \cos \frac{k_{\alpha}}{\sqrt{3}}$$

D'Ariano, Perinotti, PRA **90** 062106 (2014)

$$i\partial_t \psi(t) \simeq \frac{i}{2} [\psi(t+1) - \psi(t-1)] = \frac{i}{2} (A - A^{\dagger}) \psi(t)$$

$$\frac{i}{2} (A_{\mathbf{k}}^{\pm} - A_{\mathbf{k}}^{\pm \dagger}) = + \sigma_x (s_x c_y c_z \pm c_x s_y s_z) \quad \text{"Hamiltonian"}$$

$$\pm \sigma_y (c_x s_y c_z \mp s_x c_y s_z)$$

$$+ \sigma_z (c_x c_y s_z \pm s_x s_y c_z)$$

$$k \ll 1$$

 $k \ll 1$ $\Longrightarrow i\partial_t \psi = \frac{1}{\sqrt{3}} \boldsymbol{\sigma}^{\pm} \cdot \mathbf{k} \, \psi \iff \text{Weyl equation!} \quad \boldsymbol{\sigma}^{\pm} := (\sigma_x, \pm \sigma_y, \sigma_z)$

$$\boldsymbol{\sigma}^{\pm} := (\sigma_x, \pm \sigma_y, \sigma_z)$$

Iwo QCAs connected

$$A_{\mathbf{k}}^{\pm} = -i\sigma_x(s_x c_y c_z \pm c_x s_y s_z)$$

$$\mp i\sigma_y(c_x s_y c_z \mp s_x c_y s_z)$$

$$-i\sigma_z(c_x c_y s_z \pm s_x s_y c_z)$$

$$+ I(c_x c_y c_z \mp s_x s_y s_z)$$

$$s_{\alpha} = \sin \frac{k_{\alpha}}{\sqrt{3}}$$

$$c_{\alpha} = \cos \frac{k_{\alpha}}{\sqrt{3}}$$

Dirac QW

<u>Local</u> coupling: $A_{\mathbf{k}}$ coupled with its inverse with off-diagonal identity block matrix

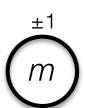
$$E_{\mathbf{k}}^{\pm} = \begin{pmatrix} nA_{\mathbf{k}}^{\pm} & imI\\ imI & nA_{\mathbf{k}}^{\pm\dagger} \end{pmatrix}$$
$$n^{2} + m^{2} = 1 \qquad n, m \in \mathbb{R}$$

 $E_{\mathbf{k}}^{\pm}$ CPT-connected!

$$\omega_{\pm}^{E}(\mathbf{k}) = \cos^{-1}[n(c_x c_y c_z \mp s_x s_y s_z)]$$

Dirac in relativistic limit $k \ll 1$

m: mass, $m^2 \le 1$ n⁻¹: refraction index



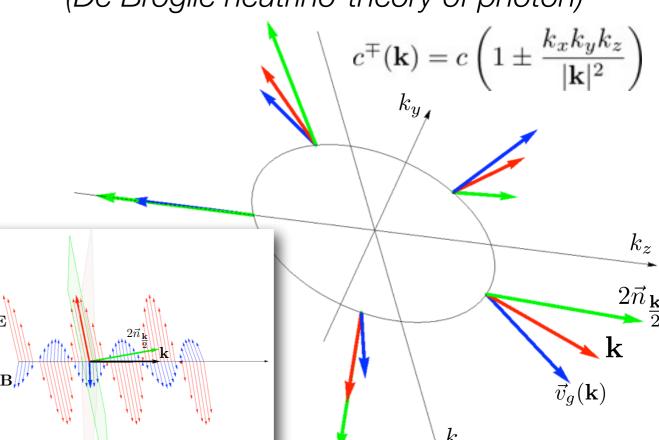
Maxwell QW

$$M_{\mathbf{k}}^{\pm} = A_{\mathbf{k}}^{\pm} \otimes A_{\mathbf{k}}^{\pm *}$$

$$F^{\mu}(\mathbf{k}) = \int \frac{d\mathbf{q}}{2\pi} f(\mathbf{q}) \tilde{\psi}(\frac{\mathbf{k}}{2} - \mathbf{q}) \sigma^{\mu} \varphi(\frac{\mathbf{k}}{2} + \mathbf{q})$$

Maxwell in relativistic limit $k \ll 1$

Boson: emergent from convolution of fermions (De Broglie neutrino-theory of photon)



The LTM standards of the theory

Dimensionless variables

$$x = \frac{x_{[m]}}{\mathfrak{a}} \in \mathbb{Z}, \quad t = \frac{t_{[sec]}}{\mathfrak{t}} \in \mathbb{N}, \quad m = \frac{m_{[kg]}}{\mathfrak{m}} \in [0, 1]$$

Relativistic limit:

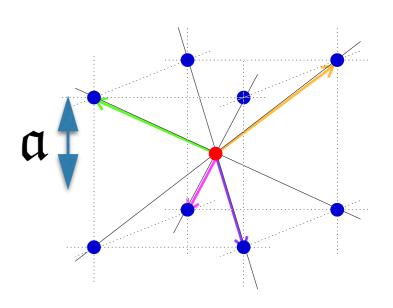
$$\Rightarrow$$

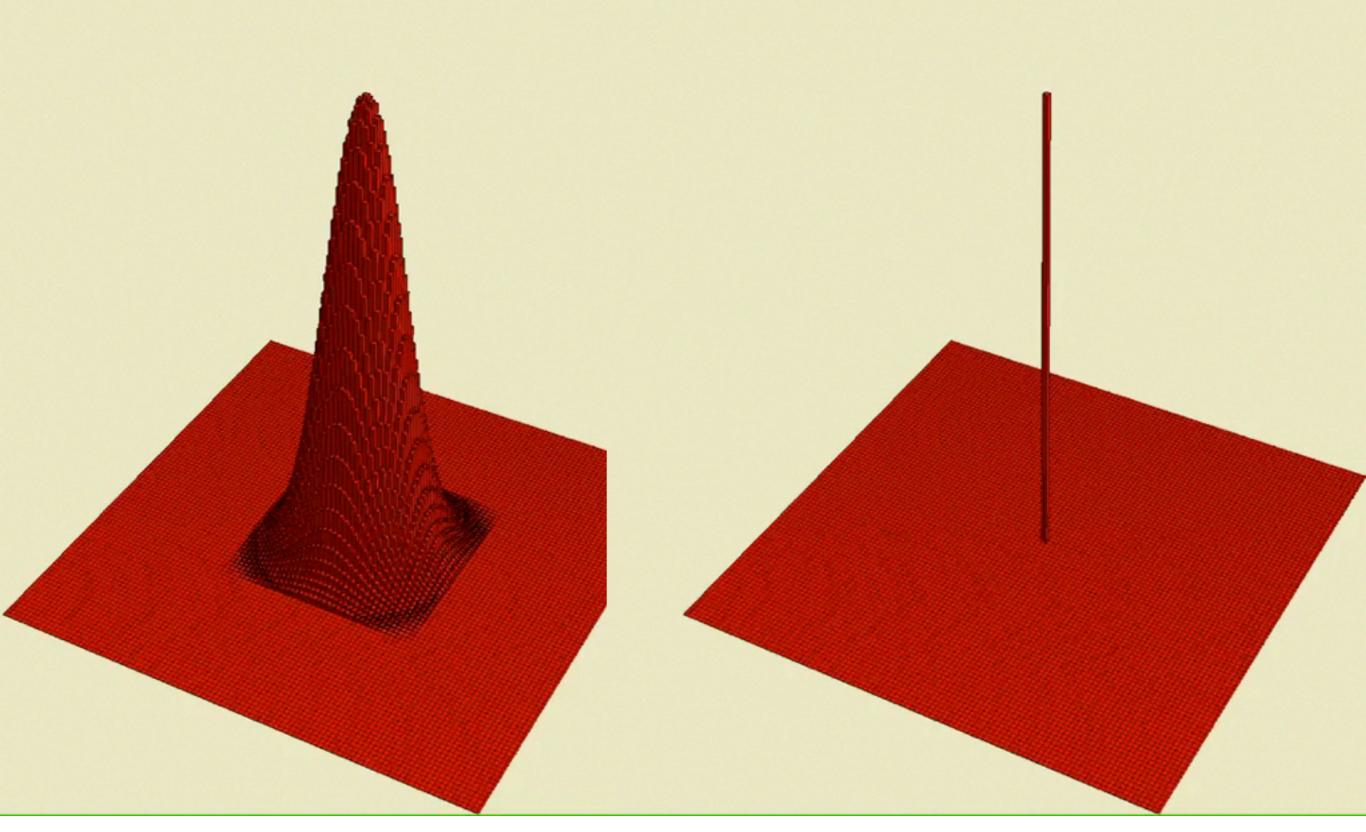
$$c = \mathfrak{a}/\mathfrak{t}$$
 $\hbar = \mathfrak{m}\mathfrak{a}c$

$$\hbar = \mathfrak{ma}c$$

Measure a from light-refraction-index

$$c^{\mp}(k) = c \left(1 \pm \frac{k}{\sqrt{3}k_{max}} \right)$$

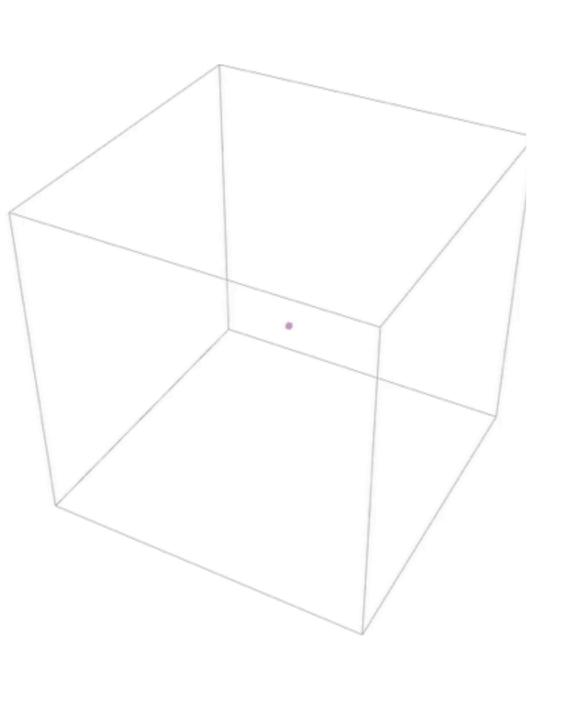


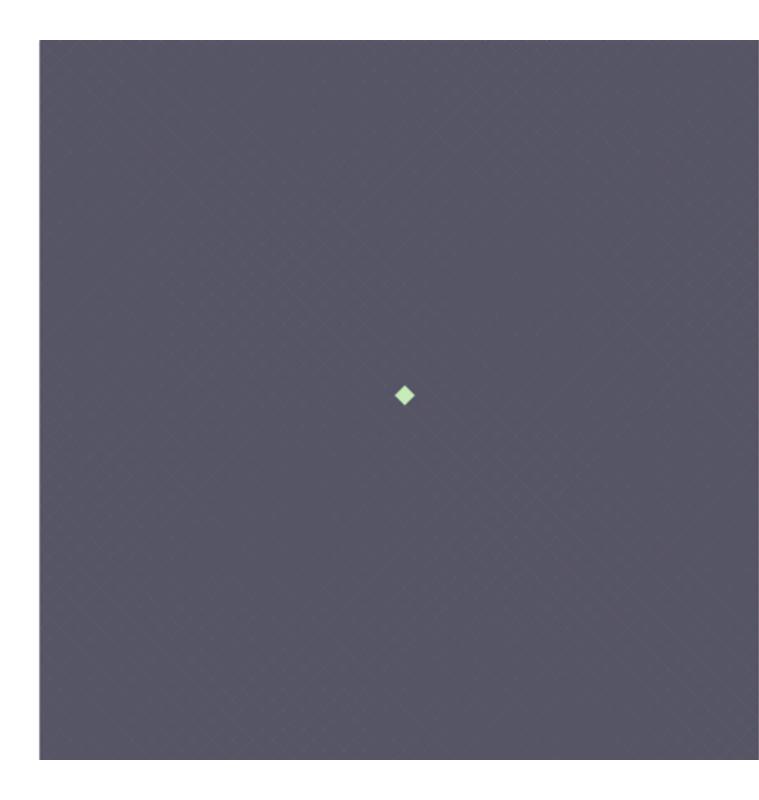


2d Dirac

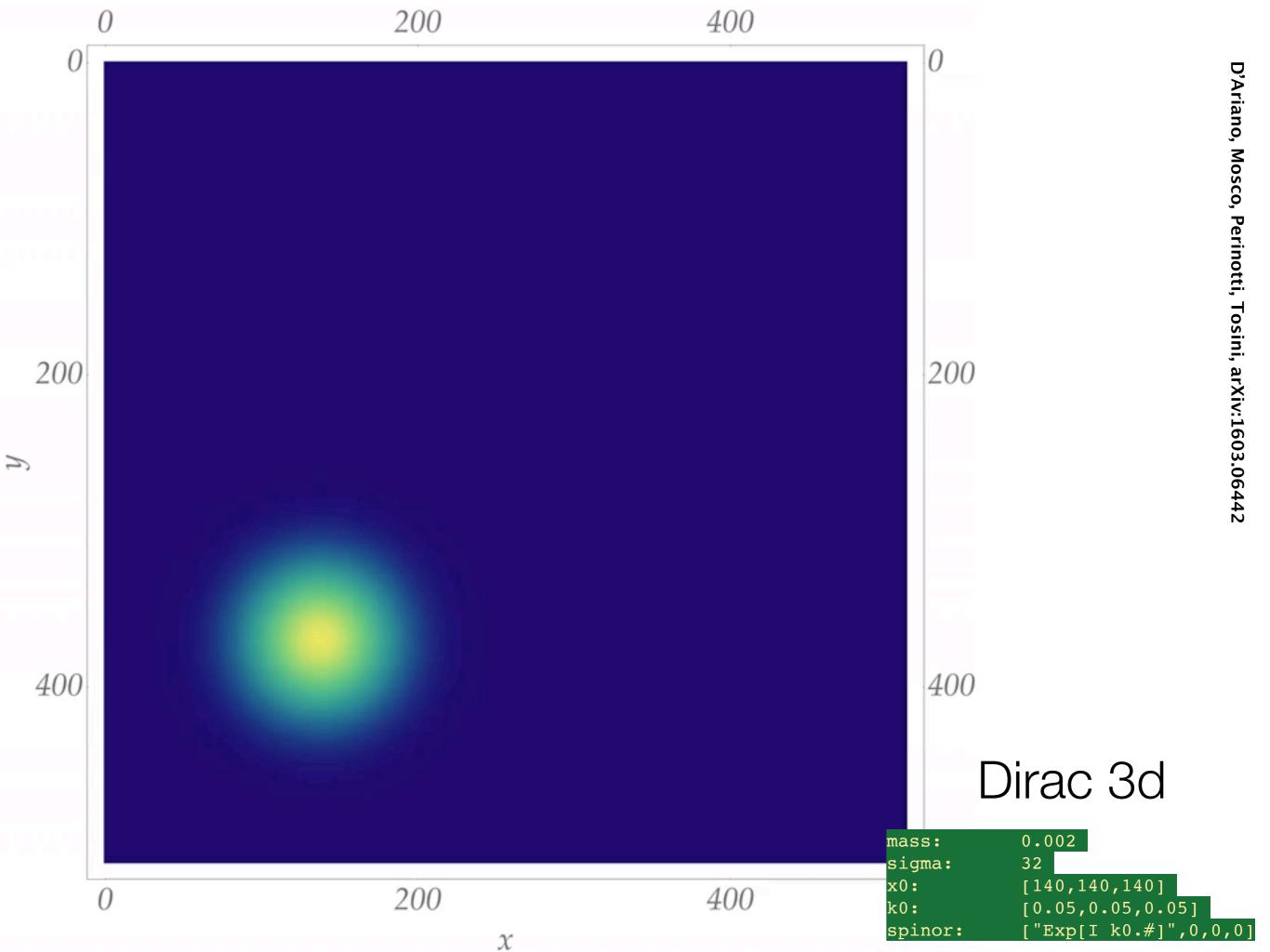
• Evolution of a narrow-band particle-state

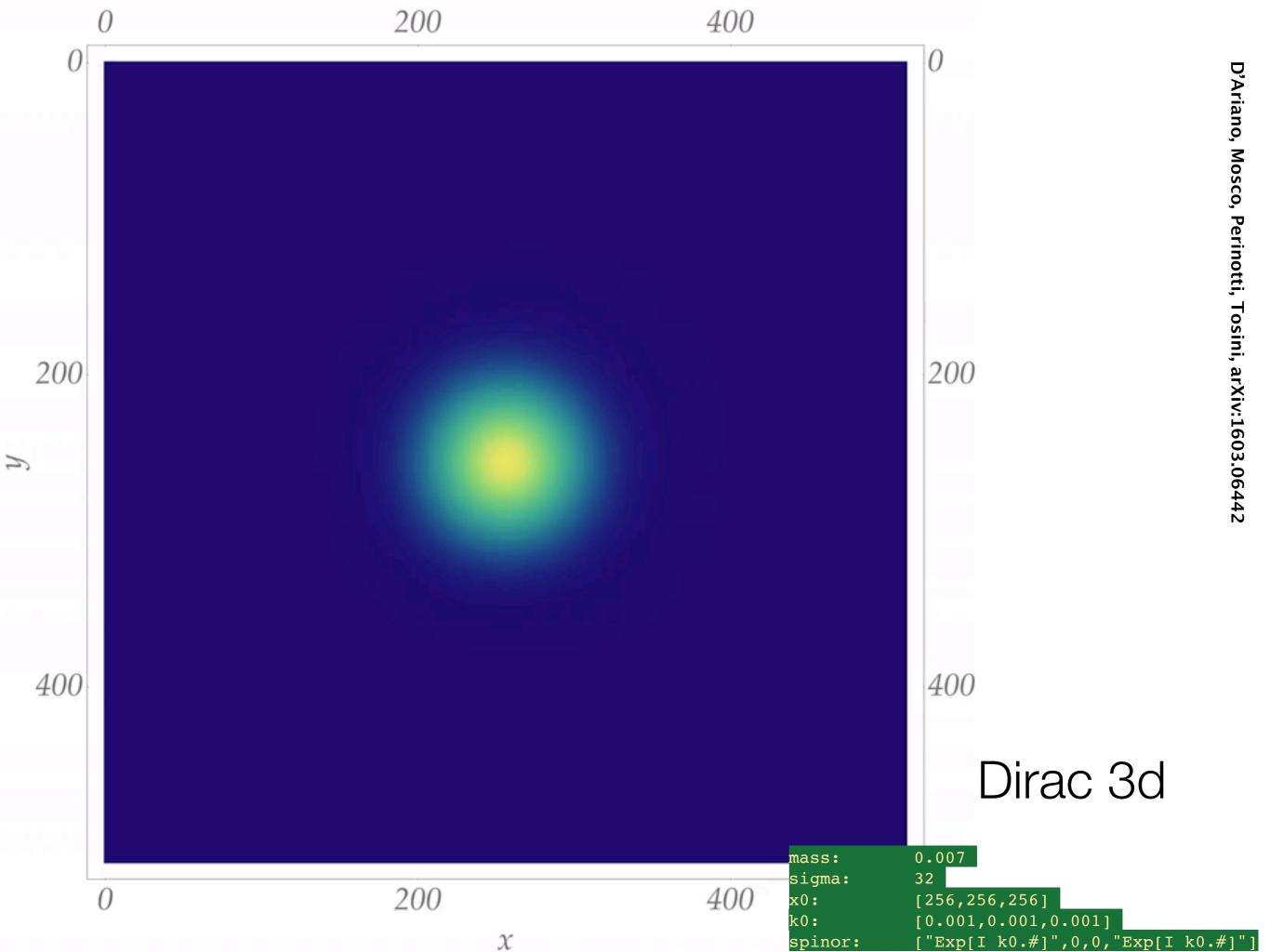
Evolution of a localized state

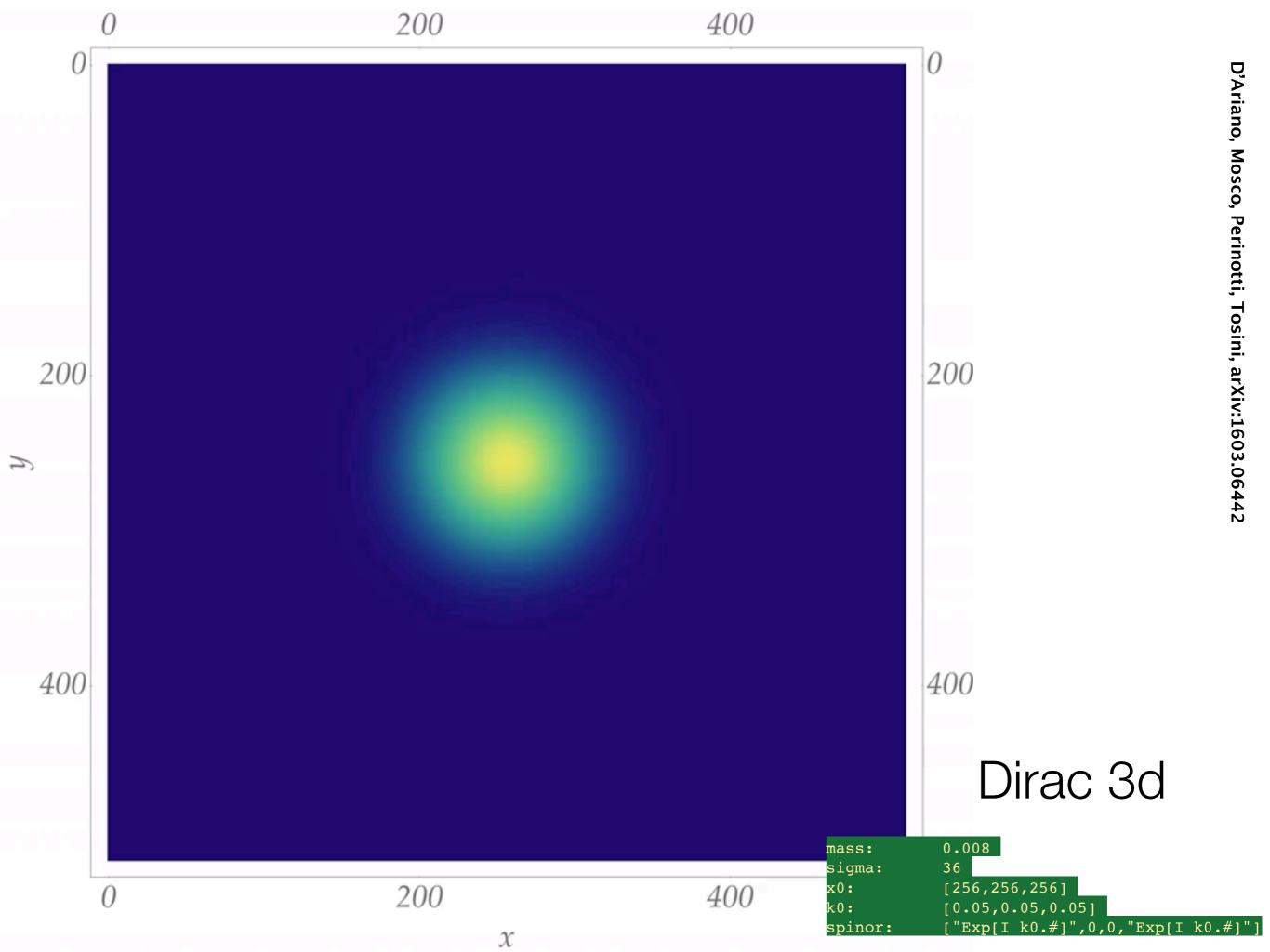




Weyl 3d







fidelity with Dirac for a narrowband packets in the relativistic limit $k \simeq m \ll 1$

$$F = |\langle \exp\left[-iN\Delta(\mathbf{k})\right]\rangle|$$

$$\Delta(\mathbf{k}) := (m^2 + \frac{k^2}{3})^{\frac{1}{2}} - \omega^E(\mathbf{k})$$

$$= \frac{\sqrt{3}k_x k_y k_z}{(m^2 + \frac{k^2}{3})^{\frac{1}{2}}} - \frac{3(k_x k_y k_z)^2}{(m^2 + \frac{k^2}{3})^{\frac{3}{2}}} + \frac{1}{24}(m^2 + \frac{k^2}{3})^{\frac{3}{2}} + \mathcal{O}(k^4 + N^{-1}k^2)$$

relativistic proton: $N \simeq m^{-3} = 2.2*10^{57} \ \Rightarrow \ t = 1.2*10^{14} \mathrm{s} = 3.7*10^6 \, \mathrm{y}$

UHECRs: $k = 10^{-8} \gg m \Rightarrow N \simeq k^{-2} = 10^{16} \Rightarrow 5*10^{-28} \, \mathrm{s}$

Analytical solution of Dirac (d=1) and Weyl (d=1,2,3)

The analytical solution of the Dirac automaton can also be expressed in terms of Jacobi polynomials $P_k^{(\zeta,\rho)}$ performing the sum over f in Eq. (16) which finally gives

$$\psi(x,t) = \sum_{y} \sum_{a,b \in \{0,1\}} \gamma_{a,b} P_k^{(1,-t)} \left(1 + 2 \left(\frac{m}{n} \right)^2 \right) A_{ab} \psi(y,0),$$

$$k = \mu_+ - \frac{a \oplus b + 1}{2},$$

$$\gamma_{a,b} = -(i^{a \oplus b}) n^t \left(\frac{m}{n} \right)^{2 + a \oplus b} \frac{k! \left(\mu_{(-)^{ab}} + \frac{\overline{a \oplus b}}{2} \right)}{(2)_k}, \quad (18)$$

where $\gamma_{00} = \gamma_{11} = 0$ ($\gamma_{10} = \gamma_{01} = 0$) for t + x - y odd (even) and $(x)_k = x(x+1) \cdots (x+k-1)$.

Dispersive Schrödinger equation

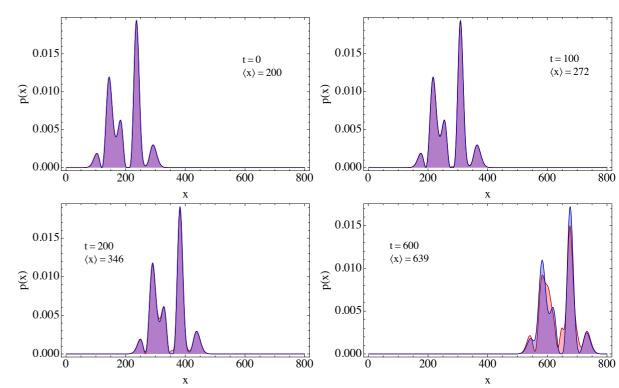
$$i\partial_t e^{-i\mathbf{k}_0\cdot\mathbf{x}+i\omega_0t}\psi(\mathbf{k},t) = s[\omega(\mathbf{k})-\omega_0]e^{-i\mathbf{k}_0\cdot\mathbf{x}+i\omega_0t}\psi(\mathbf{k},t)$$

$$i\partial_t \tilde{\psi}(\mathbf{k}, t) = s[\omega(\mathbf{k}) - \omega_0] \tilde{\psi}(\mathbf{k}, t)$$

$$i\partial_t \tilde{\psi}(\mathbf{x}, t) = s[\mathbf{v} \cdot \mathbf{\nabla} + \frac{1}{2} \mathbf{D} \cdot \mathbf{\nabla} \mathbf{\nabla}] \tilde{\psi}(\mathbf{x}, t)$$

$$\mathbf{v} = (\nabla_{\mathbf{k}}\omega)(\mathbf{k}_0)$$

$$\mathbf{D} = (\nabla_{\mathbf{k}} \nabla_{\mathbf{k}} \omega) (\mathbf{k}_0)$$



D'Ariano, Perinotti, PRA 90 062106 (2014)

Special Relativity recovered ... and more

Relativity principle: invariance of the physical law under change of inertial reference frame

→ invariance of eigenvalue equation under change of representation.

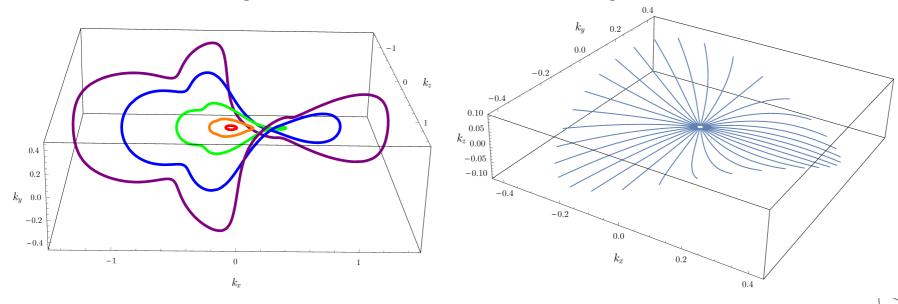
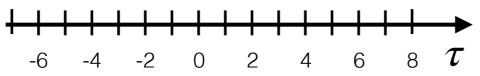


FIG. 2: The distortion effects of the Lorentz group for the discrete Planck-scale theory represented by the quantum walk in Eq. (6). Left figure: the orbit of the wavevectors $\mathbf{k} = (k_x, 0, 0)$, with $k_x \in \{.05, .2, .5, 1, 1.7\}$ under the rotation around the z axis. Right figure: the orbit of wavevectors with $|\mathbf{k}| = 0.01$ for various directions in the (k_x, k_y) plane under the boosts with β parallel to \mathbf{k} and $|\beta| \in [0, \tanh 4]$.

- Lorentz transformations are perfectly recovered for $k \ll 1$.
- For *k*∼1:
 - Double Special Relativity (Camelia-Smolin).
 - Relative locality (in addition to relativity of simultaneity)
 - For m≠0 De Sitter SO(1,4)
 - mass m and proper-time au are conjugated



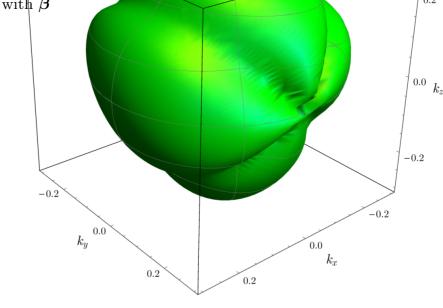


FIG. 3: The green surface represents the orbit of the wavevector $\mathbf{k} = (0.3, 0, 0)$ under the full rotation group SO(3).

A QWCG for G qi-embeddable in H^2 would provide a Weyl/Dirac free QFT on a curved space, without using quantization rules. A decomposition into irreps. of the right-regular rep. for a finitely presented group G qi-embeddable in H^2 would be needed.

1. Is there a result of *qi-rigidity* (similar to that for R^d) for H^2 ? What about a generic Riemannian manifold M with dimension d=1,2,3?

Is the free group F^2 qi to H^2 ? What about the converse, namely: if G is qi to H^2 then G is virtually free?

If the previous statement is true, then the right-reg. representation of F^2 would provide the right-reg. representation of the virtually-free group through induced representation ("renormalization").

- 2. How the condition of <u>symmetric</u> Cayley graph restricts the structure of its G? [*]
- 3. Given G, S_+ , and s>0, find all the unitary nonequivalent sets of matrices $\{A_h\}_{h\in S}$ that provide a nontrivial WQ $Q=(G, S_+, s, \{A_h\}_{h\in S})$.

The unitarity equations for the transfer matrices $\{A_h\}_{h\in S}$ depend only on $|S_+|$ and on the 4-cycles.

- 4. Do groups sharing the same 4-cycles have something in common?
- 5. Does the property of being presentable with relators |r|≤4 correspond to some group property?

^[*] A directed colored graph is symmetric if its automorphism group acts transitively upon ordered pairs of adjacent vertices.

- 6. Given a group G with Cayley graph qi to a smooth Riemanian manifold M with a nonzero curvature, can a "tangent group" be defined (similarly to what we do for tangent space to M) as a sort of "local Abelianization" of G? The QWCG on G should correspond to a Schrödinger equation with a Laplace-Beltrami diffusion on M.
- 7. What happens for negative curvature (exponential growth of G?)
- 8. What is the equivalent of Fourier-transform decomposition into irreps. for finitely presented hyperbolic G? What is the notion of wave-vector k? What does it mean k \ll 1 (relativistic regime)?
- 9. The universal covering of an arbitrary graph is a Cayley graph. Given a QW on a graph, can a QW be induced on his universal covering (and viceversa)?

This is more or less what I wanted to say

Thank you for your attention