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Quantum Information without Quantum Computers

1. Universal quantum detectors [see M. Sacchi talk]

2. Programmable quantum detectors

3. Absolute quantum calibration

To dowload preprints, reprints, and transparencies go to www.qubit.it
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Programmable detectors

• Is it possible to have a ”programmable” detector which achieves any given
POVM (within a class) by preparing an ancilla in a different quantum state?
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using a finite-dimensional ancilla [M. Dušek and V. Bužek quant-ph/0201097 from no-go

theorem by Nielsen and Chuang [PRL 79 321 (1997)]
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• Is it possible to have a ”programmable” detector which achieves any given
POVM (within a class) by preparing an ancilla in a different quantum state?

- Answer: it is impossible to have a detector which is programmable exactly
using a finite-dimensional ancilla [M. Dušek and V. Bužek quant-ph/0201097 from no-go

theorem by Nielsen and Chuang [PRL 79 321 (1997)]

• Alternative problems:

- Which continuum sets of detectors can be achieved with a single
programmable detector having a finite-dimensional ancilla?

- Is it possible to have an approximately programmable detector?
- Which minimal resources are needed to achieve all possible POVM’s?
- Is there a special unitary U to be chosen for the ancilla-system interaction?
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V ∈ U(H), {Ug} UIR of G on H and d g Haar invariant measure.
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dPg = Tr2[dBg(I ⊗ σ)] = d g UgξU
†
g , ξ = V στV †. (2)
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Bell measurement from local measurements

• Bell measurement corresponding to the projective UIR of the Abelian group in d dimensions:

G = Zd × Zd

U(m, n) = Z
m

W
n
, Z =

∑
j

ω
j|j〉〈j|, W =

∑
k

|k〉〈k ⊕ 1|, ω = e
2πi
d . (3)
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W
n
, Z =

∑
j

ω
j|j〉〈j|, W =

∑
k

|k〉〈k ⊕ 1|, ω = e
2πi
d . (3)

• Unitary operator V connecting the Bell observable with local observables

V |m〉 ⊗ |n〉 =
1
√

d
|U(m, n)〉〉. (4)

• V is of the controlled-U form

V =
∑

i

|i〉〈i| ⊗W
i
.

Wn

(5)
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Approximate programmable detectors

We need only to achieve ”indecomposable” detectors, i. e. extremal POVM’s

(non extremal POVM’s are achieved by a random choice between different
indecomposable apparatuses)

• The observables are a special case of extremal POVM’s, and they are all
connected each other by unitary transformations.

• Nonorthogonal extremal POVM’s are generally not connected by unitary
transformations.
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Convex structure of POVM’s

Theorem 1 The extremality of the POVM P = (Pn) n ∈ E = {1, 2, . . .} is
equivalent to the nonexistence of non trivial solutions D for the equation∑

n

Dn = 0, Supp(Dn),Rng(Dn) ⊆ Supp(Pn). (6)

[G. M. D’Ariano and P. Lo Presti, (quant-ph/0301110)] [start]-[end]-[back]-[index] 12
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Theorem 2 (Parthasaraty) A POVM P is extremal iff the operators
|v(n)

i 〉〈v(n)
j | are linearly independent, for all eigenvectors |v(n)

j 〉 of Pn.
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Convex structure of POVM’s

Corollary 1 Orthogonal POVM’s are extremal.

Corollary 2 If some elements have non-disjoint supports, then P is not
extremal.

Corollary 3 If ∑
n

dim[Supp(Pn)]2 > d2, d
.= dim(H). (7)

then the POVM P = (Pn) is not extremal.

This means that a POVM with too many elements (i. e. N > d2) will be
decomposable into several POVM’s, each with less than d2 non-vanishing
elements.
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Extremal POVM’s in dimension d = 2

• From the sufficient condition for non-extremality∑
n

dim[Supp(Pn)]
2

> d
2
, (8)

[G. M. D’Ariano, and P. Perinotti, unpublished] [start]-[end]-[back]-[index] 14



Extremal POVM’s in dimension d = 2

• From the sufficient condition for non-extremality∑
n

dim[Supp(Pn)]
2

> d
2
, (8)

we obtain that for a qubit the extremal POVM cannot have more than N = 4 results, and

must be of the form
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must be of the form

Pi = αi(I + ni · σ), αi ≥ 0,
∑

i

αi = 1,
∑

i

αini = 0. (9)

• For N = 2 they are the usual observables.

• For N = 3 and N = 4 they correspond to triangles or tetrahedra inside the Bloch sphere.
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Approximately programmable observables

• Approximate the observable X by a fixed programmable device

Xn = U
†|n〉〈n|U ' Z

(σ)
n

.
= Tr1[V

†
(I ⊗ |n〉〈n|)V (σ ⊗ I)] (10)

where the observables are close in term of the physical distance

d(X, Y)
.
= max

ρ∈S(H)

∑
n

|Tr[(Xn − Yn)ρ]| ≤
∑

n

||Xn − Yn||. (11)
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max
X

min
σ∈S(A)

d(X, Z(σ)
) ≤ ε. (12)

• Problem: evaluate
dA(ε)

where dA is the minimum dim(A) which satisfies (12)

• For V of the controlled-U form V =
∑

j |j〉〈j| ⊗ Vj it will be sufficient to find a covering

for the manifold SU(d)/U(1)d, such that

min
j
||Vj − U ||2 ≤ ε/

√
d. (13)
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Howto characterize the operation of a device: entangled input

Quantum parallelism of entanglement
A single entangled input state |Ψ〉〉 is equivalent

to scanning all states in parallel.

Quantum
operation

|Ψ>> R

Two identical quantum systems are prepared in an entangled state |Ψ〉〉, and only one system

undergoes the quantum operation (QO) E , whereas the other is left untouched.

[D’Ariano and Lo Presti, Phys. Rev. Lett. 86 4195 (2001), C. Bennet ? D. W. Leung (2000)][start]-[end]-[back]-[index] 16
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undergoes the quantum operation (QO) E , whereas the other is left untouched.

Theoretical basis: 1-to-1 correspondence: CP-maps E ↔ RE ∈ B(H⊗ H) RE ≥ 0.

RE = E ⊗ I (|I〉〉〈〈I|), |I〉〉 =
∑

n

|n〉 ⊗ |n〉. (14)

For invertible Ψ RE (Ψ) = E ⊗ I (|Ψ〉〉〈〈Ψ|) is in 1-to-1 correspondence with the QO E .

{|I〉〉, |Ψ〉〉} ' choice of the representation for E .

[D’Ariano and Lo Presti, Phys. Rev. Lett. 86 4195 (2001), C. Bennet ? D. W. Leung (2000)][start]-[end]-[back]-[index] 16



Tomography of a single qubit quantum device

Device

NOPA

PB
S

σ x
,y

,z

λ
/4

PBS

σ

λ/4

x,y,z

[goto Pauli tomography]
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Tomography of a single qubit quantum device

Experiment performed in Roma La Sapienza

[F. De Martini, G. M. D’Ariano, A. Mazzei, and M. Ricci, Fortschr. Phys. 51 (2003)] [start]-[end]-[back]-[index] 18



Tomography of quantum operations

Quantum
operation X λ

X ν

|Ψ>>

The QO (four-index matrix) RE of the device is obtained by estimating via quantum

tomography the following output ensemble averages

〈〈i, j|RE |l, k〉〉 =
〈
|l〉〈i| ⊗Ψ

−1∗|k〉〈j|Ψ−1τ
〉

. (15)

[D’Ariano and Lo Presti, Phys. Rev. Lett. 86 4195 (2001)] [start]-[end]-[back]-[index] 19



Faithful states

• Is it possible to characterize a quantum operation using mixed states, or even separable ones?

[G. M. D’Ariano and P. Lo Presti, quant-ph/0211133] [start]-[end]-[back]-[index] 20
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Faithful states

• Is it possible to characterize a quantum operation using mixed states, or even separable ones?

• Answer: yes, as long as the state is faithful.

• We call a bipartite state faithful when acting with a channel on one of the two quantum

systems, the output state carries a complete information about the channel.

R R
E

E

RE
.
= E ⊗ I (R). (16)

Namely: the input state R is called faithful when the correspondence between the output state

RE
.
= E ⊗ I (R) and the quantum channel E is one-to-one.

[G. M. D’Ariano and P. Lo Presti, quant-ph/0211133] [start]-[end]-[back]-[index] 20



Faithful states

R R
E

RE

E

R
E

|I >>

R =
∑

l

|Al〉〉〈〈Al| = I ⊗ R(|I〉〉〈〈I|), R(ρ) =
∑

l

A
τ
l ρA

∗
l . (17)

• A state R is faithful when it can be obtained from the maximally entangled vector with a map

R that is invertible, in order to guarantee the one-to-one correspondence between RE and E .
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Faithful states

R R
E

RE

E

R
E

|I >>

R =
∑

l

|Al〉〉〈〈Al| = I ⊗ R(|I〉〉〈〈I|), R(ρ) =
∑

l

A
τ
l ρA

∗
l . (17)

• A state R is faithful when it can be obtained from the maximally entangled vector with a map

R that is invertible, in order to guarantee the one-to-one correspondence between RE and E .

- The information about the channel E can be extracted from RE as follows

E (ρ) = Tr2[(I ⊗ ρ
τ
)I ⊗ R−1

(RE )]. (18)
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Faithful states

R R
E

RE

E

R
E

|I >>

R =
∑

l

|Al〉〉〈〈Al| = I ⊗ R(|I〉〉〈〈I|), R(ρ) =
∑

l

A
τ
l ρA

∗
l . (17)

• A state R is faithful when it can be obtained from the maximally entangled vector with a map

R that is invertible, in order to guarantee the one-to-one correspondence between RE and E .

- The information about the channel E can be extracted from RE as follows

E (ρ) = Tr2[(I ⊗ ρ
τ
)I ⊗ R−1

(RE )]. (18)

• A pure state R ≡ |A〉〉〈〈A| is faithful iff it has maximal Schmidt’s number.
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Faithful states

R R
E

RE

E

R
E

|I >>

• The set of faithful states R is dense within the set of all bipartite states.

[G. M. D’Ariano and P. Lo Presti, quant-ph/0211133] [start]-[end]-[back]-[index] 22



Faithful states

R R
E

RE

E

R
E

|I >>

• The set of faithful states R is dense within the set of all bipartite states.

• However, the knowledge of the map E from a measured RE will be affected by increasingly

large statistical errors for R approaching a non-invertible map.

[G. M. D’Ariano and P. Lo Presti, quant-ph/0211133] [start]-[end]-[back]-[index] 22



Faithful states

R R
E

RE

E

R
E

|I >>

• The set of faithful states R is dense within the set of all bipartite states.

• However, the knowledge of the map E from a measured RE will be affected by increasingly

large statistical errors for R approaching a non-invertible map.

• Therefore, most mixed separable states are

faithful! [e. g. Werner states are a. a.

faithful].

• For c. v. faithfulness depends also on the

matrix representation [e. g. Gaussian noise

with n > 1
2].

[G. M. D’Ariano and P. Lo Presti, quant-ph/0211133] [start]-[end]-[back]-[index] 22



Absolute Quantum Calibration: Tomography of POVM’s

n

R

ρ
n
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Absolute Quantum Calibration: Tomography of POVM’s

n

R

ρ
n

In terms of the POVM P .
= (Pn) of the detector, the outcome n will occur with probability

p(n) corresponding to the conditioned state ρn given by

p(n) = Tr[(Pn ⊗ I)R], ρn =
Tr1[(Pn ⊗ I)R]

Tr[(Pn ⊗ I)R]
, (19)
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Absolute Quantum Calibration: Tomography of POVM’s

n

R

ρ
n

In terms of the POVM P .
= (Pn) of the detector, the outcome n will occur with probability

p(n) corresponding to the conditioned state ρn given by

p(n) = Tr[(Pn ⊗ I)R], ρn =
Tr1[(Pn ⊗ I)R]

Tr[(Pn ⊗ I)R]
, (19)

from which we can obtain the POVM as follows

Pn = p(n)[R−1
(ρn)]

τ
, R(ρ) = Tr1[(ρ

τ ⊗ I)R]. (20)
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Absolute Quantum Calibration of Observable

n

R

ρ
n
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• From tomographic data one can recognize when the POVM is actually an ”observable”. This

happens when the POVM is commutative.
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• From tomographic data one can recognize when the POVM is actually an ”observable”. This

happens when the POVM is commutative.

• Then the POVM corresponds to an observable K = {|k〉} in the centralizer C({Pn}).
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• From tomographic data one can recognize when the POVM is actually an ”observable”. This

happens when the POVM is commutative.

• Then the POVM corresponds to an observable K = {|k〉} in the centralizer C({Pn}).
From tomographic data one reconstruct the matrix elements 〈k|Pn|k〉 = p(n|k)

corresponding to the conditioned probability distribution p(n|k).
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Absolute Quantum Calibration of Observable

n

R

ρ
n

• The conditioned probability p(n|k) from the tomographic calibration will allow ”unbiasing”

the detector measurements.
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Absolute calibration of a photodetector

LO

NLC

R
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Absolute calibration of a photodetector
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Absolute characterization of a photodetector

[G. M. D’Ariano and P. Lo Presti, unpublished] [start]-[end]-[back]-[index] 28



Absolute characterization of a photodetector

Computer simulation for 400.000 homodyne data, homodyne quantum efficiency η = .8 and n ' 4 in the twin beam.

[See NWU experiment]

[G. M. D’Ariano and P. Lo Presti, unpublished] [start]-[end]-[back]-[index] 29
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bipartite faithful states.
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Conclusions

Programmable quantum detectors

With a finite-dimensional ancilla:

1. A general programmable detector is not achievable.
2. A covariant programmable detector is achievable.
3. A general ε-programmable detector is achievable.
4. All kinds of programmable detectors can be obtained using a controlled-U .

Absolute quantum calibration

1. A full quantum tomography of a quantum operation is possible using
bipartite faithful states.

2. An analogous scheme can be used to make an absolute quantum calibration
of a measuring apparatus.Feasible application: absolute calibration of a
photodetector.

3. The method is robust to detection noise and to mixing of the input state.
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What is a POVM?
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What is a POVM?

For a discrete set of possible outcomes X = {n = 1, 2, . . .}, a POVM P = (Pn) is a set of

operators Pn that provide the probability p(n) of each outcome n for all possibe states ρ via the

Born rule

p(n) = Tr[Pnρ]. (21)
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For a discrete set of possible outcomes X = {n = 1, 2, . . .}, a POVM P = (Pn) is a set of

operators Pn that provide the probability p(n) of each outcome n for all possibe states ρ via the

Born rule

p(n) = Tr[Pnρ]. (21)

As a consequence, the operators Pn must satisfy the constraints

Pn ≥ 0,
∑

n

Pn = I. (22)
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What is a POVM?

For a discrete set of possible outcomes X = {n = 1, 2, . . .}, a POVM P = (Pn) is a set of

operators Pn that provide the probability p(n) of each outcome n for all possibe states ρ via the

Born rule

p(n) = Tr[Pnρ]. (21)

As a consequence, the operators Pn must satisfy the constraints

Pn ≥ 0,
∑

n

Pn = I. (22)

For continuous probability space X, the concept is generalized to a positive-operator valued

measure (POVM) P such that for events B ⊆ σ(X) on has

P∅ = 0, PB ≥ 0, PX = I, (23)

P∪nBn =
∑

n

PBn, {Bn} disjoint sequence in σ(X). (24)

and the Born rule is given by

p(B) = Tr[PBρ]. (25)

[back to Tomography of POVM’s]
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Quantum operations

• The most general state (conditioned) evolution in quantum mechanics:
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Quantum operations

• The most general state (conditioned) evolution in quantum mechanics:

the “quantum operation” (Kraus)

ρ → E (ρ)
Tr[E (ρ)]

. (26)
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the “quantum operation” (Kraus)

ρ → E (ρ)
Tr[E (ρ)]

. (26)

- The quantum operation E is a map on traceclass operators that is

1. linear
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Quantum operations

• The most general state (conditioned) evolution in quantum mechanics:

the “quantum operation” (Kraus)

ρ → E (ρ)
Tr[E (ρ)]

. (26)

- The quantum operation E is a map on traceclass operators that is

1. linear
2. trace-decreasing
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Quantum operations

• The most general state (conditioned) evolution in quantum mechanics:

the “quantum operation” (Kraus)

ρ → E (ρ)
Tr[E (ρ)]

. (26)

- The quantum operation E is a map on traceclass operators that is

1. linear
2. trace-decreasing
3. completely positive
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Quantum operations

• The most general state (conditioned) evolution in quantum mechanics:

the “quantum operation” (Kraus)

ρ → E (ρ)
Tr[E (ρ)]

. (26)

- The quantum operation E is a map on traceclass operators that is

1. linear
2. trace-decreasing
3. completely positive

- The normalization Tr[E (ρ)] ≤ 1 is the probability that the transformation
occurs.
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Quantum operations: examples
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Quantum operations: examples

1. Unitary transformations:

E (ρ) = UρU
†
. (27)
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Quantum operations: examples

1. Unitary transformations:

E (ρ) = UρU
†
. (27)

2. Pure operations:

E (ρ) = AρA
†
, (28)

A contraction, i. e. ||A|| ≤ 1.
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Quantum operations: examples

1. Unitary transformations:

E (ρ) = UρU
†
. (27)

2. Pure operations:

E (ρ) = AρA
†
, (28)

A contraction, i. e. ||A|| ≤ 1.

3. Mixing transformations:

E (ρ) =
∑

n

KnρK
†
n. (29)
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Quantum operations: examples

1. Unitary transformations:

E (ρ) = UρU
†
. (27)

2. Pure operations:

E (ρ) = AρA
†
, (28)

A contraction, i. e. ||A|| ≤ 1.

3. Mixing transformations:

E (ρ) =
∑

n

KnρK
†
n. (29)

4. Deterministic transformations (channels):

Tr[E (ρ)] = Tr[ρ] ⇒
∑

n

K
†
nKn = I. (30)

[back to tomography of quantum operation]
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Complete positivity: relevant theorems

One-to-one correspondence E ↔ RE between quantum operations on T(H) and positive operators

RE on H⊗ H:

RE = E ⊗ IH(|I〉〉〈〈I|),

E (ρ) = Tr2[(I ⊗ ρ
τ
)RE ],

(31)

where

|I〉〉 =
∑

n

|n〉 ⊗ |n〉, {|n〉} orthonormal basis (32)

The most general form for E is (Kraus)

E (ρ) =
∑

n

KnρK
†
n, (33)

where the operators Kn satisfy the bound∑
n

K
†
nKn ≤ I. (34)

[back to QO’s]
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Quantum tomography

• Quantum tomography is a method to estimate the ensemble average 〈O〉 of any arbitrary

operator O on H by using only measurement outcomes of a quorum of observables {Fl}.
- The density matrix element ρij corresponds to estimating the ensemble averages of

O = |j〉〈i|.

[G. M. D’Ariano, Scuola “E. Fermi”, (IOS Press, Amsterdam 2002) pag. 385] [start]-[end]-[back]-[index] 36
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• Every operator O is expanded as follows

O =
∑

l

〈Gl, O〉Fl, (35)

for suitable scalar product 〈, 〉 and dual set {Gl}.
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Quantum tomography

• Quantum tomography is a method to estimate the ensemble average 〈O〉 of any arbitrary

operator O on H by using only measurement outcomes of a quorum of observables {Fl}.
- The density matrix element ρij corresponds to estimating the ensemble averages of

O = |j〉〈i|.
• Every operator O is expanded as follows

O =
∑

l

〈Gl, O〉Fl, (35)

for suitable scalar product 〈, 〉 and dual set {Gl}.
• The tomographic estimation of the ensemble average 〈O〉 is obtained as double averaging over

both the ensemble and the quorum.

• The method is very robust to all kinds of instrumental noises (general approach for unbiasing

noise).

• It can be improved via ”adaptive” techniques, maximum-likelihood strategies, etc.

• For multipartite quantum systems, simply a quorum is the tensor product of single-system

quorums, namely one just needs to make local quorum measurements jointly on the

subsystems.[back to tomography of QO’s]
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Pauli Tomography

Pauli matrices with identity I , σx , σy , σz: orthonormal basis for the qubit operator space:

H = 1
2{σ · Tr[σH] + I Tr[H]}. (36)

Tomographic estimation:

〈H〉 = 1
3

∑
α=x,y,z

〈EH(σα; α)〉, EH(σα; α) = 3
2Tr[Hσα]σα + 1

2Tr[H] (37)

[G. M. D’Ariano, Scuola “E. Fermi”, (IOS Press, Amsterdam 2002) pag. 385] [start]-[end]-[back]-[index] 37



Pauli Tomography

Qubit realized by polarization of single photon states. [back to experiment]

σz = h
†
h− v

†
v, | ↑〉, |1〉h ≡ |0〉v, | ↓〉 ≡ |0〉h|1〉v, (38)

σy = e
iπ
4σxσze

−iπ
4σx, σx = e

−iπ
4σyσze

iπ
4σy, (39)

e
−iπ

4σx|1〉h|0〉v =
1
√

2
[|1〉h|0〉v − i|0〉h|1〉v] ≡ |1〉l|0〉r,

e
iπ
4σy|1〉h|0〉v =

1
√

2
[|1〉h|0〉v − |0〉h|1〉v] ≡ |1〉↗↙|0〉↖↘.

(40)

PBS

σz

PBS

σx,y

λ/4
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Homodyne tomography

In quantum optics a quorum for each mode of the field is given by the set of
quadratures

Xφ =
1

2

(
a
†
e

iφ
+ ae

−iφ
)

. (41)

One has

〈H〉 =

∫ π

0

d φ

π
〈EH(Xφ; φ)〉, EH(x; φ) =

1

4

∫ +∞

−∞
d k |k|Tr[He

ikXφ]e
−ikx

, (42)

a
c

d

I

I1

2

I1 I2-= c c

= d d

b (LO) |z>

+

+

c = 1√
2
(a + b) , d = 1√

2
(a− b) , (43)

ID = I1 − I2 = a
†
b + b

†
a ' 2|z|Xφ. (44)

In the strong LO limit (z →∞) a balanced homodyne detector measures the quadrature Xφ of

the field at any desired phase φ with respect to the local oscillator (LO).
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Homodyne tomography

〈H〉 =

∫ π

0

d φ

π
〈EH(Xφ; φ)〉, EH(x; φ) =

1

4

∫ +∞

−∞
d k |k|Tr[He

ikXφ]e
−ikx

, (45)

• Analogy with the Radon transform for imaging

• A
tomography

of a two dimensional image W (α, ᾱ) is a collection of one dimensional

projections p(x; φ) at different values of the observation angle φ.

W (α, α) =

∫ +∞

−∞

dr|r|
4

∫ π

0

dφ

π

∫ +∞

−∞
dx p(x; φ) exp [ir(x− αφ)] , (46)

[back to tomography of quantum operation]
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Entangled states

Entangled states |Ψ〉〉 ∈ H⊗ H

|Ψ〉〉 =
∑
nm

Ψnm|n〉 ⊗ |m〉. (47)

Characterization and Engineering of Quantum Detectors and Processors-[June 9-14 2003] [start]-[end]-[back]-[index] 41



Entangled states

Entangled states |Ψ〉〉 ∈ H⊗ H

|Ψ〉〉 =
∑
nm

Ψnm|n〉 ⊗ |m〉. (47)

Matrix notation (for fixed reference basis in the two Hilbert spaces):

A⊗ B|C〉〉 = |AC B
τ〉〉, (48)

|A〉〉 .
=

∑
nm

Anm|n〉 ⊗ |m〉 ≡ A⊗ I|I〉〉 ≡ I ⊗ A
τ |I〉〉, (49)

|I〉〉 =
∑

n

|n〉 ⊗ |n〉. (50)
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Entangled states

Entangled states |Ψ〉〉 ∈ H⊗ H

|Ψ〉〉 =
∑
nm

Ψnm|n〉 ⊗ |m〉. (47)

Matrix notation (for fixed reference basis in the two Hilbert spaces):

A⊗ B|C〉〉 = |AC B
τ〉〉, (48)

|A〉〉 .
=

∑
nm

Anm|n〉 ⊗ |m〉 ≡ A⊗ I|I〉〉 ≡ I ⊗ A
τ |I〉〉, (49)

|I〉〉 =
∑

n

|n〉 ⊗ |n〉. (50)

Isomorphism HS(H) ' H⊗ H between the Hilbert space HS(H) of Hilbert-Schmidt operators on

H and H⊗ H

〈〈A|B〉〉 ≡ Tr[A
†
B]. (51)
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Entangled states

Entangled states |Ψ〉〉 ∈ H⊗ H

|Ψ〉〉 =
∑
nm

Ψnm|n〉 ⊗ |m〉. (47)

Matrix notation (for fixed reference basis in the two Hilbert spaces):

A⊗ B|C〉〉 = |AC B
τ〉〉, (48)

|A〉〉 .
=

∑
nm

Anm|n〉 ⊗ |m〉 ≡ A⊗ I|I〉〉 ≡ I ⊗ A
τ |I〉〉, (49)

|I〉〉 =
∑

n

|n〉 ⊗ |n〉. (50)

Isomorphism HS(H) ' H⊗ H between the Hilbert space HS(H) of Hilbert-Schmidt operators on

H and H⊗ H

〈〈A|B〉〉 ≡ Tr[A
†
B]. (51)

Measure of the entanglement for pure states: von Neumann entropy S(ρ) = −Tr[ρ ln ρ] of the

local state

ρ = Tr2[|Ψ〉〉〈〈Ψ|] ≡ ΨΨ
†
. (52)

[back to tomography of QO’s]
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Some experimental results

Measurement of

the joint photon-

number proba-

bility distribution

for a twin-beam

from nondegenerate

downconversion

A schematic of the experimental setup. NOPA, non-degenerate optical parametric

amplifier; LOs, local oscillators; PBS, polarizing beam splitter; LPFs, low-pass

filters; BPF, band-pass filter; G, electronic amplifier. Electronics in the two

channels are identical. The measured distributions exhibit up to 1.9 dB of

quantum correlation between the signal and idler photon numbers, whereas the

marginal distributions are thermal as expected for parametric fluorescence.
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Some experimental results

Marginal distributions for the signal and idler beams. Theoretical distributions for the same mean

photon numbers are also shown [Phys. Rev. Lett. 84 2354 (2000)].

[M. Vasilyev, S.-K. Choi, P. Kumar, and G. M. D’Ariano, Phys. Rev. Lett. 84 2354 (2000)] [start]-[end]-[back]-[index] 43



Results
Left: Mea-

sured joint photon-number prob-

ability distributions for the twin-

beam state. Right: Difference

photon number distributions cor-

responding to the left graphs

(filled circles, experimental data;

solid lines, theoretical predictions;

dashed lines, difference photon-

number distributions for two in-

dependent coherent states with

the same total mean number of

photons and n = m.) (a)

400000 samples, n = m = 1.5,

N = 10; (b) 240000 samples,

n = 3.2, m = 3.0, N = 18;

(c) 640000 samples, n = 4.7,

m = 4.6, N = 16. [back to

photodetector calibration]
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Examples of faithful states

• Werner’s states:

Rf =
1

d(d2 − 1)
[(d− f) + (df − 1)E], (53)

E swap operator, d = dim(H), (−1 ≤ f ≤ 1)

- faithful for all f 6= 1
d, separable for f ≥ 0.

• Isotropic states for dimension d

Rf = f
d|I〉〉〈〈I|+

1−f

d2−1
(I − 1

d|I〉〉〈〈I|), (54)

- faithful for f 6= 1
d2 , separable for f ≤ 1

d. [back to faithful states]
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Faithful states for “continuous variables”

• The inverse map R−1 is unbounded.

- As a result we will recover the channel E from the measured RE with unbounded amplification

of statistical errors, (depending on the chosen representation).

• Example: twin beam from parametric down-conversion of vacuum

|Ψ〉〉 = Ψ⊗ I|I〉〉, Ψ = (1− |ξ|2)
1
2ξ

a†a
, |ξ| < 1. (55)

• The state is faithful, but the operator Ψ−1 is unbounded, whence the inverse map R−1 is also

unbounded.

• For example, in a photon number representation B = {|n〉〈m|}, the effect will be an

amplification of errors for increasing numbers n, m of photons.

[G. M. D’Ariano and P. Lo Presti, quant-ph/0211133] [start]-[end]-[back]-[index] 46



Faithful states for “continuous variables”
• Consider now the quantum channel describing the Gaussian displacement noise

Nν(ρ) =

∫
C

d α

πν
e
−|α|

2

ν D(α)ρD
†
(α), (56)

- analogous of the depolarizing channel for infinite dimension.

• From the multiplication rule NνNµ = Nν+µ, it follows that the inverse map is formally given

by

N −1
ν ≡ N−ν. (57)

• As a faithful state consider now the mixed state given by the twin-beam, with one beam spoiled

by the Gaussian noise, namely

R = I ⊗Nν(|Ψ〉〉〈〈Ψ|) =
1

ν
(Ψ⊗ I) exp

[
−(a−b†)(a†−b)

ν

]
(Ψ

† ⊗ I), (58)

The partial transposed is

R
τ2 = (ν + 1)

−1
(Ψ⊗ I)

(
ν − 1

ν + 1

)1
2(a−b)†(a−b)

(Ψ
† ⊗ I), (59)

• Since our state is Gaussian, the PPT criterion guarantees separability[ R. Simon, Phys. Rev.

Lett. 84, 2726 (2000)] and for ν > 1 our state is separable, still it is formally faithful, since

the operator Ψ and the map Nν are both invertible.
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Faithful states for “continuous variables”

• Unboundedness of the inverse map can wash out completely the information on the channel in

some particular chosen representation.

• Example: (overcomplete) representation B = {|α〉〈β|}, with |α〉 and |β〉 coherent states.

- From the identity

Nν(|α〉〈α|) =
1

ν + 1
D(α)

(
ν

ν + 1

)a†a

D
†
(α), (60)

one obtains

N −1
ν (|α〉〈α|) =

1

1− ν
D(α)

(
1− ν

−1
)−a†a

D
†
(α), (61)

• which has convergence radius ν ≤ 1
2, which is the well known bound for Gaussian noise for the

quantum tomographic reconstruction for coherent-state and Fock representations.1

• Therefore, we say that the state is formally faithful, however, we are constrained to

representations which are analytical for the inverse map R−1. [back to faithful states]

1G. M. D’Ariano, and N. Sterpi, J. Mod. Optics 44 2227 (1997)
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