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Introduction

The action and the properties of each physical system are determined in physics by its
state. The state of the system is the mathematical description (usually a state vector or
a density operator), that, when introduced in the physical formulas, allows to acquire
informations on the system future and past history. The knowledge of the state is,
by definition, the most complete possible knowledge that can be gained on the system,
and, in general, it cannot be desumed with a single measurement operation. In classical
physics it is always possible, at least in principle, to devise a procedure consisting
of multiple measurements that fully recovers the physical state of each system. In
Quantum Mechanics, on the contrary, there are fundamental limitations connected to
the Heisenberg uncertainty principle and to the no-cloning theorem. In fact, one cannot
perform an arbitrary sequence of measurements on a single system without inducing
on it a back-action of some sort, while the no-cloning theorem states that one cannot
create a perfect copy of a physical system without already knowing in advance its state.
Thus, there is no way, not even in principle, by which a quantum state of a single system
may be desumed without having some prior knowledge on it. In fact, if one wants to
estimate the quantum state of a system, the only possibility is to provide a measuring
procedure that employs numerous identical (although unknown) copies of the system,
so that different measurements may be performed on each of the copies.

This thesis is devoted to the “quantum tomography” theory that, as many clues
lead to think, may include the description of all possible quantum state estimation pro-
cedures. It has been introduced by generalizing the homodyne tomography procedure.
Numerous practical applications will also be presented in the form of proposals of ex-
periments, in which we can see the tomography method at work. The experiments are
mainly in the optical domain, where radiation field modes are measured. In addition,
a couple of spin state reconstruction experiments are proposed and described.

What is quantum tomography in practice? It is a state reconstruction technique
that allows one to recover the state of arbitrary systems starting from a set of mea-
surements performed on multiple copies of the system. Since, as we remarked, it is not
possible to create copies of a system with unknown quantum state, we have to assume
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8 Introduction

that these copies are available. This is the case, for example, of systems that are the
output of a repeatable experimental procedure. On the other hand, if the single com-
ponents we are analyzing through tomography are not all in the same state, then one
would recover the state of the system ensemble, i.e. the global state of the collection
of systems. In this case, the resulting ensemble state will be a so–called mixture. The
state is perfectly recovered in the limit of infinite number of measurements, while in the
practical finite-measurements case, one can always estimate the purely statistical error
(the method is devoid of any systematic error) that is introduced in the reconstruction.
Moreover, since quantum tomography provides complete information on the system, its
output can be an estimation of the expectation value of any arbitrary physical quantity,
in addition to the system state estimation. The abstract general tomographic proce-
dure finds applications to various quantum systems. In particular, in this thesis we will
analyze two systems, i.e. on one side the modes of a quantized radiation field, analyzed
through homodyne and Kerr tomography, and on the other side the spin of one or
more particles, analyzed through spin tomography. The homodyne is an experimental
setup for measuring very weak electromagnetic fields through a laser, a beam splitter
and two high efficiency photodiodes. The nonlinear Kerr effect is a property that some
materials display when they are crossed by light, and which can be employed to couple
two light beams.

The practical applications of tomography are numerous in the field of advanced
quantum experimental research, and span from the characterization of devices to the
test of state preparation techniques, to the test of fundamental aspects of Quantum
Mechanics, etc. The theoretical quantum optics research group in Pavia, of which I
am member, has a strong tradition and a high international reputation in this field, to
which it has given essential contributions.

A short overview of the thesis follows. It is divided into three chapters: the first
contains the theory and the methods that are necessary to implement any tomography
experiment, the second contains the tomography theory for electromagnetic field and
spin state reconstruction, and the third contains some proposals for optical experiments
based on tomographic reconstructions.

Chapter 1. The chapter starts by giving the reader a brief historical perspective
on quantum tomography. It is a very young method as the first proposals are dated
1989. Initially introduced as the extension to the quantum domain of the conventional
tomographic imaging procedures, it was later greatly improved in order to remove the
systematic errors intrinsic in the first method. All these first applications refer to
the system of quantized radiation modes, and make use of homodyne measurements
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for the reconstruction procedure. Recently a major breakthrough was achieved as it
was noticed that by using group theory, the homodyne tomographic formulas could be
extended to arbitrary quantum systems. The outcome is the more general “quantum
tomography” theory, proposed by D’Ariano, Paini and later generalized by D’Ariano.
The presentation and the formalization of the quantum tomography (endeavored in
this thesis for the first time) is the core of this chapter. The theory is presented as
rigorous as possible for a theory that is still in a developing stage. Subsequently, the
algorithmic procedures and the mathematical-statistical techniques that are necessary
for any tomographic experiment are presented. The chapter is concluded by a section in
which some developments of the theory are presented. It is often possible, for example,
to use the noise deconvolution technique to correct the effects of experimental noise by
data processing. Thus one obtains good reconstructions even when using data coming
from inefficient detectors or lossy apparatuses. Another remarkable development of
the theory is the adaptive tomography technique, which exploits some mathematical
equivalence classes in the tomographic reconstruction formulas to reduce the statistical
fluctuations of the output data and obtains better reconstructions using little input
data.

Chapter 2. In this chapter three different state reconstruction methods are de-
scribed, i.e. homodyne tomography, spin tomography and Kerr tomography. Both the
homodyne tomography and the spin tomography are derived from the general theory
presented in the first chapter. Homodyne tomography, which was historically the first
tomographic method, is here re-derived on the basis of the general formalism. We will
not go into too deep details on this method, since there is a quantity of literature on
the subject. On the other hand, spin tomography, which also will be derived on the
basis of the general formalism, is a very young subject and, in the form presented here
(developed by D’Ariano, Maccone, Paini), has not yet been published. We will thus
indeed go into details on the experimental setups needed for the tomographic recon-
struction of the single spin state or of the multi-particle spin state. Moreover, some
numerical simulations of simple tomographic measurements will be given, along with
feasibility analyses. The Kerr tomography is another approach to the state reconstruc-
tion of radiation modes states, and was proposed by D’Ariano, Maccone, Paris, Sacchi.
Its derivation from the general theory will not be given here, however the experimental
setup will be described thoroughly and Monte Carlo computer simulations of its work-
ing will be presented. It proves to be particularly efficient for the measurement of the
photon number distributions of radiation states, and it can also be employed for the
production of optical Fock states and coherent superpositions of Fock states.

Chapter 3. In this chapter some experiments, which I contributed to propose,



10 Introduction

are presented. Each proposal is based on homodyne tomography and is supported by
rigorous feasibility studies, that always include Monte Carlo numerical simulations of
the experiment so that the reader can get a feeling of the actual data analysis. In
fact, in the computer programs, one would only have to substitute the data simulation
routines with data acquisition routines, and actual analysis of real experimental data
can be performed.

The Hamiltonian operator that can be assigned to each quantum system controls
its time evolution. In practical cases, it is not trivial to assign such an operator to a
real physical system. We will describe a method for the experimental measurement of
the Hamiltonian operator of optical devices. The measurement procedure essentially
consists in feeding the device with a complete set of quantum states and determining
the corresponding output states through homodyne tomography. The Hamiltonian,
which is univocally determined once the input–output relations are known, is obtained
in the Fock–basis representation through some non–trivial data analysis.

One of the most intriguing consequence of quantum physics is the possibility of
obtaining quantum superpositions in macroscopic systems, i.e. the famous Schrödinger
cat states. We have studied such states in the optical field and we present a modification
of an experiment proposal to generate and detect optical Schrödinger cat states. In the
original proposal no actual feasibility study was performed, and our simulations show
that using customary non-perfect detectors (i.e. detectors with non-unit quantum
efficiency) the original experiment would not be able to obtain quantum signatures for
the measured cat, which would resemble a classical mixed state. In our proposal, by
using a new deconvolution technique and the noise defeating mechanisms of tomography
(i.e. the noise deconvolution that was described in Chap. 1), the cat is fully recovered.

Among the postulates of Quantum Mechanics, the state reduction rule is maybe the
most controversial issue. Thus, an experiment that can put it to test is of fundamental
importance. The possibility of introducing a number of independent different measure-
ment schemes (i.e. direct detection, homodyne detection, heterodyne detection) makes
the quantum optics domain perfectly suited to such a test. We present an experiment
based on homodyne tomography which is here employed to measure a “reduced state”
and to compare it to the theoretical one we would expect from the reduction postulate.

Another fundamental issue of Quantum Mechanics, that we propose to investigate
using quantum tomography, is the problem of “locality vs. completeness” in quantum
theory, issue raised by the EPR paradox. We suggest to test Bell’s inequality through
homodyne tomography. Various experimental tests of Bell’s inequalities have up to
now been performed, however the main handicap of such tests is the so called detection
loophole: it has been objected that if the efficiency of the detectors is not superior to
a threshold value, the experiment cannot be considered conclusive. By using the ho-
modyne technique, one can circumvent the detector loophole, since very high efficiency
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detectors can be employed.
We conclude the chapter presenting a feasibility study for a homodyne experiment

that is being carried out presently by De Martini’s group in Roma.

Chapter 4. We give the conclusive remarks and indicate the possible developments
of the presented theory and methods.

Notation: The following mathematical symbols will be used in the course of the
thesis. We use def= and def⇐⇒ to define mathematical quantities and properties respec-
tively. The complex conjugate of α ∈ C will be indicated as α∗. A theorem or property
demonstration is started with “Proof:” and concluded with the symbol H. The identity
operator acting on the vector space H is indicated by 11H, where the subscript will be
dropped if the context determines univocally the vector space.



Chapter 1

General tomographic method

In this chapter the general tomographic method is introduced and derived. The general
mechanism can be deduced using group theory and all known tomographic schemes can
be made to derive from the general formulas.

In the first section a brief history of tomography is presented. Optical homodyne
tomography [1, 2], based on the seminal idea of Vogel and Risken [3] is the best known
experimental procedure for the measurement of arbitrary quantum state of radiation
modes. Homodyne tomography can also be used as a universal detector [4], since mean
values of arbitrary electromagnetic field observables can be obtained from the homo-
dyne data. Recently the tomographic theoretical framework has been extended and
a general theory was achieved for obtaining tomographic reconstructions in arbitrary
quantum systems [5, 6, 7, 8]. This theory is presented in the second section and its
possible, numerous applications are sketched. Some of these applications (namely op-
tical tomography and spin tomography) will be extensively analyzed in this thesis. In
the following Sect. 1.3 some extensions of the basic tomographic method are shown.
First, the deconvolution of noise inserted by the detectors and/or the experimental ap-
paratus is analyzed. Noise can be, to a great extent, eliminated under the hypothesis
that the CP-map describing its effects is invertible [2, 9]. Also, as will be analyzed
in the following, the statistical random noise (resulting from the Monte Carlo aver-
age of the tomographic reconstruction with finite data) can be reduced. This is the
aim of the adaptive tomography technique [10]. This technique can be pushed to a
limit in which tomographic estimators, which would otherwise be non-bounded, can be
brought to converge. This is obtained through the renormalized tomography procedure
[8], analyzed next.

In summary, after a brief historical introduction, in this chapter the tomography
technique is introduced and the group based general theory is derived. Its specification
to some cases in which the theory is applied will be given in the next chapter.

12



1.1 Brief history of Quantum Tomography 13

1.1 Brief history of Quantum Tomography

In this section a brief historical perspective (see also [11, 12]) on quantum tomography
is presented.

Already in 1957 Fano [13] stated the problem of quantum state measurement and
gave an outline for the solution by demonstrating that a “complete”1 set of observ-
ables would be necessary. Rather extensive theoretical work was later performed (see
references cited in [14, 15]), but it was only with the proposal by Vogel and Risken
[3] that quantum tomography was born. The first experiments, which already showed
reconstructions of coherent and squeezed states were performed in Michael Raymer’s
group at the University of Oregon [16]. The main idea that is the basis of this and of
subsequent work, is that it is possible to extend to the quantum domain the algorithms
that are conventionally used in medical imaging to recover two dimensional distribu-
tions (say of mass) from unidimensional projections in different directions. However,
the first tomographic method is unreliable for the measurement of unknown quantum
states, since some arbitrary smoothing parameters have to be introduced. The unbiased
tomographic procedure was proposed by D’Ariano, Macchiavello, Paris [1] and succes-
sively continuously improved. In fact, recently a general theoretical framework from
which to derive all known tomographic formulas was proposed. Numerous experiments
have been proposed using the unbiased tomographic method. Experiments (some of
which are outlined in Chap. 3 for the optical domain and in Sect. 2.2 for the angular
momentum domain) have also been proposed by the quantum optics research group in
Pavia.

1.1.1 Conventional tomographic imaging

In conventional medical tomography, one collects data in the form of marginal distri-
butions of the mass function m(x, y). In the complex plane the marginal r(x, ϕ) is a
projection of a complex function (m(x, y) in this case) on the direction indicated by
the angle ϕ ∈ [0, π]. It is defined as

r(x, ϕ) def=
∫ +∞

−∞

dy

π
m
(
(x+ iy)eiϕ, (x− iy)e−iϕ

)
. (1.1)

The collection of all r for different ϕ is called “Radon transform”. The tomography
process essentially consists in the inversion of the Radon transform (1.1) in order to
recover the mass function m(x, y) from the marginals r(x, ϕ).

A sketch of such process is now given from [11]. Start by writingm(α, α∗) ≡ m(x, y),
where α def= (x+iy) and α∗ def= (x−iy) are considered as independent variables. Using the

1In the following we’ll show that actually an irreducible set will be necessary.
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complex Dirac delta function δ(2)(α) def= (1/π2)
∫
d2γ exp[γα∗−γ∗α] (where d2γ = dx dy

for γ = x+ iy) one has the obvious identity

m(α, α∗) =
∫
d2β δ(2)(α− β) m(β, β∗) . (1.2)

By writing the delta function in complex coordinates, one has

δ(2)(α) =
∫ +∞

0

dk

4
k

∫ 2π

0

dϕ

π2
e−ikαϕ =

∫ +∞

−∞

dk

4
|k|
∫ π

0

dϕ

π2
e−ikαϕ , (1.3)

with αϕ
def= Re(α e−iϕ) = −αϕ+π, and finally, by taking β = (x+iy)eiϕ, it is immediate,

from Eqs. (1.2) and (1.3), to obtain the inverse Radon transform which is the core of
the whole tomographic process, i.e.

m(x, y) =
∫ π

0

dϕ

π

∫ +∞

−∞
dx′ r(x′, ϕ)

∫ +∞

−∞

dk

4
|k| eik(x′−αϕ) . (1.4)

Eq. (1.4) is conventionally written as

m(x, y) =
∫ π

0

dϕ

π

∫ +∞

−∞
dx′ r(x′, ϕ) K(x′ − αϕ), (1.5)

where K is the so called “Kernel function” given by

K(x) def=
∫ +∞

−∞

dk

4
|k|eikx =

1
2
Re
∫ +∞

0
dk keikx

=
1
2

lim
ε→0+

2Re
∫ +∞

0
dk keikx−kε = −1

2
P 1
x2
, (1.6)

where P indicates the Cauchy principal value. Integrating by parts Eq. (1.5) one
obtains the tomographic formula that is usually found in medical imaging, i.e.

m(x, y) =
1
2π

∫ π

0
dϕ P

∫ +∞

−∞
dx′

1
x′ − αϕ

∂

∂x′
r(x′, ϕ) , (1.7)

which allows the reconstruction of the mass distribution m(x, y) from its projections
along different directions r(x, ϕ).

1.1.2 Extension to the quantum domain

In the quantum imaging process one would like to reconstruct a quantum state (in the
form of its Wigner function) starting from its marginal probability distributions. The
Wigner function (introduced in the 1930s by Wigner) is a real normalized function in
one to one correspondence with the state density operator %. It is defined as

W (x, y) def=
∫ +∞

−∞

dx′

π
e−2ix′y〈x+ x′|%|x− x′〉 . (1.8)



1.1 Brief history of Quantum Tomography 15

Vogel and Risken [3] noticed that, for optical systems, the probability distributions of
the quadrature operator defined as

xϕ
def=

1
2
(a†eiϕ + ae−iϕ) (1.9)

(a being the annihilation operator of an electromagnetic field mode) are the marginal
probabilities of the Wigner function of the state of the field. Thus, by applying the same
procedure outlined in the previous subsection, they managed to recover the Wigner
function via an inverse Radon transform from the quadrature probability distributions
p(x, ϕ), i.e. Eq. (13) of [3]

W (x, y) =
∫ π

0

dϕ

π

∫ +∞

−∞
dx′ p(x′, ϕ)

∫ +∞

−∞

dk

4
|k| eik(x′−x cosϕ−y sinϕ) . (1.10)

[Notice that, in the original paper [3], conventional tomographic imaging is never re-
ferred to.] The procedure to derive Eq. (1.10) with is identical to the one used in
the previous subsection as one can see by comparing Eq. (1.10) with (1.4). The ex-
perimental data, namely the quadrature probability distributions, can be obtained by
using the homodyne detector which, in the limit of strong local oscillator, measures
the quadrature of the field [17]. For the thorough analysis of the homodyne detector
(see Fig. 2.1) we address the reader to Sect. 2.1. The method proposed by Vogel and
Risken, namely the inversion of the Radon transform, was the one which has been used
in the first experiments [16].

Experiments have extended also beyond the optical domain and tomographic re-
construction was used e.g. to measure the quantum state of a vibrational mode of a
molecule [18]. A modified tomographic scheme, similar to the procedure proposed by
Opatrný and Welsch [19] in quantum optics (see Sect. 2.3), has been used by Leibfried
et al. [20] to determine the vibrational state of a single atom in a Paul trap.

It should be noted, however, that this first method is unreliable for the reconstruc-
tion of unknown quantum states, since there is an intrinsic unavoidable systematic
error. In fact, one can see that Eq. (1.7) contains a derivative of the quadrature prob-
ability in the direction indicated by ϕ and a principal–value integral. All this should
be calculated with the parameter ϕ varying continuously in [0, π] in order to compute
the external integral in ϕ. In the experimental situation, where the data are just a
sequence of values {(xn, ϕn)} of the quadrature in the directions {ϕn}, the inverse
Radon transform method of Eq. (1.7) is obviously hopeless. The same holds also for
Eq. (1.10), where one must keep in mind that the integral on k is unbounded. In order
to use the inverse Radon transform procedure, one would need the analytical form of
the marginal distribution of the quadrature p(x, ϕ). This can be obtained by collecting
the experimental data into histograms and splining these histograms. This is not an
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unbiased procedure since the degree of splining, the width of the histogram bins and the
number of different phases ϕn on which the experimental data should be collected are
arbitrary parameters and inject the reconstruction with systematic errors whose effects
cannot be easily controlled. For example, the effect of using high degrees of splining
is the wash–out of the quantum features of the state, and, vice-versa, the effect of low
degrees of splining (or no splining at all) is to create negative bias for the probabilities
in the reconstruction —see [1].

1.1.3 Quantum homodyne tomography

A new approach to optical tomography was proposed by D’Ariano, Macchiavello and
Paris [1] and later generalized and simplified by D’Ariano, Leonhardt, Paul [2]. This
approach, that will be referred to as ‘quantum homodyne tomography’, allows to recover
the quantum state of the field % (and also the mean values of system operators) directly
from the data, abolishing all the sources of systematic errors. Only statistical errors
(that can be reduced arbitrarily by collecting more experimental data) are left. The
theory of homodyne tomography will be here only sketched very rapidly since its results
will be derived from a much more general framework in Sect. 2.1.

By expressing position and momentum operators in terms of creation and annihi-
lation operators as X̂ def= 1

2(a+a†) and P̂ def= i
2(a†−a) and by defining the displacement

operator as D(α) def= exp(αa† − α∗a), it is easy to see that the Wigner function defined
in (1.8) is equivalent to the complex Fourier transform of the characteristic function,
i.e.

W (α, α∗) =
∫
d2λ

π2
〈D(λ)〉 eαλ∗−α∗λ

≡
∫
d2λ

π2
Tr
[
% eλa

†−λ∗a
]
eλ

∗α−λα∗ , (1.11)

where 〈Ô〉 denotes the expectation value of the operator Ô. As will be shown in detail
in Sect. 2.1, the same expression (1.11) can be obtained in operator form and yields

% =
∫
d2λ

π
Tr
[
% eλa

†−λ∗a
]
eλ

∗a−λa† . (1.12)

By writing Eq. (1.12) in polar coordinates with λ def= i
2k e

iϕ one obtains

% =
∫ +∞

0

dk

4
k

∫ 2π

0

dϕ

π
Tr
[
% eikxϕ

]
e−ikxϕ

=
∫ +∞

−∞

dk

4
|k|
∫ π

0

dϕ

π
Tr
[
% eikxϕ

]
e−ikxϕ , (1.13)

where the property xϕ+π = −xϕ was used. The evaluation of the trace in (1.13) with
the complete set of operators {|xϕ〉} eigenvectors of the quadrature xϕ gives

% =
∫ π

0

dϕ

π

∫ +∞

−∞
dx 〈xϕ|%|xϕ〉

∫ +∞

−∞

dk

4
|k| e−ik(xϕ−x) . (1.14)
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Eq. (1.14), in terms of the quadrature probability p(x, ϕ) = 〈xϕ|%|xϕ〉, can be written
as

% =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x, ϕ) K(x− xϕ), (1.15)

where K(xϕ) is an unbounded operator, defined as in (1.6). Eq. (1.15) is the basis
of the quantum homodyne tomographic procedure. In fact it is possible to use it to
sample any matrix element 〈ψ|%|φ〉 such that 〈ψ|K(x− xϕ)|φ〉 is bounded. Moreover,
by calculating the integrals of (1.15) with the Monte Carlo method, it is possible to
sample the matrix element 〈ψ|%|φ〉 directly from the homodyne experimental values.
In fact, for bounded 〈ψ|Kη(x− aϕ)|φ〉, the central limit theorem guarantees that

〈ψ|%|φ〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x, φ) 〈ψ|K(x− xϕ)|φ〉

= lim
N→∞

1
N

N∑
n=0

〈ψ|K(xn − xϕn))|φ〉 , (1.16)

where xn is the homodyne outcome measured at phase ϕn and is distributed with
probability p(x, ϕ). We can define “Kernel function” Kϕ(x) for the evaluation of the
matrix element 〈ψ|%|φ〉 the function

Kϕ[|φ〉〈ψ|](x) def= 〈ψ|K(x− xϕ)|φ〉 . (1.17)

Eq. (1.16) represents the actual reconstruction procedure that must be used to sample
the density matrix % from the homodyne data. Notice, that in order to eliminate all
possible sources of systematic errors, each phase ϕn at which the measurement is to
be performed must be randomly chosen with uniform probability in [0, π]. For finite
number of measurements N , the estimate (1.16) of the integral is a Gaussian distributed
around the true value, with statistical error decreasing as N−1/2. For more details on
the statistical procedures used in tomography, refer to Sect. 1.2.4. Notice that the
measurability of the density operator matrix element depends only on the boundedness
of the matrix element of the Kernel function, and that no adjustable parameters are
needed in the procedure, which thus is indeed unbiased.

The tomographic formulas that were derived so far will be now generalized in order
to obtain the reconstruction of the correct matrix elements starting from data collected
from imperfect homodyne detectors (i.e. with quantum efficiency η < 100%). From
the Mandel, Kelley, and Kleiner formula describing the photon count distribution for
inefficient photodetectors, one can show that a detector with quantum efficiency η is
equivalent to a perfect detector (which exactly measures the number of photons and is
described by the POM Π = |n〉〈n|) preceded by a beam splitter with transmissivity η.
As will be shown in Sect. 2.1, the effect of the efficiency in homodyne detectors is a
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Gaussian convolution of the homodyne probability p(x, ϕ), as

pη(x, ϕ) =

√
8η

π(1− η)

∫ +∞

−∞
dk e

− 2η
1−η

(k−x)2
p(k, ϕ) . (1.18)

The tomographic reconstruction procedure can be now derived in the same way as
previously, taking care to substitute p(x, ϕ) with pη(x, ϕ) in Eq. (1.15). In such way
we obtain

% =
∫ π

0

dϕ

π

∫ +∞

−∞
dx pη(x, ϕ) Kη(x− xϕ), (1.19)

where now the Kernel function is defined as

Kη(x) =
1
2
Re

∫ +∞

0
k dk e

1−η
8η

k2+ikx
. (1.20)

In fact, by taking the Fourier transform of both members of Eq. (1.18), one can easily
check that

% =
∫ π

0

dϕ

π

∫ +∞

−∞
dx pη(x, ϕ) Kη(x− xϕ) =

∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x, ϕ) K(x− xϕ). (1.21)

Notice that the anti-Gaussian in Eq. (1.20) causes a much slower convergence of the
Monte Carlo integral (1.19): the statistical fluctuation will increase exponentially for
decreasing detector efficiency η. In order to achieve good reconstructions with non-
ideal detectors, one needs to collect a greater number of data. On the other hand, the
“plain” tomographic formula (1.15) can be used also for η < 100%. In this case, the
reconstructed state will be the “dressed state” we would have with ideal photodetection,
preceded by a transmissivity η beam splitter, i.e. in general its quantum features will
have been washed out to a certain extent (see e.g. [21]).

It is clear, from the theory we have presented, that the measurability of the den-
sity matrix depends only on the particular representation that was chosen and on the
quantum efficiency of the detectors. For example, there is a bound η > 50% for the
reconstruction of the density matrix in the Fock basis: detectors with lower efficiency
output data which is too spoiled to be of any use. In fact, one can see that in this case
the matrix elements of the Kernel Kη in the Fock basis 〈m|Kη|n〉 are unbounded, and
thus Eq. (1.19) is of no use. Notice that actual homodyne detectors have efficiency
ranging between 70% and 90% [21, 22]. The relationship between representation and
quantum efficiency will be better analyzed in Sect. 2.1.

After the method was proposed, many experiments have been performed and it
is not possible to make a comprehensive list. We’ll cite some: the highly squeezed
state reconstruction by Breitenbach, Schiller and Mlynek [21]; the tomography schemes
of Kumar [22] and his self-homodyne schemes [23]; the photon number distribution
of ultrafast laser by Munroe, Boggavarapu, Anderson, and Raymer [24]; the tomo-
graphic measurement of joint photon statistics in the twin beam quantum state by
Choi, D’Ariano, Kumar, and Vasilyev [25]; etc.
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1.1.4 General tomography

Recently a general theoretical framework for state reconstruction was derived as the
result of the work of D’Ariano, Maccone, Paini [5, 6, 7, 8]. It allows to recover all the
formulas of homodyne tomography that were presented in the previous subsection as a
special case of a much more general theory. From the general theory, new tomographical
state reconstruction methods arise, such as the spin tomography (see Sect. 2.2). A new
formalism has also been developed and the derivation of the tomographic formulas
has been greatly simplified. Here, we will not go into any more detail on the general
tomography, as it will be thoroughly analyzed in the following sections.

The quantum tomography theory that is presented in this thesis can now be con-
sidered conclusive? It is difficult to make previsions in such a delicate field as the
possible extensions to a new theory, but the generality that this theory has by now
reached encourages to think that a standing point has after all been achieved. This
does not however mean that there is no space left for research in this field, as possible
new applications of the theory can still be found, and the extension to the tomographic
reconstruction of a relativistic particle is still lacking [26].

1.2 Tomography of arbitrary systems: general theory

In this section the general theory of quantum tomography [5, 6, 7, 8] will be given. We
derive the formulas on which all schemes of state reconstruction that we’ll present are
based. The whole framework of the mathematical demonstration we will need is based
on group theory formalism.

The section is divided into subsections. In the first one we will (try to) give the
reader an intuitive-explanatory version of the rigorous mathematical demonstrations
which are given in the following mathematical subsection. The mathematical subsection
is the core of the present chapter and contains the definitions, the properties and the
formulas (with their proofs) for the tomographic methods. Since in most cases (as
all the ones analyzed in this thesis) one is interested in using tomography for the
evaluation of ensemble values of trace–class operators, in the next subsection we derive
essentially the same results but with the restriction of using trace-class operators only.
The resulting theorems, though less general, are easier to derive. Historically, this
was the first group tomographic method that was introduced. In the last subsection
we give the basics of Monte Carlo integral theory which are needed to implement the
tomographic algorithms in actual experiments (and also in numerical simulations of
experiments).
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1.2.1 Excursus on the method

In this subsection we’ll try to get the reader familiar with the concepts that will be used
more rigorously in the following. The more mathematical–oriented reader can directly
skip to the following subsection. In the following we will review the general theory of
[7, 8], analyzing the mathematical proofs in detail and giving some additional useful
theorems.

The aim of the general tomography is to estimate, in arbitrary quantum systems,
the mean value 〈A〉 of an arbitrary system operator A using only the results of the
measurements on an irreducible set of observables (i.e. Hermitian operators) {Qλ, λ ∈
Λ}, called “quorum”. The procedure by which this can be obtained needs the so called
“Kernel function” Kλ[A](xλ) which is a function of the quorum operators eigenvalues
xλ. The Kernel K is defined so that by integrating it with the probability pλ(x) of
having outcome x when measuring Qλ, it gives the mean value of A, i.e.

〈A〉 =
∫

Λ
dλ

∫ +∞

−∞
dxλ pλ(xλ) Kλ[A](xλ) , (1.22)

where the first integral is performed on the values of λ that designate all quorum
observables, and the second on all possible eigenvalues of that quorum observable Qλ
determined by the λ integration variable of the outer integral. Both (or one of the)
integrals in (1.22) may actually be a sum.

The algorithmic tomographic procedure to be used in order to estimate 〈A〉 with
Eq. (1.22) is the following. One chooses a quorum operator Qλ by choosing λ with
uniform probability in Λ and performs a measurement, obtaining the result xi. By
repeating the procedureN times, one collects the set of experimental data {(λi, xi), with
i = 1, · · · , N}, where λi identifies the quorum observable used for the ith measurement,
and xi its result. From the same set of data the mean value of any operator A may be
obtained. In fact one derives the Kernel function for the operator A and the quorum
Qλ, and then samples the double integral of (1.22) using the limit

〈A〉 = lim
N→∞

1
N

N∑
i=1

Kλi
[A](xi) . (1.23)

Eq. (1.23) for finite N is a Monte Carlo estimate of the integrals in (1.22). As will be
shown, the statistical errors of the estimate may be evaluated.

How is the Kernel function obtained, given the operator A and the quorum Qλ?
The whole framework is based on group theory theorems, such as the Schur Lemmas,
and we will make extensive use of the concept of unitary irreducible representation
(UIR). Thus, it is convenient to introduce the concept of tomographic group T , which
essentially is a group that induces a UIR on the Hilbert space of the system H we are
studying. We will also show that when T is a Lie group, the quorum lives in its Lie
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algebra. The Kernel for an arbitrary A can be obtained starting from the intertwining
operator E defined through the UIR of the tomographic group T , as

E
def=
∫
T
dg R†(g)⊗R(g) , (1.24)

where the unitary operators R(g) form the UIR of T , and the integral is performed on
all the group T elements g. We will show that for any two operators A and B, one has

E A⊗B = B ⊗A E . (1.25)

Using this property, one can show that

A = Tr1[E A⊗ 11] , (1.26)

where Tr1 indicates partial trace on the first space of H ⊗ H. Eq. (1.26) should be
interpreted as follows. Thanks to the intertwining operator E, A is taken from the
operator space to a space where it is traced away with the UIR operators. Its place in
the operator space is taken by the UIR operators that are functions of the quorum and
thus may be easily calculated on the outcomes of the experiments. In fact, any element
of the group UIR is a unitary operator and thus can be obtained by exponentiating a
suitable hermitian operator Hg, i.e. g = exp[iHg], for any g in T . If T is a Lie group,
Hg is a linear combination of a basis ~U def= {Uk} of the Lie algebra of the group, which
thus contains the whole quorum: we obtained a discrete set of operators ~U that are a
basis for the vector space of quorum observables2. Thus for any group element g in T ,
one can write

g = g(ψ,~n) = exp[iψ~n · ~U ] , (1.27)

where, since the measurement procedure for the operator O or for the same operator
multiplied by a constant kO are coincident, we have taken (in the vector space of
quorum observables) the polar coordinates (ψ,~n) by introducing the unit vector ~n.

Using the polar parametrization of the UIR group elements, Eq. (1.26) now rewrites,

A = Tr1

[∫
d~n

∫
dψ J e−iψ~n·

~UA⊗ eiψ~n·
~U

]
, (1.28)

where J is the Jacobian of the coordinate transformation, such that dg = d~n dψ J(~n, ψ).
By taking the expectation value of both members (if the system state is described by
the density matrix %), Eq. (1.28) becomes

〈A〉 = Tr[A%] =
∫
d~n

∫
dx~n p~n(x~n) Tr

[∫
dψJ e−iψ(~n·~U−x~n) A

]
, (1.29)

2As we’ll see in the next section, more generally one should also introduce an equivalence class

that contains all operators acting on a Hilbert subspace of the Hilbert space, so that the tomographic

reconstruction can be performed separately in each subspace.
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where the trace has been evaluated on the eigenvectors |x~n〉 of the quorum observable
~n · ~U , and p~n(x~n)

def= 〈x~n|%|x~n〉 is the probability of obtaining the eigenvalue x~n when
measuring ~n· ~U . By comparing (1.29) and (1.22), it is immediate to obtain the following
definition for the Kernel function, determined only by the quorum Qλ(~n) = ~n · ~U and
by the operator A,

K~n[A](x) def= Tr
[∫

dψJ e−iψ(~n·~U−x) A

]
. (1.30)

We refer the reader to the next section for the demonstration of the statements
given here and for a more thorough analysis of the possible cases. Here we introduced
a skeletal description of the tomography theory, and we showed how one can practically
sample the mean value of any observable A starting from the outcomes of the quorum
observables only.

1.2.2 Mathematical backbone

Here the rigorous mathematical demonstrations needed for the tomography theory as
in [7, 8] are given through group theory [27].

We start with some definitions. Let H be the Hilbert space of the studied system,
L(H) the set of all operators acting on H and % the density operator of the system
quantum state. Unless otherwise stated, all vectors |ψ〉 in H we will refer to are to be
intended as normalized (〈ψ|ψ〉 = 1).

The aim of quantum tomography is to obtain the ensemble average 〈A〉 = Tr[A%]
of some operator A acting on the Hilbert space of the system, by averaging the results
of the measurements of a fixed set of observables Qλ.

Quorum definition. The set Q = {Qλ} of observables Qλ ∈ L(H), with λ ∈ Λ is a

quorum
def⇐⇒ it is possible to determine the ensemble average 〈A〉, ∀ A ∈ L(H), using

outcomes of measurements of Qλ operators only.

Unbiased estimator definition. The operator Eλ[A](Qλ) is an unbiased estimator

for the operator A ∈ L(H) with the quorum Q = {Qλ, λ ∈ Λ} def⇐⇒ ∀% one can obtain

the ensemble average of A as

〈A〉 =
∫

Λ
dµ(λ) 〈Eλ[A](Qλ)〉 , (1.31)

where dµ is a probability measure over the set Λ. In the case of discrete set Λ =
{λ1, · · · , λN}, the integral will be replaced by a sum as in

〈A〉 =
N∑
i=1

µi 〈Eλi
[A](Qλi

)〉 . (1.32)
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Notice that the two preceding definitions of quorum and unbiased estimator are
not independent, since the quorum definition implies the existence of at least one un-
biased estimator. Since Eqs. (1.31) and (1.32) must be true for any state %, it follows
necessarily that:
Any operator A in L(H) must be a function (at least in some distributional sense) of
some operators contained in Q, i.e.

A =
∫

Λ
dµ(λ) Eλ[A](Qλ) , (1.33)

(where the integral converges at least by taking expectation values of both members)
or, for discrete quorum,

A =
N∑
i=1

µi Eλi
[A](Qλi

) (1.34)

(which for N = +∞ converges at least by taking expectation values of both members).

Quorum irreducibility theorem. {Qλ} is a quorum ⇒ {Qλ} is an irreducible set

of operators in H.

Definition: A set {Qλ, λ ∈ Λ} is called irreducible in H def⇐⇒ there are no proper

invariant subspaces of H for the application of the set Qλ.

Proof: If, by reductio ad absurdum, it weren’t so, there would be invariant subspaces
in H. One could, then, diagonalize all operators Qλ on such subspaces, and hence all
Qλ would commute among them. Take an operator O that does not commute with any
of the Qλ, this cannot be written as a function of Qλ (λ ∈ Λ), hence Qλ cannot be a
quorum.H

Tomographic group definition. The group T is a tomographic group for the Hilbert

space H def⇐⇒ it is a connected3 Lie group with invariant4 measure dg and a unitary

irreducible ray representation R(g) of operators acting on the Hilbert space H.

Definition: dg is an invariant measure for the Lie group T
def⇐⇒ dg is a volume element

around g in T such that ∀ h, j ∈ T one has d(h · g) = d(g · j) = dg.

Definition: A set R(g) (g ∈ T ) is a unitary irreducible ray representation (UIR) on H
def⇐⇒ it is a homomorphism of the group T into a set of unitary operators acting on a

space H, such that

∀ g1, g2, g3 ∈ T with g1 · g2 = g3 ⇒ R(g1)R(g2) = eiξ(g1,g2)R(g3), ξ ∈ R, (1.35)
3It is not necessary for the group T to be connected. If it is not, one only has to take the identity

connected subgroup of the group unitary irreducible representation. Since this is a useless complication,

we’ll require the group to be connected.
4Here we are not interested in this kind of extension, but the hypothesis of invariance of the group

measure can be relaxed. Some of the properties that we’ll demonstrate require only left (or right)

invariance.
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and such that the action of the R(g) for ∀ g ∈ T on the vectors of H does not define

invariant subspaces.

Notice that from the definition of tomographic group, it is not a restriction to
consider as tomographic groups only the ones that have a faithful UIR (i.e. T and its
UIR are isomorphic). In the following we will do so and we will use the symbol T both
for the group and for its UIR group of operators {R(g) g ∈ T}.

Discrete tomographic group definition. In this thesis we will restrict our attention

only to the case in which the discrete tomographic group is a subgroup of a Lie group.

In this case it is still possible to use the Lie algebra of the Lie group also to generate

the discrete subgroup. The extension to a generic discrete group is still lacking, but is

not needed for the systems that will be analyzed in this thesis.

For an example of applications of discrete tomographic groups refer to the discrete spin

tomography, analyzed in Sect. 2.2.3.

In order to devise a tomographic scheme starting from a given quorum or in order to
test if a set of observables is a quorum, we need to build an unbiased estimator for that
set. Obviously, if this task is proved impossible, then the set cannot be a quorum. In
order to build the unbiased estimator, we need to introduce the intertwining operator
E.

Intertwining operator definition. The intertwining operator E for a tomographic

group T with UIR {R(g), g ∈ T} is

E
def=
∫
T
dg R†(g)⊗R(g), (1.36)

or

E
def=
∑
gi

R†(gi)⊗R(gi) (1.37)

for discrete groups.

The reason for which E is called intertwining operator will be evident from Property
1 below. In the following, we will consider only the continuous case, since the formulas
for the discrete case can be easily obtained by substituting the integral with a sum.

The operator E acts on H⊗H and it is self-adjoint. This last property follows from
the unitarity of the representation R(g) and the properties5 of the invariant measure.
In fact, one has

E† =
∫
T
dg R(g)⊗R†(g) =

∫
T
dg R†(g−1)⊗R(g−1)

=
∫
T
dg′ R†(g′)⊗R(g′) = E . (1.38)

5Namely dg = dg−1, see [28].
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The tomography theorem follows from the following three properties.
Definition: A set of operators R(g) acting on H and depending on a continuous
parameter g is square integrable def⇐⇒

∫
dg|〈u|R(g)|v〉|2 <∞ for ∀ |u〉, |v〉 ∈ H.

Definition: A set of operators R(g) acting on H and depending on a discrete param-
eter g is square summable def⇐⇒

∑∞
g |〈u|R(g)|v〉|2 <∞ for ∀ |u〉, |v〉 ∈ H.

Property 1. Given two arbitrary operators A, B ∈ L(H), using E defined by Eq.

(1.36) or (1.37) with square integrable (or summable) UIR R(g), one has

E A⊗B = B ⊗A E . (1.39)

Proof: For an arbitrary h ∈ T one has

E 11⊗R(h) =
∫
T
dg R†(g)⊗R(gh) =

∫
T
dg′ R†(g′h−1)⊗R(g′) = R(h)⊗ 11 E,

(1.40)

where g′ def= gh and 11 is the identity operator in H. In (1.40) the homomorphism prop-
erty [27] of group representation [i.e. R(g)R(h) = R(gh)] and the (right) invariance of
the measure have been used. Analogously, (by using the left invariance of the measure)
∀h ∈ T one has

E R(h)⊗ 11 = 11⊗R(h) E . (1.41)

In the rest of the demonstration we proceed analogously as in the demonstration of
Schur’s second lemma.

Consider S an intertwining operator defined by S A ⊗ B = B ⊗ A S for ∀A,B ∈
L(H). From (1.40) we see that

ES R(g)⊗ 11 = E 11⊗R(g) S = R(g)⊗ 11 ES , (1.42)

hence the operator ES acts as the identity on the first Hilbert space of H⊗H. In fact,
in the first Hilbert space it commutes with a UIR and Schur’s second lemma may be
applied, with the conclusion that ES is a multiple of the identity in the first space.
Analogously from (1.41) we have

ES 11⊗R(g) = 11⊗R(g) ES (1.43)

and hence ES is a multiple of the identity also on the second Hilbert space. Thus,
normalizing6 E appropriately, ES = 11H ⊗ 11H = 11H⊗H, which implies that E = S−1

on the whole domain H ⊗H, i.e. E is an intertwining operator and acts as S on the
operators. H

6Notice that this requires the UIR which defines E through Eq. (1.36) or (1.37) to be square inte-

grable (or summable). For non–square integrable UIR, Eq. (1.39) may still be retained, by considering

it as an algebraic identity.
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Property 2. Consider a square integrable UIR R of the tomographic group T and

impose
∫
dg|〈u|R(g)|v〉|2 = 1 for some |u〉, |v〉 ∈ H ⇒ one has

Tr1(E) = Tr2(E) = 11 , (1.44)

where Tri indicates the partial trace over the ith space in H⊗H, and 11 the identity on

H. Moreover, the integral
∫
dg|〈u|R(g)|v〉|2 is independent on the choice of the vectors

|u〉 and |v〉.

Proof: We start by showing that
∫
dg|〈u|R(g)|v〉|2 is independent on |u〉 and |v〉.

By using the properties of the invariant measure of T , one has∫
dg R(g)|v〉〈v|R†(g)R(h) =

∫
dg′ R(hg′)|v〉〈v|R†(g′) (1.45)

= R(h)
∫
dg′ R(g′)|v〉〈v|R†(g′) ,

where the invariance of the group measure has been used in dg = dg′, with g′ = h−1g.
Eq. (1.45), through Schur’s second lemma, guarantees that∫

dg R(g)|v〉〈v|R†(g) = τv11H , τv ∈ C . (1.46)

Hence, if one considers the quantity∫
dg |〈u|R(g)|v〉|2 = τv , (1.47)

from Eq. (1.46) it is trivial to see that τv is independent on |u〉. One can check that it
is also independent on |v〉 by noticing that, given an arbitrary vector |a〉

τv =
∫
dg R(g)|v〉〈v|R†(g) = 〈a|

∫
dg R(g)|v〉〈v|R†(g)|a〉

=
∫
dg′ 〈a|R(g′−1)|v〉〈v|R†(g′−1)|a〉 = 〈v|

∫
dg′ R(g′)|a〉〈a|R†(g′)|v〉

= τa . (1.48)

Notice that the hypothesis of square–integrability of the representation guarantees the
convergence of the integral in (1.47). Thus, the natural choice for the normalization of
the group’s measure is to take τv = 1.

We now prove Eq. (1.44). For any |u〉 in H, one has, using Property 1, i.e. Eq.
(1.39),

2〈u|Tr1E|u〉2 = 2〈u|Tr1E|u〉2 2〈v|v〉2 = 2〈u|Tr1
[
E 11⊗ |u〉2 2〈v|

]
|v〉2

= 2〈u|Tr1
[
|u〉1 1〈v| ⊗ 11 E

]
|v〉2 = Tr1|u〉1 1〈v|

∫
dg R†(g) 2〈u|R(g)|v〉2

=
∫
dg|〈u|R(g)|v〉|2 = 1 , (1.49)
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where the subscripts on the bras and kets indicate which of the spaces H⊗H contains
the vector. The chain of equations (1.49) is true for any |u〉 ∈ H ⇔ Tr1E = 112. The
same reasoning can obviously be applied to Tr2E.H

It is now convenient to introduce the Lie algebra of the representation groupR(g), g ∈
T . Define ~a as the vector of coordinates for the Lie group T . Any connected Lie group
T can be generated by the (“infinitesimal”) elements of the ‘group germ’ U , i.e. the
arbitrarily small volume element around the group identity defined as U def= {g(~a) ∈
T such that ∀i |ai| < ε, ε > 0}, such that if g ∈ U ⇒ g−1 ∈ U . The group U can
be chosen such that each element of U is in a one parameter subgroup Uk, where
Uk

def= {g(~a) ∈ T such that |ak| < ε, aj = 0 for k 6= j ε > 0}. The {Uk} form a basis7

for the Lie algebra of the group T . Through the exponentiation procedure, any element
of the group T can be generated (in a one parameter subgroup) starting from the group
germ U as g(ak) = eiakUk , and hence, in general,

g(~a) = ei~a·
~U ∀g ∈ T , (1.50)

with the obvious notation ~a· ~U def=
∑

k akUk, and where we have factorized the imaginary
unit i (which will be useful in analyzing groups of unitary operators as we will require
the operators Uk to be hermitian).

In general, the Lie algebra of a group of operators may be a direct sum of sub-
algebras, i.e. any vector in the Lie algebra can be decomposed into a direct sum of
operators that act onto different Hilbert subspaces of the global system Hilbert space.
Thus, it is useful to introduce in the Lie algebra of the group the equivalence classes de-
fined as “Two operators Uk, Uj are equivalent def⇐⇒ Uk, Uj ∈ L(Hl), with H = ⊗l Hl.”,
which definitely introduces an equivalence relation8 into the Lie algebra. Now the Lie
coordinates ~a of the group element can be written in terms of the equivalence classes
as

~a · ~U =
L∑
i=1

~ai · ~U , (1.51)

where the sum is actually a direct sum of operators and L is the number of equivalence
classes, i.e. the number of subspaces in which the global Hilbert space of the system can
be decomposed. For i 6= j, ~ai · ~U and ~aj · ~U act on different spaces and thus commute9,
[~ai · ~U , ~aj · ~U ] = 0. For example, if one considers a particle living in the xy plane with
spin, the Lie algebra is generated by the basis vectors ~U def= {rx, px, ry, py, Sx, Sy, Sz}
(r and p being the position and momentum operators and ~S being the spin operators)

7From the above reasoning, the set {Uk} is always a discrete finite set for Lie groups.
8If A operates on the same space of B, then B does the same with A. If A operates on the same

space as B and C, then B and C operate on the same space.
9Each operator is proportional to the identity on the space on which the other operator acts.
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and there are 3 equivalence classes, namely those generated by {rx, px}, {ry, py}, and
{Sx, Sy, Sz}. The usefulness of the separation of the Lie algebra into equivalent classes
is evident from the fact that a measurement of a global operator of the system is carried
out by taking measurements separately on each of the system components, described
in different Hilbert subspaces of the system.

For our scopes, it is useful to introduce in each Lie subalgebra the polar parametriza-
tion of the group T , by writing ~ai

def= ψi~ni, with ~ni unit (or fixed–length) vector10 and
ψi = |~ai|. The domain of ~ni and ψi depends on the domain of the Lie coordinates for
the subgroup11 Ti generated by the ith equivalence class in the algebra. For the sake
of clarity here we will consider ~ni varying in si and ψi in Ψi. For example in homo-
dyne tomography we’ll see (Sect. 2.1) that it is convenient to consider ~ni varying in a
hemisphere of the unit sphere and ψi ∈ (−∞,+∞), while for spin tomography (Sect.
2.2) we have ~ni in the unit sphere and ψi ∈ [0, 2π], since Ti = SU(2). The usefulness
of the polar parametrization arises from the fact that for any observable A and for any
k ∈ R, the observable kA requires the same measuring procedures as A. Naturally,
in order to specify the group coordinate ~a, one needs all the ~ni, ψi on all classes, i.e.
~a = (~n1, ψ1; · · · ;~nL, ψL).

In summary, taken a basis {Uk} of the Lie algebra, and dividing it into L separate
equivalence classes, any element r = R(g) of the representation group of T can be
written in function of the equivalence class coordinates as

r(~a) = r(~n1, ψ1; · · · ;~nL, ψL) = exp

[
i
L∑
i=1

ψi~ni · ~U

]
=

L∏
i=1

exp[iψi~ni · ~U ] , (1.52)

where we remember that the sum is a direct sum and hence all the summed operators
commute.

Property 3. Take a basis ~U
def= {Uk} (k = 1, · · · , N) of the Lie algebra of the tomo-

graphic group T representation {R(g), g ∈ T}, and divide the basis operators ~U into L

equivalence classes of operators acting on same Hilbert subspaces. ⇒ The intertwining

operator E can be written as

E =
L∏
i=1

∫
si

d~ni

∫
Ψi

dψi Ji(~ni, ψi) e−iψi~ni·~U ⊗ eiψi~ni·~U , (1.53)

where Ji is the Jacobian of the transformation dg(~ai) = dψi d~ni Ji(~ni, ψi) of the Lie

coordinates of each of the Lie subalgebras which are in direct sum.

Eq. (1.53) can be written equivalently, in a more compact manner, as

E =
L∏
i=1

∫
si

d~ni

∫
Ψi

dψiJi(~ni, ψi)e−iψi~ni· ~∆U , (1.54)

10As will be clarified later, ~ni (for all i) plays the role of the λ that labels the operators in the quorum

Q = {Qλ}.
11The group Ti is obviously a subgroup of the tomographic group T .
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with ~∆U def= ~U ⊗ 11− 11⊗ ~U .

Proof: The demonstration is easily sketched, since, using the Lie algebra elements
as generators (the group is connected), one has R(g(~a)) = exp(i~a · ~U), where ~a =
(~n1, ψ1; · · · ;~nL, ψL) is the vector of Lie coordinates of the representation group. Thus,
one only has to change integration variables in the integral in the definition of E, (1.36),
as ∫

dg =
∫
d~a =

∏
i

∫
si

d~ni

∫
Ψi

dψi Ji(~ni, ψi) .H (1.55)

It is now possible to illustrate the tomography theorem, which shows how to build
the unbiased estimator, starting from the set of quorum operators Qλ.

Tomography theorem. Take the quorum Q def= {Qλ}, an arbitrary operator A ∈
L(H) and a basis {Uk} of the Lie algebra of the UIR of a tomographic group T . Define

the vector of Lie coordinates as ~ai = ~ai(~ni, ψi), where i is the index that characterizes

the subalgebras of the Lie algebra of T . If the UIR is square integrable =⇒ the unbiased

estimator for Q is given by the set

E~ni
[A](~ni · ~U) = Tr1

[
A⊗ 11 Ẽ~ni

(~ni · ~U)
]

, (1.56)

where the operator Ẽ on H⊗H is written in terms of the UIR of T as

Ẽ~ni
(~ni · ~U) def=

∫
Ψi

dψi Ji(ψi, ~ni) exp
[
−iψi~ni · (~U ⊗ 11− 11⊗ ~U)

]
, (1.57)

where Ji is defined by the transformation dg
def=
∏
i dψi d~ni Ji(ψi, ~ni), which transforms

the group invariant measure into the coordinates (ψi, ~ni). The quorum operators {Qλ}
live in the Lie algebra of the representation group and are defined as Qλ

def= ~ni · ~U with

λ = λ(i;~ni).
Notice that the intertwining operator E, previously introduced, is given by

E =
∏
i

∫
si

d~ni Ẽ~ni
(~ni · ~U) . (1.58)

Proof: In order to show that (1.56) is an unbiased estimator, we must verify (1.33),
namely that the operator A can be written as an integral over λ of the function E
of the quorum observables {Qλ}. Using Property 3, we see immediately that E =∏
i

∫
si
d~ni Ẽ~ni

(~ni · ~U). Thus, one has

∏
i

∫
si

d~ni E~ni
[A](~ni · ~U) =

∏
i

∫
si

d~ni Tr1
[
A⊗ 11 Ẽ~ni

(~ni · ~U)
]

= Tr1
[
A⊗ 11 E

]
. (1.59)



30 Chapter 1 General tomographic method

Now we use Property 1 and Property 2 respectively and obtain that

Tr1
[
A⊗ 11 E

]
= Tr1

[
E 11⊗A

]
= Tr1[E]A = A . (1.60)

Thus we may conclude that E~ni
is an unbiased estimator for the subgroup Ti, and that

the quorum {Qλ} is the set of operators ~ni · ~U , where ~ni plays the role of λ.H

As an immediate consequence of the previous theorem, the following theorem holds.

Quorum relation with tomographic group. Given {Uk} a basis for the Lie algebra

of T , define Qλ as the set that contains all the hermitian operators of fixed12 “length”

k in the algebra, i.e. all hermitian operators of the form ~ni · ~U , with
∑

k(~ni)
2
k = k2, for

any i =⇒ the set Q = {Qλ} is a quorum for the tomographic group T .

Proof: We have seen in the tomography theorem that an unbiased tomographic
estimator exists which is function only of operators of the form ~ni · ~U . This, thanks to
Eq. (1.33) ensures that the set ~ni · ~U for ∀ ~ni ∈ si and for all i is a quorum. Moreover,
since in the definition of ~U —see Eq. (1.50)— we have factorized the imaginary unit i
and since ~ni are a real vectors, we can be confident that the operators ~ni · ~U in the Lie
algebra are hermitian operators. In fact, since we are working with the group of UIR
of the tomographic group T , every element

R(g(~n1, ψ1; · · · ;~nL, ψL)) =
∏
i

exp[iψi~ni · ~U ] (1.61)

of the UIR group is a unitary operator only if ψi~ni · ~U are hermitian operators.H

In order to simplify the notation, in the following we will consider only one equiva-
lence class in the group algebra (L = 1). The general case follows from the fact that for
Hilbert spaces of composed systems, the reconstruction can be made separately on each
of the subspaces, by using the tomography theorem (1.56) on each of the equivalence
classes i in the Lie algebra.

It is possible to obtain a tomographic formula of the type (1.15), by defining an
appropriate Kernel. From the tomography theorem, one has

〈A〉 =
∫
s
d~n
〈
E~n[A](~n · ~U)

〉
(1.62)

=
∫
s
d~n

〈
Tr1

[
A⊗ 11

∫
Ψ
dψ J e−iψ~n·

~∆U

]〉
=
∫
s
d~n Tr

[
A⊗ %

∫
Ψ
dψ J e−iψ~n·

~∆U

]
12In the tomography theorem, we considered vectors of unit length, but, as far as the length is fixed,

any constant will do. As we have seen, this is a consequence of the fact that measuring an observable

O or the same observable multiplied by a constant kO requires identical procedures.
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=
∫
s
d~n

×Tr
[∫

Ψ
dψ J

(
A e−iψ~n·

~U ⊗ 11
)(

11⊗
∫
X~n

dx~n

∫
X~n

dx′~n %x,x′ |x〉~n ~n〈x′| eiψx~n

)]
,

where the density matrix % was written in terms of the eigenfunctions of the quorum
operator ~n · ~U , i.e.

%
def=
∫
X~n

dx~n

∫
X~n

dx′~n %x,x′ |x〉~n ~n〈x′| , (1.63)

with (~n · ~U)|x〉~n = x~n |x〉~n , x~n ∈ X~n. By separating the trace in Eq. (1.63) as
Tr[O1 ⊗O2] = Tr1[O1] Tr2[O2], we find

〈A〉 =
∫
s
d~n

∫
X~n

dx~n p~n(x~n) Tr
[∫

Ψ
dψ J A e−iψ(~n·~U−x~n)

]
, (1.64)

where p~n(x~n)
def= %x,x is the probability of obtaining x~n as the outcome of the measure-

ment of the quorum observable ~n · ~U .

Kernel function definition. Define Kernel function K~n[A](x) for the evaluation of

the observable A with the quorum Q = {~n · ~U, with |~n| = 1} the function

K~n[A](x) def= Tr

[∫
Ψ
dψ J(ψ,~n) A e−iψ(~n·~U−x)

]
. (1.65)

[Notice that, in the case of conventional homodyne tomography, this definition corre-

sponds to the one (1.17) given previously.]

Tomographic method. Using the tomography theorems just shown, it is possible to

establish an algorithmic estimation procedure for 〈A〉. In fact, from the definition of

Kernel function, one obtains

〈A〉 =
∫
s
d~n

∫
X~n

dx p~n(x) K~n[A](x) , (1.66)

which allows the measurement of the mean value of operatorA starting from the quorum

observables Q = {~n · ~U with ~n ∈ s}, with the following procedure:

• One first chooses a quorum observable Qλ(~n) in Q randomly with uniform13 prob-

ability.

• One then measures the chosen Qλ(~n) ≡ ~n · ~U and evaluates the Kernel function

K~n[A](x) on the result x of the measurement.

13The method can be extended also to the case where each quorum observable has different probability

of being chosen, as for the active adaptive tomography (see Sect. 1.3.2).
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• The procedure must be repeated averaging the results, i.e. calculating the inte-

gral (1.66) with Monte Carlo procedures. The central limit theorem (see Subsect.

1.2.4) guarantees that the result will converge to 〈A〉 for bounded E . Moreover,

since the estimator is in fact unbiased, the convergence is affected only by sta-

tistical errors that can be made arbitrarily small by increasing the data. For the

evaluation of such statistical errors, and for the possible statistical checks to be

performed on the data, refer to Sect. 1.2.4.

Notice that any operator A ∈ L(H) can be estimated from the same set of measure-

ments.

Tomography theorem for trace–class operators. In the same hypotheses of the

tomography theorem, but requiring A to be a trace–class operator, one has

E~n[A](~n · ~U) =
∫

Ψ
dψ J(ψ,~n) Tr

[
A e−iψ~n·

~U
]
eiψ~n·

~U . (1.67)

Proof: For the case, if A is trace–class, it is possible to exchange the integral on dψ
in Eq. (1.57) with the trace of Eq. (1.56). In fact, for any unitary operator O, we have
that if A is trace–class ⇒ OA is trace–class.H

Null estimators definition. Notice that, even once the quorum has been fixed, the

unbiased estimator for an operator A will not in general be unique, since there could

exist functions (or operators) N (Qλ) that satisfies∫
dµ(λ)N (Qλ) = 0 , (1.68)

that are called ‘null estimators’.

From the property that defines the estimator, namely (1.31), it follows immediately
that two unbiased estimators that differ by a null estimator yield the same results when
estimating the operator mean value:

〈A〉 =
∫

Λ
dµ(λ) 〈Eλ[A](Qλ)〉 =

∫
Λ
dµ(λ) 〈E ′λ[A](Qλ)〉, (1.69)

if E ′λ[A](Qλ)
def= Eλ[A](Qλ) +N (Qλ).

We will see in the following how the null estimators can be used to reduce the
statistical noise. This will be the aim of adaptive tomography, which will be described
in Sect. 1.3.2. Moreover, one can try to use the null functions to obtain the convergence
of estimators that would otherwise be unbounded. This is the aim of the renormalized
tomography, which will be described in Sect. 1.3.3.
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In concluding, it should be stressed that group theory is a useful instrument for
theorem demonstration, but, as many clues lead to think, it may be a too restrictive
scheme on which to base the theory. In fact, consider the case of the Poincaré group
[26], where the theory such as it is stated will not be applicable, and other cases, such as
Weigert’s state reconstruction method [29], where the representation theory will fail. In
many general situations, though, group theory works and permits a fine demonstration
of the needed formulas.

In this subsection the mathematical core of the generalized tomographic procedure
has been derived by using group theory. The tomographic algorithm has been de-
scribed for the generic estimation. From the formulas that have been shown here, all
tomographic procedures analyzed in this thesis follow.

1.2.3 Tomography theory for trace–class operators

In this subsection we will re-derive the tomography theorem for trace–class operators
[5, 6], i.e. Eq. (1.67). This was the first proposal for a group based tomographic
derivation. This derivation does not give any new results and has been inserted for
completeness, as it shows another possible and simpler derivation of tomographic theory
independent from the one given previously.

Trace formula. Let A be an arbitrary trace–class operator on the Hilbert space H of

the system and R a unitary irreducible square integrable representation on H of the

tomographic group T . Then

TrA =
∫
dg R(g)AR†(g), (1.70)

where dg is an invariant measure for the group T , normalized as∫
dg |〈u|R(g)|v〉|2 = 1 (1.71)

which is independent on the choice of the vectors |u〉, |v〉 ∈ H.

Proof: The independence of the integral in (1.71) on the choice of |u〉 and |v〉 in H
has already been shown in the demonstration of Property 2 above. Define τu,v as∫

dg R(g)|u〉〈v|R†(g) = τu,v11H, (1.72)

where the proportionality to the identity can be demonstrated through the second Schur
lemma. In fact, the integral in (1.72) commutes with all the elements of a UIR, since,
for any h ∈ T , ∫

dg R(g)|u〉〈v|R†(g)R(h) =
∫
dg′ R(hg′)|u〉〈v|R†(g′) (1.73)

= R(h)
∫
dg′ R(g′)|u〉〈v|R†(g′) .
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The constant τu,v can be evaluated if the vectors |u〉 and |v〉 are not orthogonal, by
noticing that upon taking h def= g−1 one has for ∀ |a〉, |b〉 ∈ H

1 =
∫
dg 〈b|R(g)|a〉〈a|R†(g)|b〉 =

∫
dg
〈v|R(g)|a〉〈a|R†(g)|u〉

〈v|u〉

=
∫
dh

〈a|R(h)|u〉〈v|R†(h)|a〉
〈v|u〉

=
τu,v
〈v|u〉

, (1.74)

since dg = dh —see [28]. If, on the contrary, |u〉 and |v〉 are orthogonal, analogously as
for Eq. (1.74), one finds

τu,v = 〈a|
∫
dgR(g)|u〉〈v|R†(g)|a〉 =

∫
dh〈u|R(h)|a〉〈a|R†(h)|v〉 = τa,a〈u|v〉 = 0. (1.75)

The trace formula is now easily found by using the Schmidt decomposition of the
operator A as A =

∑
i αi|ui〉〈vi|:∫

dg R(g)AR†(g) =
∑
i

αi

∫
dg R(g)|ui〉〈vi|R†(g) =

∑
i

αi τui,vi

=
∑
i

αi〈vi|ui〉 = TrA .H (1.76)

Tomography theorem for trace–class operators. Let A be an arbitrary trace–

class operator on the Hilbert space H of the system and R an irreducible unitary square

integrable representation on H of the tomographic group T . Then

A =
∫
dg Tr[AR†(g)]R(g) . (1.77)

[Notice that this result was already obtained as (1.67) in the previous subsection.]

Proof: Let O be an invertible trace–class operator, it follows that R(g)O is trace–
class for any g ∈ T . Hence it is possible to obtain, by applying the trace formula (1.70)
twice ∫

dg Tr[AR†(g)]OR(g) =
∫
dg′ Tr[R(g′)O]R†(g′)A . (1.78)

Take a basis {|k〉} in H, one can obtain, using again the trace formula (1.70),∫
dg Tr[R(g)O]〈i|R†(g)A|j〉 =

∫
dg
∑
k

〈k|R(g)O|k〉〈i|R†(g)A|j〉

=
∑
k

〈k|OTr [|k〉〈i|]A|j〉 = 〈i|OA|j〉 . (1.79)

From Eqs. (1.78) and (1.79) it follows immediately that∫
dg Tr[AR†(g)]OR(g) = OA , (1.80)
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which yields the thesis (1.77) by multiplying to the left both members by O−1.H
It is trivial to extend theorem (1.77) to the case of projective representations, i.e.

group representations for which, given g1, g2, g3 ∈ T such that g1 · g2 = g3, one has

R(g1)R(g2) = eiζ(g1,g2)R(g3) , (1.81)

ζ ∈ R being a phase factor depending on g1 and g2.

Analogously as in the previous section, we can use Eq. (1.77) to obtain an algo-
rithmic estimation procedure. In fact, consider the usual parametrization of the UIR
group R(g) = eiψ~n·

~U with ~U basis vector of the Lie algebra of T and ~n and ψ varying
in s and Ψ respectively. Take the expectation values of both members of (1.77) and
calculate the trace on the quantum state % of the system using the eigenvectors of
the observables ~n · ~U . By introducing the Jacobian J for the coordinate transforma-
tion dg = d~n dψ J(~n, ψ) and the probability p~n(x) of obtaining the result x for the
measurement of ~n · ~U , you would obtain

〈A〉 =
∫
dg 〈Tr[AR†(g)]R(g)〉 =

∫
s
d~n

∫
Ψ
dψ J(~n, ψ) Tr[A e−iψ~n·

~U ] Tr[% eiψ~n·~U ]

=
∫
s
d~n

∫
Ψ
dψ J(~n, ψ)

∫
X~n

dx p~n(x) Tr[A e−iψ(~n·~U−x)] , (1.82)

which yields Eq. (1.66) by defining the “Kernel function for the trace–class operator”
A as

K~n[A](x) def=
∫

Ψ
dψ J(~n, ψ) Tr[A e−iψ(~n·~U−x)] . (1.83)

Thus the same algorithmic tomographic method described in page 31 applies here.

From result (1.77), with an appropriate choice for the tomographic group and the
irreducible representation, it is possible to prove the formula for spin tomography (2.22)
–derived in Sect. 2.2– and for optical homodyne tomography (1.15) –see Sect. 2.1.
Notice that the unimodularity hypothesis given in the definition of tomographic group
T can be relaxed without losing most of the results we gave in this section.

In conclusion, in this section we re-derived the formulas and the procedures we
showed in the previous one, here for the case of trace–class operators. Though less
general, the formulas we have obtained here are much easier to derive.

1.2.4 Monte Carlo methods for tomography

In this subsection we will very briefly review the basics of the Monte Carlo integra-
tion techniques that are needed for the tomographic algorithmic implementation. We
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explain how it is possible to evaluate the statistical error bars of the tomographically
estimated quantities. Finally, we give tests for checking the experimental or simulated
data statistics (such as the χ2 test). In the course of this thesis various other Monte
Carlo techniques have been exploited for simulating the experiments (such as quantum
jump, cumulative distribution technique or metropolis algorithms). These will be an-
alyzed along with the simulations, while here we give only the techniques which are
basic for any tomographic experiment (real or simulated).

The tomographic method for the evaluation of arbitrary expectation values (see
Sect. 1.2.2), is based on the integral (1.66) on the experimental data. It is of the form

F =
∫ +∞

−∞
dx p(x) f(x) , (1.84)

where p(x) is a probability, i.e. p(x) > 0 ∀x and
∫
dx p(x) = 1. Since we have experi-

mental outcomes {xn, n = 1, · · · N} distributed according to the probability p(x), we
would like to sample the integral (1.84) using the limit

∫ +∞

−∞
dx p(x) f(x) = lim

N→∞

1
N

N∑
n=1

f(xn) . (1.85)

Obviously in any practical case it is not possible to estimate the limit (1.85), but one
has to approximate the integral with a finite sum of N elements

FN =
1
N

N∑
n=1

f(xn) . (1.86)

To estimate the error one makes in the approximation, and to see if and how this error
decreases increasing the number N of data, one needs the central limit theorem [30].

Central limit theorem. Consider N statistically uncorrelated random variables {zn,
n = 1, · · · , N}, with mean values µ(zn), variances σ2(zn) and bounded third order

moments. If the variances σ2(zn) are all of the same order =⇒ the statistical variable

“sum” y, defined as

y
def=

N∑
n=1

zn , has mean µ(y) =
N∑
n=1

µ(zn) and variance σ2(y) =
N∑
n=1

σ2(zn) . (1.87)

The distribution of y approaches asymptotically a Gaussian for N →∞.

In practical cases, the distribution of y can be considered Gaussian already for as
low as N ∼ 10. For our needs the hypotheses are met if the kernel function f(x)
has limited moments up to the third moment, since all the xn come from the same
probability density p(x), and hence all the zn

def= 1
N f(xn) have all the same variances

(and means).
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Using the central limit theorem, we can conclude that y = FN is a statistical variable
distributed as a Gaussian (for N & 10) with mean value

µy =
N∑
n=1

F

N
= F (1.88)

and variance

σ2(y) =
1
N2

N∑
n=1

lim
M→∞

1
M

M∑
j=1

[f(xj)]
2 − F 2 =

σ2(F )
N

, (1.89)

since we have µ(zn) = 1
N limM

∑M
j=1

f(xj)
M = F

N and σ2(zn) = 1
N2 limM

1
M

∑M
j=1[f(xj)]2−

F 2 = σ2(F )
N2 for any n. We see also the tomographic estimated quantities converge with

statistical errors that decrease as ∝ 1√
N

.
Since the statistical variable FN converges to F and is distributed as a Gaussian

(at least for N & 10) we can also evaluate the statistical error bars associated with
the tomographic reconstruction. In fact divide the experimental (or simulated) data
{xn} into N statistical blocks of equal dimension M . Then evaluate the tomographic
integrals of the form (1.84) on each block, using the finite estimation formula (1.86).
The set Fn (n = 1, · · · , N), which we showed Gaussian distributed, is obtained. It is
possible to estimate the Gaussian mean value and variance, as

m(Fn) =
1
N

N∑
n=1

Fn (1.90)

and

s2(Fn) =
1

N − 1

N∑
n=1

(Fn −m)2 . (1.91)

[Remember that the factor N − 1 in the variance denominator arises from the fact that
we are using the “experimental” estimated mean value m in place of the “real” one
µ.] Eq. (1.91) gives the estimation of the variance of the data. The variance of the
statistical variable ‘mean m’ is given by [30]

σ2(m) ≡ σ2

(
1
N

N∑
n=1

FN

)
=

1
N2

N∑
n=1

σ2(FN ) =
1
N
σ2(FN ) , (1.92)

and thus the ‘error bar’ on the mean m estimated from the data is given by

ε =
1√
N
s(FN ) =

√√√√ N∑
n=1

(Fn −m)2

N(N − 1)
(1.93)

From the Gaussian integral one recovers the usual statistical interpretation to the ob-
tained results: the “real” value F is to be found in the interval [m − ε,m + ε] with
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Figure 1.1: Example of the statistical checks that can be performed for checking the
tomographic reconstruction. Left: the data estimated on the blocks is distributed as a
Gaussian. This assures that no systematic errors are present in the experimental (here
simulated) data. Right: a “bad” check. There is evidently some error in the statistics.
These are checks taken from actual data analysis batches for the simulation of the
reconstruction of the Schrödinger cat density matrix as described in Sect. 3.3. The
data, in particular, refers to the evaluation of the (imaginary part of) matrix elements
in the Fock basis.

∼ 68% probability, in the interval [m − 2ε,m + 2ε] with ∼ 95% probability and in
[m− 3ε,m+ 3ε] with ∼ unit probability.

In order to test that the confidence intervals are estimated correctly and that errors
in the data analysis or systematic errors in the experimental data do not undermine
the final data, one may check the Fn distribution, to see if it actually is a Gaussian
distribution. This may be done by simply plotting a histogram of the block final data
and comparing it “by eye” to a Gaussian, as exemplified in Fig. 1.1, or by using the
χ2 test, which proceeds as follows. Starting from the histogram of the Fn distribution,
consider the quantity

χ2 def=
N∑
n=1

(pn − µn)2

µn
, (1.94)

where N is the number of bins in the histogram, pn is the number of data in the nth
histogram bin, and µn is the number of points we would find in the same bin if we
considered a Gaussian of mean m and variance ∆s2. It can be shown [30] that the
statistical variable χ2 defined in (1.94) is actually distributed as a χ2 distribution with
ν = N − 1 degrees of freedom, i.e. as the distribution

D(x, ν) def=
1

2ν/2Γ(ν/2)
x

ν−2
2 e−

x2

2 . (1.95)

Thus, the confidence level of the estimated Gaussian, i.e. the probability that we have
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estimated through m and ∆s2 the correct Gaussian from the obtained data, is

P =
∫ +∞

χ2

dx D(x,N − 1) . (1.96)

If we obtain a low confidence level P , then the error bars are not correctly estimated,
as the data is not Gaussian.

Notice that the procedure for the estimation of the error bars described here must
be modified when we have very low statistics. This may happen when the block mean
values converge too slowly. This, for example is the case of the tomographic test of
Bell’s inequalities, which is described in Sect. 3.5. In such cases it is not possible to
divide the whole set of data in N equal sized sets, where we remind that N must at least
be of the order of 10. In such cases one must consider only one block, on which the mean
value m is calculated. Then, one builds a histogram of the experimental data xj and
estimates the statistical distribution of these values. Using a computer simulation, one
must extract another N data sets of variables xj from the estimated distribution and
use these sets to calculate the Fn, n = 1, · · · , N . These Fn are to be used through (1.91)
only to estimate the statistical error bar, and not for the tomographic reconstruction
of m, which would otherwise be biased. This is the method commonly used by particle
physicists [31], which often deal with low statistics events.

In this subsection we have assumed that the tomographic integral takes the form
(1.84). Actually, the tomographic evaluation integral (1.66) is a double integral, on the
variables ~n and x~n. This poses no problem, since one can show that a relation of the
type (1.84) holds also for double integrals, namely∫ +∞

−∞
dx

∫ +∞

−∞
dy p(x, y) F (x, y) = lim

N→∞

1
N

N∑
n=1

F (xn, yn) , (1.97)

with the couples {(xn, yn)} distributed with probability p(x, y).
In this subsection the practical methods for obtaining the tomographic estimates

and the associated error bars has been illustrated, and the necessary Monte Carlo
techniques have been introduced.

1.3 Further developments of the theory

Here the general tomographic theory that was studied in the previous sections is devel-
oped in detail. In particular here we will analyze: 1) the noise deconvolution scheme
[7, 8], which allows to eliminate (at the data analysis stage) the experimental noise
that arises from imperfect detection, lossy devices, etc.; 2) the adaptive tomography
technique [10], which allows to tune the unbiased tomographic estimators to the exper-
imental data one obtains, in order to reduce the statistical noise; and 3) the renormal-
ized tomography technique [7], which seeks the removal of divergencies in tomographic
reconstructions by using the Null estimators.
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1.3.1 Noise deconvolution

In this subsection we see under which conditions and for which detection schemes it is
possible to devise noise eliminating mechanisms at the tomographic data analysis stage
for state reconstruction. Essentially it is possible to eliminate detection noise when it
is possible to invert the noise CP-map.

We start by introducing a definition of the noise process. These can always be
described by a unit preserving CP-map, an application Γ : L(H) → L(H), that maps
system operators into system operators. The noise can actually be deconvolved at the
data analysis if

• the inverse of Γ exists, namely Γ−1 : L(H) → L(H), with Γ−1 [Γ [A]] = A, for
∀A ∈ L(H).

• the estimator Eλ[A](Qλ) is in the domain of Γ−1

• the map Γ−1 [Eλ[A](Qλ)] is a function of Qλ.

This is the case, for example, of the noise arising from the limited quantum efficiency
η of the homodyne detectors [9]. If the above conditions are met, we can recover the
“ideal” expectation value 〈A〉 that we would get without noise. This is achieved by
using, in place of the estimator (1.56) obtained from the tomography theorem, the
following ‘deconvolved estimator’,

Γ−1
[
E~n[A](~n · ~U)

]
= Tr1

[
A⊗ 11 Γ−1

[
Ẽ~n(~n · ~U)

]]
. (1.98)

As an example for the noise deconvolution described here, in Sect. 2.1.3 we will
analyze the case of homodyne tomography, where the limited quantum efficiency η <
100% of homodyne detectors has the effect of a Gaussian convolution of the quadrature
probabilities and its effects can be beaten with the technique described here.

1.3.2 Adaptive tomography

In this section we will analyze the adaptive tomography technique [10]. The essential
idea is that the tomographic Null estimators (NE), introduced in Sect. 1.2.2, may be
used to reduce the statistical noise arising from the fact that in an actual experiment
(or numerically simulated experiment) the experimental data is always finite.

The addition of a NE in the ideal case of infinite statistics does not change the
measured quantities, as shown in Eq. (1.69), since the NE mean value is zero. In the
realistic case of finite statistics, the mean values that are output by the tomographic
process are statistical variables. As shown in Sect. 1.2.4, by taking partial tomographic
averages of the data by dividing it into statistical blocks, one finds that the obtained
mean values are gaussian distributed (provided, as should always be, that the Kernel
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function K satisfies the hypotheses of the central limit theorem). Thus, one may look
for a procedure capable of reducing the variance of the tomographically estimated mean
values. In fact, consider the class of equivalent estimators (estimators differing only by
NEs), i.e.

E ′λ[A](Qλ)
def= Eλ[A](Qλ) +

M∑
i=1

νiNi(Qλ) , (1.99)

where Eλ[A](Qλ) is the tomographic estimator for the operator A whose mean value
we are measuring. Each estimator in the class E ′ will be identified by the coefficient
vector ~ν. The variance of the tomographic quantities can be estimated as (dropping
the dependence on λ and Qλ)

∆2E ′[A] = ∆2E [A] + 2
M∑
i=1

νiNiE [A] +
M∑
i,j=1

νiνjNiNj , (1.100)

where F (Qλ)
def=
〈∫

dµ(λ) F (Qλ)
〉
, and obviously

∆2E [A] def=

〈∫
dµ(λ)E2

λ[A](Qλ)−
(∫

dµ(λ′)Eλ′ [A](Qλ′)
)2
〉
. (1.101)

In Eq. (1.100), we used the defining property of the NE, namely〈∫
dµ(λ)Eλ[A](Qλ)

〉
=

〈∫
dµ(λ)Eλ[A](Qλ) +

M∑
i=1

νiNi(Qλ)

〉
for any ~ν . (1.102)

Now the estimated “modified variance” ∆2E ′[A] are minimized with respect to the
coefficients νi, and we obtain

M∑
j=1

νjNiNj = −E [A]Ni , (1.103)

which can be solved starting from the tomographically estimated mean values, with the
vector ~ν as unknown. Notice that the obtained vector ~ν will depend on the experimental
data, and has to be calculated with the above procedure for any new set of data.

Actually the adaptive tomographic algorithm consists in the following steps:

• Find all the null estimators Ni(Qλ) (i = 1, · · · ,M) for the quorum Q which is
being used in the experiment.

• Execute (or numerically simulate) the experiment and collect the input data.

• Calculate, using the obtained data, the mean values NiNj and E [A]Ni, and solve
the linear system (1.103), to obtain ~ν.
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• Use the vector ~ν obtained in the previous step to build the ‘optimized estimator’
E ′[A] = E [A] +

∑
i νiNi. The mean values one want to measure must now be

evaluated (using the data collected in the first step) with the usual tomographic
formula, but employing ‘optimized estimator’, i.e.

〈A〉 =
∫

Λ
dµ(λ) 〈E ′λ[A](Qλ)〉 , (1.104)

• For each new set of data the whole procedure must be repeated, as ~ν is dependent
on the data.

Notice that also the mean values are changed in the adaptive tomographic process:
remember that null estimators do not change mean values only in the limiting case
of infinite statistics. In fact the estimated mean values are changed in such a way
as to reduce the dispersion of the estimated data. Refer to [10] for striking examples
of simulations of such a procedure, which does efficiently reduce statistical noise of
tomographic reconstructions.

The procedure described in this subsection may be labeled ‘passive’ adaptive to-
mography, as it only deals with the data analysis stage. A further evolution of the
scheme is the so called ‘active adaptive tomography’ where also the observables in the
quorum on which the experimental data is obtained are tuned according to the partial
set of data already collected with a sort of feed-forward mechanism. We will not go into
any more detail on this new technique, since it is currently still under development.

A new iterative adaptive tomography technique is now proposed. In fact, for trace-
class operators one can use Eq. (1.67) for 〈A〉 estimation, and thus (introducing the
null estimators) it is possible to obtain

〈A〉 =
∫
s
d~n

∫
Ψ
dψJ

∫
dx Tr[A e−iψ~n·

~U ]Tr[% eiψ~n·~U ] + Tr[% N (~n · ~U)]

=
∫
s
d~n

∫
Ψ
dψJ

∫
dx Tr

[
A e−iψ~n·

~U +
%N (~n · ~U)

Tr[%eiψ~n·~U ]

]
Tr
[
% eiψ~n·

~U
]
. (1.105)

One can see that in Eq. (1.105) the Kernel depends not only on the operator A to
estimate and on the null operators N , but also on the state % itself. One should then
use Eq. (1.105) to improve iteratively the tomographically estimated %.

1.3.3 Renormalized tomography

This technique [7, 32] seeks the removal of divergencies that affect some tomographic
reconstructions, as for example the homodyne tomography with low efficiency photode-
tection (η < 50%). The main idea, which basically still has not found any practical
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application, is to use the Null estimators N (Qλ) introduced in Sect. 1.2.2 to force the
convergence of otherwise unbounded Kernel functions.

In fact, from Sect. 1.2.4, we know that one can be confident when estimating an
expectation value 〈A〉 with the tomographical procedure (1.66) if the Kernel function
K~n[A](x) defined in (1.65) is bounded. In this case the central limit theorem ensures
that the integral (1.66) calculated with Monte Carlo techniques converges for any a
priori unknown probability distribution p~n(x). However, nothing guarantees that the
Kernel function is bounded, and actually there are cases when it is not. In these cases,
one may try to find in the class of equivalent unbiased estimators (i.e. estimators
differing by a null estimator) one that yields a bounded Kernel function. For estimators
of the kind

E ′~n[A](~n · ~U) = E~n[A](~n · ~U) +N (~n · ~U), (1.106)

one finds the Kernel functions

K ′
~n[A](x~n) = K~n[A](x~n) + ~n〈x|N (~n · ~U)|x〉~n = K~n[A](x~n) +N (x~n) , (1.107)

with N having the only constraint∫
d~n N (x~n) = 0 . (1.108)

Thus, by varying N in the class of functions that satisfy (1.108), one has to find a
bounded K ′, using an unbounded null function to remove the unbounded part of the
Kernel.

Hopefully the renormalization technique may lead to mitigate the exponential diver-
gency of the homodyne tomography Kernel function when the quantum efficiency goes
to 50%. This would also enhance the reconstructions for higher η, as one would obtain
cleaner (i.e. less statistical noise) low-number of data reconstructions. Presently, as
already remarked, such a goal has not been achieved.
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State reconstruction techniques.

In this chapter the general theory analyzed previously is exploited by specializing it
to obtain the optical homodyne tomography and the spin state tomography. Optical
homodyne tomography is historically the first tomographic method and will be easily
re-derived from the general formulas, while recent spin tomography [5, 6] is devoted
to the reconstruction of unknown spin states of a single –or of more– particles. Ho-
modyne tomography is analyzed in Sect. 2.1 and spin tomography in Sect. 2.2. The
Kerr tomography technique (see [33, 34, 35, 36]), a completely different optical state
reconstruction method, is examined in Sect. 2.3. Such a technique, based on “photon
filtering”, allows a reconstruction of the photon number distribution with very little
number of data. The apparatus which the technique is based on can also be used for
the reconstruction of a truncated radiation density matrix or alternatively, with minor
changes in the setup, for the generation of Fock states and of selected superpositions of
Fock states. The apparatus relies on a ring cavity coupled to a signal mode through a
high Kerr medium. Our Monte Carlo simulations show that the experiment might be
feasible with current frontier nonlinear technology.

2.1 Homodyne tomography

In this section we will derive the optical homodyne tomography, which estimates ar-
bitrary operator expectation values on radiation states starting from data collected
through homodyne detectors. This is historically the first tomographic method that
was proposed and has already been rapidly described in the history section 1.1. Here
it will be analyzed starting from the general theory described in Sect. 1. In particular
we will see how the noise deriving from imperfect homodyne detection can be beaten
applying the noise deconvolution described in Subsect. 1.3.1. Before analyzing the data
tomographic technique, we must describe and analyze the homodyne detector.

44
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Figure 2.1: Homodyne detector. The input signal (in mode a) is mixed by a 50–50
beam splitter (BS) with a strong pump (LO), which is coherent with the input field
and is itself in a coherent state. The relative phase φ between the signal and the
pump must be known and should be varied randomly in [0, π] with uniform probability.
Two identical high efficiency linear photodetectors P1 and P2 measure the field. The
photocurrents are then accurately subtracted electronically and the output data IH is
obtained.

2.1.1 Homodyne Detection

The balanced homodyne detector (see for example in [37]) measures the quadrature
observable of the field, defined as in (1.9), i.e.

xφ
def=

1
2
(a†eiφ + ae−iφ) , (2.1)

where a and a† are the annihilation and creation operators for the electromagnetic
field. The experimental setup is shown in Fig. 2.1. Its components are: a 50-50 beam
splitter (BS); two high efficiency linear non–single photon resolving detectors; a circuit
for exactly subtracting the photocurrents output by the two detectors; and a strong
coherent pump field, called local oscillator (LO) that must be coherent with the input
field to be measured, and whose phase φ relative to the input field must be varied
(and the value of φ must be known). Obviously various (optical and–or electronic)
filters may be added at the various stages. The experimentally critical and challenging
issue comes from the fact that the whole setup must be perfectly balanced, i.e. the
components must be perfectly symmetrical. In fact one uses the excited coherent pump
to amplify the weak quantum signals of the input so that one can use high efficiency
detectors that that work fine only with strong signals. However, in order to recover
the quantum features, one must remove (by subtracting the two photocurrents at the
electronics stage) the strong current coming from the LO detection, leaving only the
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weak signals.
We now give an intuitive description of the working of the homodyne detector. The

input–output transformations of the modes a and b that impinge into a beam splitter
with τ transmissivity are

c = a
√
τ + b

√
1− τ , d = a

√
τ − b

√
1− τ , (2.2)

where c and d are the two beam–splitter output modes, each of which impinge into a
different photodetector. In this case we need a 50–50 beam splitter, hence τ = 1

2 . The
difference of the two photocurrents is the homodyne detector’s output, and thus it is
proportional to

c†c− d†d = a†b+ b†a , (2.3)

where the transformations (2.2) were used with τ = 1
2 . In the strong local oscillator

limit, with mode b in an excited coherent state |β〉 (β � 1), the expectation value of
the output is 〈a†〉β + 〈a〉β∗. By rescaling the output difference photocurrent with two
times the LO amplitude |β|, since the pump is coherent with mode a and dephased by
a phase φ, one obtains the output of the homodyne as

O = lim
|β|→∞

|β|
(
a e−iφ + a† eiφ

)
2|β|

= aφ. (2.4)

Let us now analyze the detector noise coming from non-unit quantum efficiency
η at the detection. As was shown by Mandel, Kelley, and Kleiner [38], an inefficient
detector is equivalent to a perfect η = 100% detector, preceded by a beam splitter
with transmissivity η. Thus, the action of inefficient photodetection on the overall
performance of the detector is obtained by inserting two beam splitters in front of the
two photodiodes of the homodyne scheme. Thus, using the relations (2.2), modes c and
d become

c′ =
√
η c+

√
1− η u and d′ =

√
η d+

√
1− η v , (2.5)

where u and v are vacuum modes. The homodyne output, proportional to c′†c′− d′†d′,
should now be rescaled also by η and is proportional to

L = η (a†b+ b†a) + (1− η)(u†u+ v†v)

+

√
(1− η)η

2
[a(u† + v†) + b(u† − v†) + a†(u+ v) + b†(u− v)] . (2.6)

As was done above, we take the limit of strong pump b as in (2.4) and rescale the
output difference photocurrent by 2|β|η. We obtain

O = lim
|β|→∞

L

2|β|η
= aφ +

√
1− η

2η
(uφ − vφ) , (2.7)

where modes u and v are in the vacuum state.



2.1 Homodyne tomography 47

2.1.2 Quantum homodyne tomography

Here we specify [5, 7, 8] the general group tomography theory of Sect. 1.2 to the case
of homodyne tomography [1, 2, 11, 4].

The tomographic group T is the Heisenberg–Weyl group of the displacement oper-
ators, and its UIR is given by the unitary operators

R(α) = eαa
†−α∗a , (2.8)

where a is the annihilation operator of the field mode. If we look at only one mode
of the radiation field, then there is only an equivalence class in the Lie algebra. In
fact, a basis for its Lie algebra is composed of the operators a and a†, with [a, a†] = 1,
and hence the quorum1 is composed by the quadrature operators aφ, with φ ∈ [0, 2π].
Since the Lie algebra is here two dimensional, its fixed–length vectors are univocally
determined by the only parameter φ, which here plays the role of ~n introduced in Sect.
1.2. The invariant group measure is given by d2α = dx dy, for α = x + iy, which, in
polar coordinates becomes d2α = dφ dk k

4 for α = k
2e
iφ, chosen so that αa†−α∗a = k aφ,

and the unbiased homodyne tomographic estimator is

Eφ[A](aφ) = Tr1

[
A⊗ 11

∫ +∞

0

dk k

4
e−ik(aφ⊗11−11⊗aφ)

]
. (2.9)

However, since aφ = −aφ+π, we can restrict the quorum to aφ with φ ∈ [0, π]. Thus,
the estimator becomes,

Eφ[A](aφ) = Tr1

[
A⊗ 11

∫ +∞

−∞

dk |k|
4

e−ik(aφ⊗11−11⊗aφ)

]
, (2.10)

or, for trace–class operators,

Eφ[A](aφ) =
∫ +∞

−∞

dk |k|
4

Tr1
[
A e−ikaφ

]
e+ikaφ . (2.11)

It is now immediate to obtain the formulas of the conventional homodyne tomog-
raphy, such as Eq. (1.15). In fact, for A trace–class operator one has

A =
∫ π

0

dφ

π

∫ +∞

−∞

dk|k|
4

Tr[A e−ikaφ ] e+ikaφ , (2.12)

which is obtained by writing explicitly for the case of homodyne tomography Eq. (1.33).
Now the homodyne tomography formula, Eq. (1.15), is obtained by substituting the
density matrix % in place of A and by calculating the trace using the complete set of
vectors {|xφ〉}, eigenvectors of the quadrature aφ.

1We consider the Hermitian operators that are vectors of fixed length k = 1
2

in the Lie algebra.
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2.1.3 Noise deconvolution

In this subsection we apply the noise deconvolution technique, which was presented in
Subsect. 1.3.1, to the case of homodyne tomography. In the case of inefficient η < 100%
detection, the output of the homodyne is given by Eq. (2.7), where modes u and v are
in the vacuum state. In this case the effect Γ of the quantum efficiency on the estimator
is given by noticing that

Γ[exp(ikaφ)] = u〈0| v〈0| exp
[
ik

(
aφ +

√
1− η

2η
(uφ − vφ)

)]
|0〉v|0〉u (2.13)

where Eq. (2.7) was used and where the vacuum modes u and v were traced out. Since
one has

〈0|eiλuφ |0〉 = 〈0| exp
[
iλ

2
a e−iφ

]
exp

[
iλ

2
a† eiφ

]
e

1
8
λ2 |0〉 = e−λ

2/8 , (2.14)

we can conclude that

Γ[exp(ikaφ)] = exp
(
ikaφ −

1
8
k2∆2

)
, (2.15)

with ∆ def=
√

1−η
2η . Obviously,

Γ−1[exp(ikaφ)] = exp
(
ikaφ +

1
8
k2∆2

)
. (2.16)

To obtain the deconvolved estimator (1.98), we need to calculate Γ−1[Ẽ~n(~n · ~U)], that
in this case writes

Γ−1
[
Ẽφ(aφ)

]
= Γ−1

[∫ +∞

−∞

dk |k|
4

(e−ik aφ ⊗ 11)(11⊗ eik aφ)
]

=
∫ +∞

−∞

dk |k|
4

e
1
4
k2∆2

(e−ik aφ ⊗ 11)(11⊗ eik aφ) . (2.17)

From this equation it is immediate to obtain the Kernel operator of the homodyne
tomography for non-unit quantum efficiency that was introduced in Sect. 1.1.3, i.e.
Eq. (1.20).

For examples of kernels for various operators A, we refer the reader to [4] and [11]
that contain the complete theory of conventional homodyne tomography.

In conclusion in this section we derived the principal formulas of conventional quan-
tum homodyne tomography, starting from the general theory of Sect. 1.2. These for-
mulas will be extensively used in Chap. 3, where various applications of homodyne
tomography will be proposed and thoroughly studied.
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2.2 Particle domain: Spin tomography

In this section we will derive the spin tomography [5, 6], which estimates arbitrary
operator expectation values on angular momentum states starting from data collected
through Stern–Gerlach devices. As for the case of homodyne tomography, also here
the theory follows directly from the general group–formulation of Sect. 1.2. In the first
subsection we analyze the case of a system composed of a single spin, using a continuous
tomographic group. In the next subsection, the experimental apparatus and some
simulations will be given for the reconstruction of the single spin state. In the third
subsection an equivalent formulation of the spin tomography is given for the case of
spin 1/2 and spin 1 particles in terms of finite tomographic groups, and a comparison to
conventional SU(2) group formulation is given. In the following subsection we extend
the theory to the multi-particle case. For distinguishable particles the extension is
rather trivial. For the indistinguishable particle case, in order to obtain the global
density matrix, an analysis of the density operator of indistinguishable multi-particle
states and the observability of such a system is needed. This will allow the state
reconstruction for spin 1

2 particles from the measurement of global quantities only. In
the last subsection we show the feasibility of the proposed experimental reconstructions.

2.2.1 Single particle continuous spin tomography

Starting from the tomography theorem (1.56), we now specify the physical system as
a single spin. In this case H = C 2s+1, s being the spin of the particle. For such
a system, we can choose the group SU(2) of 2 × 2 unitary matrices with unit deter-
minant as tomographic group T . In fact it is a connected Lie group and it induces
a unitary irreducible representation on C 2s+1. As will be seen in the following, the
choice of SU(2) as tomographic group T is not unique. A basis for the Lie algebra of
SU(2) is given by the angular momentum operator components sx, sy and sz and the
group SU(2) can be parametrized through the “rotation parameters” (~n, ψ) —where
~n = (cosϕ sinϑ, sinϕ sinϑ, cosϑ), ϑ ∈ [0, π], ϕ ∈ [0, 2π], and ψ ∈ [0, 2π]. The group
elements are obtained through exponentiation of the Lie algebra as

R (g(~n, ψ)) = eiψ ~n·~s , (2.18)

where ~s is the particle spin operator. The quorum is the set of operators Q = {~n · ~s,
with ~n in the unit sphere}, i.e. the measurement of the spin in all directions ~n. The
group invariant measure [27] for SU(2) is, with the (~n, ψ) parametrization,

dg(~n, ψ) =
2s+ 1
4π2

sin2 ψ

2
sinϑ dψdϑdϕ . (2.19)

The measure (2.19) normalization is such that∫
T
dg |〈u|R(g)|v〉|2 = 1 , (2.20)
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for any two vectors |u〉 and |v〉 in C 2s+1 as shown in Property 2, given in page 26. It
is now easy to obtain the spin tomography starting from the tomography formulas for
trace–class operators Eq. (1.67), from which it is possible to find

% =
(2s+ 1)

4π2

∫ 2π

0
dψ sin2 ψ

2

∫ π

0
dϑ sinϑ

∫ 2π

0
dϕ Tr

[
% e−i~s·~n ψ

]
ei~s·~n ψ . (2.21)

Evaluating the trace over the complete set of vectors |~n,m〉 (which are the eigenstates
of ~s · ~n, relative to the eigenvalue m), we find

% =
∫
d~n

4π

s∑
m=−s

p~n(m) Ks(m− ~s · ~n) , (2.22)

by defining the Kernel operator as

Ks(x)
def=

(2s+ 1)
π

∫ 2π

0
dψ sin2 ψ

2
e−iψx , (2.23)

and by noticing that 〈~n,m|%|~n,m〉 = p~n(m) is the probability of obtaining the eigen-
value m when measuring the spin in the ~n direction. Notice the strong analogy of
Eq. (2.22) to the homodyne tomography formula (1.15), analogy that is obviously due
to the general group theory framework from which the two formulas can be made to
derive.

How do we use formula (2.22)? In order to measure the matrix elements %il =
〈ai|%|al〉 for all i, l ({|ai〉} being a basis for Hs), we only need to calculate 〈ai|Ks(m−
~s · ~n)|al〉 and to measure p~n(m).

The most convenient choice for the basis {|ai〉} is the set {|m〉} of eigenvectors of sz
(m = −s, . . . , s). Thus, the calculation of the matrix elements of the kernel operator,
by defining λl,m

def= 〈l|~n,m〉, yields

〈i|Ks(m− ~s · ~n)|l〉 =
(2s+ 1)

π

∫ 2π

0
dψ sin2 ψ

2

s∑
m′=−s

e−iψ(m−m′)λi,m′λ∗l,m′

= (2s+ 1)
(
λi,mλ

∗
l,m −

λi,m+1λ
∗
l,m+1 + λi,m−1λ

∗
l,m−1

2

)
. (2.24)

Observing that

|~n,m〉 = e−iϑ~s·~n⊥ |m〉 , (2.25)

with ~n⊥
def= (− sinϕ, cosϕ, 0), the evaluation of λl,m is given by

λl,m=〈l|eiϑ(sinϕsx−cosϕsy)|m〉=〈l|e−iϕsze−iϑsyeiϕsz |m〉

= eiϕ(m−l)√(s+m)!(s−m)!(s+ l)!(s− l)!

×
∑
ν

(−1)ν(cos ϑ2 )2s+m−l−2ν(− sin ϑ
2 )l−m+2ν

(s− l − ν)!(s+m− ν)!(ν + l −m)!ν!
, (2.26)

where the sum is performed over the values of ν for which the argument of the factorials
is non-negative. In the last equality we used Wigner’s formula [39].
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2.2.2 Single particle spin tomography experiment

In this section we will present the method by which, starting from the formulas for
tomographic spin derived in the previous subsection 2.2.1, the quantum state of a sin-
gle spin state may be recovered experimentally through an apparatus derived from a
conventional Stern–Gerlach scheme. The experimental setup must provide the mea-
surement of the probability p~n(m) of formula (2.22). Since the integral of (2.22) is
evaluated with Monte Carlo techniques (as shown in Sect. 1.2.4) no binning of the ex-
perimental results should be made, but the obtained results should be inserted directly
in the sampling formula (1.86). The setup that will here be described, suitable for non
charged particles, is depicted in Fig. 2.2. The beam of particles we want to measure
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Figure 2.2: Experimental apparatus for spin tomography. The Fizeau filter (F in the
figure) selects particles with the same velocity from an incoming beam. These are then
injected into a magnetic field ~B1, which forms an angle ϕ with the y-axis and has
intensity proportional to ϑ. For the tomographic reconstruction the phases ϑ and ϕ

need to be varied during the experiment. The remaining part of the apparatus is a
conventional Stern–Gerlach scheme (in the figure we show the case of spin s = 1 as an
example). A computer finally correlates the experimental results with the parameters
ϑ and ϕ, in order to reconstruct the density matrix, according to formula (2.21).

the state of impinges onto a Fizeau filter, which selects one velocity (in the x direction)
for the particles. This is needed in order to assure that each particle spends the same
amount of time t in the subsequent magnetic field ~B1. The field ~B1, which is parallel
to the xy plane, is chosen so that ~B1 = B1~n⊥ = B1(− sinϕ, cosϕ, 0). In such way, its
effect on the spin state % results in the unitary transformation U †% U , with

U = exp [iγB(sinϕsx − cosϕsy)t] . (2.27)

Eq. (2.27) follows from the Hamiltonian H = −~µ · ~B, with ~µ
def= γ~~s (~µ being the

intrinsic magnetic moment of the particle, and γ its gyromagnetic factor). Successively,
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the particles cross a gradient of magnetic field ~B2, whose effect is to split the beam,
giving a measure of sz for the state U †% U , as in a Stern–Gerlach experiment. In
this way we obtain the probability 〈m|U †% U |m〉, which is equal to p~n(m) by choosing
B1 = −ϑ/(γt), and by using Eq. (2.25). Therefore, by controlling the field ~B1, we
obtain p~n(m) for all ~n. In fact the direction of ~B1 selects ϕ, while its intensity B1

selects ϑ. Now, in order to reconstruct the density matrix, only data analysis is needed,
i.e. the insertion of the measured p~n(m) into Eq. (2.22). In practice, a rather small
number of data is required to obtain negligible errors, as we will show by numerically
simulating the experiment.

We now present two examples of a numerically simulated tomographic reconstruc-
tion. We first simulate the case of a coherent spin state, i.e.

|α〉s
def= eαs+−α

∗s− | − s〉 , α ∈ C , (2.28)

where s±
def= sx ± isy. Notice the similarity with the customary optical coherent state,

defined as |α〉 def= eαa
†−α∗a|0〉, where a is the annihilator operator for the optical mode

and |0〉 is the vacuum state. In Figs. 2.3 and 2.4 we show the reconstructed density
matrix %coh = |α〉ss〈α| resulting from a Monte Carlo simulated experiment.

Figure 2.3: Simulation of the reconstruction of the density matrix for a coherent spin
state %coh. The parameters for the state are α = 1 and s = 5. The simulation is
performed using 3000 spin measurements to generate the density matrix.

We now give a simulation of a thermal spin state, which is the mixture defined by

%th
def=

e−εsz

Tr[e−εsz ]
, ε ∈ R . (2.29)

Physically this state describes a gas of non interacting spins in thermal equilibrium
with a reservoir at a temperature T and in the presence of a magnetic field Bz parallel
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Figure 2.4: Diagonal elements of the matrix given in Fig. 2.3. The error bars are
obtained, as described in Sect. 1.2.4, by dividing the measurements into 10 statistical
blocks and using the procedure described in Sect. 1.2.4. The solid line indicates the
theoretical value.

to the z-axis, i.e. ε = −γ~Bz/(KBT ), where KB is the Boltzmann constant. In Fig.
2.5 we show the simulated reconstruction of %th, and in Fig. 2.6 its diagonal.

Figure 2.5: Density matrix for a thermal spin state %th. Here ε = .75 and s = 2. A
number of 60000 simulated measurements have been used in the reconstruction.

2.2.3 Discrete spin tomography

Up to now SU(2) has been used as tomographic group T for the reconstruction of the
spin density matrix. This choice for T is not unique. For example, in the case of spin
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Figure 2.6: Main diagonal of the matrix given in Fig. 2.5. The error bars, which in
this case are practically negligible, are obtained by dividing the measurements into 10
statistical blocks. The solid line indicates the theoretical value.

s = 1
2 , it is possible to use also the group defined as T def= {i~σ,−i~σ, 11,−11}, where ~σ is

the vector of Pauli matrices. The following irreducible unitary representation on C 2

exists

R(iσα) = R(−iσα) = σα, α = x, y, z

R(11) = R(−11) = 11 . (2.30)

Using this representation, from the tomography theorem (1.56), which can be used here
as this finite group is a subgroup of the Lie group of the rotation matrices, we obtain

% =
1/2∑

m=−1/2

∑
α=x,y,z

p(~nα,m)mσα +
1
2
. (2.31)

Notice that, by using Eq. (2.31) it is sufficient to measure the spin in only three
directions.
Analogously, for spin s = 1 it is possible to find a finite group in alternative to SU(2).
In fact, consider the 12 element tetrahedric group composed of the ±2

3π rotations
around the versors {~n1 = 1√

3
(1, 1, 1), ~n2 = 1√

3
(1,−1,−1), ~n3 = 1√

3
(−1, 1,−1), ~n4 =

1√
3
(−1,−1, 1)}, of the π rotations around {~n5 = (1, 0, 0), ~n6 = (0, 1, 0), ~n7 = (0, 0, 1)}

and of the identity. It induces a unitary irreducible representation on the space C 3,
given by the 3× 3 rotation matrices. Hence, Eq. (2.22) now becomes

% =
1
4

1∑
m=−1

7∑
j=1

p(~nj ,m)Kj(m− ~s · ~nj) +
1
4

11 , (2.32)

with

Kj(x) =
{

2 cos(2
3πx) j = 1, · · · , 4

e−iπx j = 5, 6, 7
. (2.33)
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Notice that this last procedure does not make use of a minimal set of measurements,
since 14 experimental parameters must be determined in (2.32), whereas there are only
8 independent real parameters in the 3 × 3 density matrix. On the contrary, the case
of spin s = 1

2 outlined previously does use the minimal set of measurements for such
a system. In Fig. 2.7 a comparison between the two procedures for spin tomography
given by the continuous SU(2) tomography of Eq. (2.22) and discrete tomography of
Eqs. (2.31) and (2.32) is shown through a Monte Carlo simulation. Notice that there
is no significant difference in the results, showing that there is no substantial need for a
procedure which involves a minimal set of measurements. For spins s > 1 an analogous
procedure holds: one needs to find a finite group such that it induces an irreducible
unitary representation on H = C 2s+1.
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Figure 2.7: Monte Carlo comparison between continuous and discrete tomography.
Continuous tomography uses SU(2) as tomographic group and is based on Eq. (2.22),
while discrete tomography uses SU(2) finite subgroups and is based on the recon-
struction procedures given in Eq. (2.31) for s = 1

2 and Eq. (2.32) for s = 1. Left:
Convergence of the mean value of 〈sz〉 for a coherent α = 2 spin state for increasing
number of experimental data (the theoretical value is given by the horizontal lines).
The circles refer to continuous, the stars to discrete tomography. The upper graph is
for spin s = 1

2 , the lower is for s = 1. Right: Plots of the statistical error bars of the
graphs on the left vs. experimental data. The error bars are obtained by dividing the
experimental data into 20 statistical blocks. Notice that the two tomographic proce-
dures are essentially equivalent and that the error scales as ∝ 1√

N
as shown in Sect.

1.2.4.
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2.2.4 Many particle spin tomography

The mathematical extension of the method to the case of a system composed of many
spins is trivial, yet, it predicts the necessity of performing measurements on single
components and this may not always be possible. For this reason, we need to further
develop the theory.

Distinguishable spins.

As tomographic group for a system of N spins we can simply use SU(2)N . Since
in the case of direct product of Lie groups, the Lie algebra of the product group is
given by the direct sum of the single group algebras, the quorum is given by the direct
sum of observables living in the single particle Hilbert space C 2s+1. In this case, it
is necessary to use the general notation introduced in Sect. 1.2.2, and to divide the
Lie algebra into equivalence classes. As a consequence, the Lie coordinates vector ~a
is written as ~a = (~n1, ψ1; · · · ;~nL, ψL), where (~ni, ψi) are the Lie coordinates of the
operators in the Lie algebra of the ith particle. As an immediate consequence of the
tomography theorem (1.56), we obtain that

〈A〉 =
N∏
i=1

∫
d~ni

∫
dψi

∫
dx p~ni

(x) Tr[Ae−iψi(~ni·~U−x)] , (2.34)

where each of the N triple integrals in the above product may be evaluated using the
methods already analyzed in Sect. 2.2.2 for the tomographic reconstruction of the
single particle. In fact, up to equivalences, the UIR of SU(2)N are given by the direct
product of N operators (2.18) and the invariant measure is the product of N measures
(2.19). Thus, we attain readily the following generalization of Eq. (2.21)

% =
N∏
i=1

(2si + 1)
4π2

∫ 2π

0
dψi sin2 ψi

2

∫ π

0
dϑi sinϑi

×
∫ 2π

0
dϕi Tr

[
% e−i~si·~ni ψi

]
ei~si·~ni ψi , (2.35)

where i is the particle index. Evaluating, as usual, the trace term in (2.35) on the eigen-
vectors of the quorum operators ~ni·~si we introduce the probability p(~n1,m1; · · · ;~nN ,mM )
of obtaining mi as result for the measurement of the ith spin ~si in the direction ~ni.
This information is accessible only in the case of fully distinguishable spins. For the
case of indistinguishable particles, some considerations are in order and we refer the
reader to the following subsection.

Instead of using SU(2)N one may also use other groups for the single particle
spaces, as seen in Sect. 2.2.3, and generalizations of formulas (2.31) and (2.32) follow
immediately.
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In Fig. 2.8 a simulated tomographic reconstruction of the value of 〈Sz〉 (Sz being the
total spin component in the z-direction) is given for different multi-particle spin states.
Notice how the number of the necessary experimental data increases exponentially with
the number of spins, since the statistical error is exponential in the number of particles.

Figure 2.8: Left: Plot of 〈Sz〉 for different number of spins in a completely symmet-
rical state. A total of 106 measurements for each mean value was performed in this
simulation. Right: Semi-log plot of the error bars vs. the number of spins. Notice the
exponential increase in the statistical errors.

Indistinguishable spin 1/2 particles.

In this subsection we will analyze the case of indistinguishable spins. The general
theory for the reconstruction of the spin density matrix of such a system is lacking,
whereas it can be obtained and will be here described for the case of spin 1

2 [40].
Suppose we were given a system of N particles with the same spin. Such particles

may be treated as identical by introducing a new dynamical variable, as in the case of
the isospin. The spin density matrix (which is the partial trace over the orbital degrees
of freedom of the global density matrix) is completely symmetrical, i.e.

P%P−1 = % , (2.36)

for any particle permutation P , because of the complete symmetry of the global density
matrix that describes both the spin and the orbital degrees of freedom.

It is also possible to see that the spin density matrix is block diagonal in the rep-
resentation of vectors of definite symmetry, with the subspace corresponding to each
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block spanned by vectors belonging to the same symmetry. In fact, given |φ〉 and |ψ〉
vectors of different symmetry type [41], then 〈φ|ψ〉 = 0. Hence, for any operator %,
satisfying (2.36), one has 〈φ|%|ψ〉 = 0, as %|ψ〉 belongs to the same symmetry type as
|ψ〉.

Since the square of the total spin S2 and its z component Sz both commute with
all permutation operators P , the common eigenvectors of S2 and Sz may be taken as a
basis for each of the diagonal blocks of the spin matrix. Let us now restrict our attention
to s = 1/2 spin particles. In this case, to each symmetry type there corresponds only
one value of S, where S(S+1) is the eigenvalue of S2. In fact, given [λ1λ2] the partition
of N which defines the class of permutations P that indicate a symmetry type, we find
S = 1

2(λ1 − λ2) [42].

Let HS,M be the space of vectors with assigned S and M (M being the eigenvalue
of Sz). The spin density matrix restricted to HS,M , which is given by %S,M , is again
completely symmetrical, hence [P, %S,M ] = 0. Moreover, HS,M is associated with an
irreducible representation of the permutations group [42]. By using Schur’s lemma, we
can thus conclude that %S,M ∝ 11, 11 being the identity in HS,M . In HS,M there may be
vectors of different symmetry type i, yet 〈i, S,M |%S,M |i, S,M〉 does not depend on the
index i, so that the probability for the measurement of S2 and Sz does not depend on
the symmetry type. The same conclusion holds for the measurement of S2 and ~S ·m
for any versor ~m. Hence, from the arbitrariness of ~m, we conclude that blocks with the
same S (and different symmetry type) are coincident.

In conclusion, we have proved that in the {S2} representation % is block diagonal,
that each block corresponds to a value of S and that blocks with the same S are
equal. Hence, once more we can make use of the general theory of Sect. 1.2.2. In
fact, here the Lie algebra is a direct sum of spin operators ~si, acting on C2i+1 with
i = a, a + 1, · · · , N/2 (a = 1

2 for N odd, and a = 0 for N even). Thus, from the
tomography theorem, (1.56) and using the formula (2.22) we find that each block of
the density matrix is of the form

%i =
(2si + 1)

4π2

∫ 2π

0
dψi sin2 ψi

2

∫ π

0
dϑi sinϑi

∫ 2π

0
dϕi Tr

[
% e−i~si·~ni ψi

]
ei~si·~ni ψi , (2.37)

and

% =⊗i di%i , (2.38)

where di is the number equal %i blocks contained in %. In conclusion, applying Eq.
(2.22) to each block, we can reconstruct % measuring only the global quantities S2 and
~S · ~n.

Some examples will clarify both the theory and the needed experimental setup.
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In the case of two spins 1/2, the spin density matrix will be of the form

% =


σ11 σ12 σ13 0
σ21 σ22 σ23 0
σ31 σ32 σ33 0
0 0 0 α

 def= σ ⊕ α , (2.39)

where the σ block corresponds to the subspace spanned by the eigenstates of S = 1
(which are symmetrical with respect to particles permutations), while the α block to
the subspace spanned by the only eigenvector of S = 0 (anti–symmetrical with respect
to permutations). Applying (2.22) to each block one finds

% =
∫

d~n
4π

1∑
M=−1

p(S = 1, ~S · ~n = M) K1(M − ~S · ~n)

⊕ p(S = 0). (2.40)

According to (2.40), in order to measure %, we only need the probability distributions
p(S, ~S ·~n), corresponding to the operators S2 and ~S ·~n, for all ~n, which can be suitably
recovered using the apparatus depicted in Fig. 2.9, which will be analyzed later.

Similarly, the spin density matrix of three spins 1/2 is

% =



ξ11 ξ12 ξ13 ξ14 0 0 0 0
ξ21 ξ22 ξ23 ξ24 0 0 0 0
ξ31 ξ32 ξ33 ξ34 0 0 0 0
ξ41 ξ42 ξ43 ξ44 0 0 0 0
0 0 0 0 π1

11 π1
12 0 0

0 0 0 0 π1
21 π1

22 0 0
0 0 0 0 0 0 π2

11 π2
12

0 0 0 0 0 0 π2
21 π2

22


. (2.41)

The ξ block corresponds to S = 3/2, whereas the π blocks both correspond to S = 1/2,
and are distinguished by their different symmetry properties. The argument presented
previously proves that π1

ij = π2
ij , for all i, j, thus we can write % = ξ ⊕ π ⊕ π, with

π
def= π1 = π2. Again, applying (2.22) to each block leads to

ξ=
∫

d~n
4π

3
2∑

M=− 3
2

p(S =
3
2
, ~S · ~n = M) K 3

2
(M − ~S · ~n) , (2.42)

π =
∫

d~n
4π

1
2∑

M=− 1
2

1
2
p(S =

1
2
, ~S · ~n = M) K 1

2
(M − ~S · ~n) , (2.43)

and the problem of determining % is again reverted to the simultaneous measurement
of S2 and ~S · ~n.
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Both in the cases presented and in the general N spins case, the required exper-
imental data are the distributions p(S, ~S · ~n). The apparatus to produce such data
are basically equivalent in the two cases, as evident in Figs. 2.9 and 2.10, hence we
shall limit the analysis to the two spins case. Here, the Fizeau filter and the magnetic
field ~B1 = B1~n⊥ = B1(− sinϕ, cosϕ, 0) have the same purpose as in single particle
tomography (Fig. 2.2).
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Figure 2.9: Experimental apparatus for the tomography of systems composed of two
spins 1

2 .

Consider a beam of n non–interacting systems composed of two particles with spin
1/2. As the analysis can be immediately extended to a mixed case, for simplicity let
us consider each system in the pure state

|Ψo〉 = γs|0, 0〉+ γa−1|1,−1〉+ γa0 |1, 0〉+ γa1 |1, 1〉 , (2.44)

with |a, b〉 standing for |S = a,M = b〉. The beam is split into three parts by the
gradient ~B2, and the systems arrive in detector B with a probability p(S = 1,M =
1) = |γa1 |2 and in detector C with a probability p(S = 1,M = −1) = |γa−1|2. The
remaining particles reach position A with a probability

pA = |γs|2 + |γa0 |2 (2.45)

and are left in the state

|ΨA〉 =
1
pA
ξ (γs|0, 0〉+ γa0 |1, 0〉). (2.46)

As the subsequent gradient is directed along the y axis, Eq. (2.46) is conveniently
written using the eigenstates of Sy, i.e. |S,M〉y:

|ΨA〉 =
1
pA

[γs|0, 0〉y + γa0 α−1|1,−1〉y + γa0 α0|1, 0〉y
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+γa0 α1|1, 1〉y] , (2.47)

where αi
def= y 〈1, i|1, 0〉 (i = −1, 0, 1). Hence, the probability for a system to arrive at

detector D is

pS =
1
pA

[
|γs|2 + |γa0 |2 |α0|2

]
. (2.48)

By measuring pA and pS , the quantities |γs|2 and |γa0 |2 are obtained by inverting equa-
tions (2.45) and (2.48). The coefficients |γa0 |2, |γs|2, |γa1 |2 and |γa−1|2 are the four
probabilities p(S,M) we need for the reconstruction given by Eq. (2.40).
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Figure 2.10: Experimental apparatus for the tomographic reconstruction of the spin
states of systems composed of three spin 1

2 states.

A similar argument shows that the equipment of Fig. 2.10 provides p(S,M), for all
S,M , for a system constituted of three spins 1/2.

2.2.5 Feasibility and conclusions

Notice that the orders of magnitude of the experimental parameters are such that
the experiment is feasible with currently available technology. Only as an example,
consider the following cases of spin measurements of electrons or nucleons. For the
magnet which is responsible for the field ~B1 with length of the order of 1 cm, we
can measure the state of a beam of electrons with speed ∼ 109 cm/sec, by using a
magnetic field B1 = ϑ/γt varying between 0 and ∼ 30 gauss. On the other hand, in
the nucleon case, choosing a speed of ∼ 107 cm/sec, we need B1 ranging between 0 to
∼ 102 ÷ 103 gauss. Obviously, the parameters B1 and t can be adjusted over a wide
range, according to the experimental situation.
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In conclusion, we have presented a tomographic experimental procedure for the
measurement of the spin density matrix. The experimental scheme is a consequence of
formula (2.21), which we proved from the general group theory tomographic formalism.
Through some Monte Carlo simulations, we have shown that the reconstruction can be
achieved with high precision using a limited number of measurements. Moreover, we
have shown that the orders of magnitude for the experimental setup are such that it
can be implemented with currently available technology.

2.3 Kerr tomography

In this section a completely different approach to optical quantum state reconstruction
is described and is compared to optical homodyne. The reconstruction technique is
based on an experimental setup, called ‘Quantum Fock Filter’ which was theoretically
developed and analyzed by our group in Pavia [33, 34, 35, 36]. The Fock filter was
conceived for the generation of optical Fock states, but can be used also to efficiently
measure the photon distributions of unknown input states, and thus, by applying the
procedure developed by Opatrný and Welsch [19] a truncated density matrix in the
Fock basis may be obtained. The derivation of this state reconstruction method from
the general theoretical framework of Sect. 1.2 can be derived, but will not be given
here since on one hand this is not an unbiased state reconstruction procedure (there is
a truncation parameter) and on the other hand this device is really efficient only for the
measurement of the photon probability, and not for the state measurement. Thanks
to its robustness to noise, this setup can be used as state measurement device (as op-
posed to conventional homodyne tomography) if the available photodetectors have low
efficiency. The experimental scheme is based on coupling a signal field to a ring cavity
through cross-Kerr phase modulation, and on conditional ON-OFF photodetection at
the output cavity mode. Remarkably, the detector’s quantum efficiency does not affect
the reliability of the state synthesis, or of the distribution measurement (as we will see,
it affects only the normalization).

As already anticipated, the same setup apart from measuring the photon distri-
bution of unknown quantum states, can be also used to prepare the radiation field
in a Fock state or in a selected superposition of Fock states or entangled two-mode
states. An analysis of this operation is in order, since the Fock state generator is useful
for many of the experimental setups that will be seen in this thesis. The generation
of optical radiation number (Fock) states is of importance for a number of different
applications, ranging from high resolution spectroscopy to fundamental tests of Quan-
tum Mechanics. In quantum communication, Fock states achieve the optimal capacity
of quantum channels [43], whereas in optical quantum computation superpositions of
Fock states are needed as input states [44, 45]. Moreover, the synthesis of Fock states
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allows to experimentally characterize active optical devices [46]. The proposed setup
can also be used to synthesize two-mode entangled states by using an additional Kerr
medium, with possible applications in quantum information and quantum teleportation
technology. In our proposal, a traveling wave mode is coupled to a ring cavity through
cross-Kerr phase modulation. The cavity mode serves as a probe, and a successful pho-
todetection at the cavity output reduces the signal mode to a predetermined output
state. The scheme works with high-Q cavities, conventional ON-OFF photodetectors,
and it needs relatively large nonlinearities. These should be available in the next-future
technology, since recent theoretical [47] and experimental [48] developments indicate
that huge Kerr phase shifts of the order of 0.1 radiant per photon can be obtained
through electromagnetic induced transparency.

2.3.1 Experimental apparatus

The scheme, depicted in Fig. 2.11, is based on a ring cavity, coupled to the external
radiation modes through two very low transmissivity τ beam splitters (BS) and a cross
Kerr-medium. A tunable phase shifter, which shifts the field in the cavity by a phase
ψ, is included in the device. One of the two cavity input modes (a1) is pumped with a
coherent source, while the other one (a2) is left in the vacuum. Of the two output modes,
one (b2) is monitored with an ON-OFF photodetector D (which measures the presence
or absence of the radiation field), the other one (b1) is ignored. As will be shown in
the following, whatever is the state of the input signal mode, a number state will be
found at the output mode d2 conditioned to a successful measurement at the detector
D. By repeating the experiment, and measuring the relative frequency of successful
photodetection, one recovers the amplitude of such a Fock component in the input
state, and thus its photon number distribution. Upon fulfillment of certain conditions
shown in the following, superpositions of number states can also be generated. In
principle, the specific number state (or superposition) that will be created is controlled
by tuning the phase ψ.

We now show how the device works by analyzing the dynamics of its components in
the Heisenberg picture. In principle, it would be necessary to quantize the field in the
cavity starting from its classical equations of motion, as for example in [49]. However,
we show that the same results are more easily obtained with a simple one mode model
of the cavity, by merely identifying the output mode c2 at the beam splitter BS2 with
the input mode c3 at BS1 (see Fig. 2.11). Let a1,2 denote the two input modes for the
ring cavity, b1,2 the two output modes, c1 the cavity mode exiting BS1, c2 the cavity
mode exiting BS2, c3 the cavity mode exiting the Kerr medium and the phase shifter,
and d1 and d2 the input and output signal mode respectively. In the Heisenberg picture,
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Figure 2.11: Sketch of the experimental setup for the measurement of the photon
number distribution of unknown quantum states in mode d1, using a coherent pump.
The scheme is based on a conditional ON-OFF photodetector D, a non linear Cross–
Kerr medium and a phase shifter ψ. The cavity input radiation modes are labelled a,
the output modes b, the cavity modes c and the signal mode d. The quantum efficiency
of the photodetector is not a crucial parameter, as it only affects the number of input
states needed for the reconstruction and not its quality.

the input–output relations which characterize the components of the scheme are

BS1:
{
c1 =

√
τa1 +

√
1− τc3

b1 = −
√

1− τa1 +
√
τc3

, (2.49)

BS2:
{
c2 =

√
τa2 +

√
1− τc1

b2 = −
√

1− τa2 +
√
τc1

,

Kerr and Phase shift: c3 = c2 exp
[
−i(χtd†1d1 − ψ)

]
,

where τ is the transmissivity of the two beam splitters, χt is the Kerr susceptibility
times by the interaction time, and ψ is the phase shift imposed to the cavity field mode
by the phase shifter. From Eqs. (2.49) the output modes b1,2 of the cavity can be
expressed as a function of the input cavity and signal mode as{

b1 = κ(ϕ)a1 + eiϕσ(ϕ)a2

b2 = σ(ϕ)a1 + κ(ϕ)a2
, with

{
κ(ϕ) def=

√
1−τ(eiϕ−1)

1−(1−τ)eiϕ

σ(ϕ) def= τ
1−(1−τ)eiϕ

, (2.50)

where ϕ def= −χtd†1d1+ψ is the overall phase shift due to the Kerr medium and the phase
shifter. Notice that the coupling with the signal mode is contained in the dependence
of ϕ on the signal input mode d1.

From the Heisenberg evolution of the modes (2.50), one obtains the state |Ψout〉 in
the cavity output modes (before the measurement) by using the creation operators b†1,2
and by expressing the input state |Ψin〉 on a Fock basis of the input modes a1,2:

|Ψin〉 =
∞∑

n,m=0

cnm
(a†1)

n(a†2)
m

√
n!m!

|0〉|0〉 −→ |Ψout〉 =
∞∑

n,m=0

cnm
(b†1)

n(b†2)
m

√
n!m!

|0〉|0〉. (2.51)
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Consider the overall input state %in composed by a coherent state in mode a1, vacuum
in a2 and arbitrary state in d1 (which will be described by the density matrix νss′ in
the Fock basis), i.e.

%in = |α〉a1a1〈α| ⊗ |0〉a2a2〈0| ⊗
∞∑

s,s′=0

νss′ |s〉d1d1〈s′| . (2.52)

Through Eq. (2.51) we obtain the output state (before detection by detector D) on the
modes b1,2 and d2 as

%bd = |ακ(ϕ)〉b1b1〈ακ(ϕ)| ⊗ |αeiϕσ(ϕ)〉b2b2〈αeiϕσ(ϕ)| ⊗
∞∑

s,s′=0

νss′ |s〉d1d1〈s′| =

=
∞∑

s,s′=0

νss′ ×

|ακ(ϕs)〉b1b1〈ακ(ϕs′)| ⊗ |αeiϕσ(ϕs)〉b2b2〈αeiϕσ(ϕs′)| ⊗ |s〉d2d2〈s′|, (2.53)

where ϕs
def= −χts+ ψ, s in N. After tracing out mode b1, the state %bd becomes

%′bd =
∑

ss′ νss′e
− |α|2

2 [|κ(ϕs)|2+|κ(ϕs′ )|2−2κ(ϕs)κ∗(ϕs′ )] × (2.54)

|σ(ϕs)αeiϕ〉b2b2〈σ(ϕs′)αeiϕ| ⊗ |s〉d2d2〈s′| ,

The state (2.54) now undergoes a reduction at detector D. An ON-OFF photodetector,
with quantum efficiency η is described by the two value probability operator measure
(POM)

ΠOFF =
∞∑
k=0

(1− η)k|k〉〈k| ; ΠON = 1−ΠOFF , (2.55)

which is obtained from the Mandel-Kelley-Kleiner formula [38]. The final state after
the reduction in mode b2, in the case of a successful (ON) photodetection is given by

%out =
Trb2 [ΠON%bd]
Tr[ΠON%bd]

(2.56)

=
e−|α|

2

N

∞∑
s,s′=0

νss′ exp
[
|α|2

(
κ(ϕs)κ∗(ϕs′) + σ(ϕs)σ∗(ϕs′)ei(ϕs−ϕs′ )

)]
×

(
1− e−η|α|

2σ(ϕs)σ∗(ϕs′ )
)
|s〉〈s′| ,

where N is a normalization constant. Notice that the phase factors in the exponential
in (2.56) do not play any role, as, in the working regime we exploit, these factors tend
to one.
In the limit τ → 0, the effective transmissivity σ(ϕ) of the cavity tends to a sum of
Kronecker deltas

lim
τ→0

|σ(ϕs)| =
{

1 for ϕs
def= −χts+ ψ = 2kπ (k ∈ Z)

0 for ϕs 6= 2kπ
=

∞∑
k=−∞

δs,kl∗+n∗ , (2.57)
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where l∗ = 2π
χt is the distance between the peaks, and n∗ = ψ

χt is the position of the
first peak. For the values of l∗ and n∗ for which the quantity kl∗+n∗ is not an integer,
there is no contribution to the sum in (2.57). In fig. 2.12 the function |σ(ϕs)σ∗(ϕ′s)| is
plotted vs. ϕs and ϕ′s.

Figure 2.12: Plot of the function |σ(ϕs)σ∗(ϕ′s)| [ϕs, ϕs′ in π units.], with τ = .1,
n∗ = ψ

χt = 0 and l∗ = 2π
χt = 2. Notice the “fakir chair” structure: the function

approaches a sum of delta functions for beam splitter transmissivity τ → 0.

From Eqs. (2.56) and (2.57) it is clear that for small values of the Kerr susceptibility
χt (i.e. l∗ high enough so that νil∗+n∗,jl∗+n∗ ' 0 for both i and j nonzero) and for high
pump value |α| � 1, the output state approaches a Fock state:

lim
τ→0

%out = |n∗〉〈n∗| . (2.58)

Notice that the state |n∗〉 to be synthesized can be controlled by varying the phase ψ.
In Fig. 2.13 the photon number distribution of the state (2.56), is given. Notice how
the limiting case of Eq. (2.58) is approached.

In order to recover the photon number distribution p(n), the phase ψ must be
scanned in order to put the cavity into resonance with the Fock states |0〉, |1〉, · · · , |m〉,
up to a certain state m that we assume is the highest excited Fock component of the
input state. For each of the values that ψ takes, the measurement procedure described
above must be repeated a number N times. The relative frequency of successful pho-
todetection when ψ is tuned on the state |n〉 gives the probability p(n). In fact, the
probability of successful (ON) detection is given by

PON = Tr[ΠONρbd] =
∞∑
k=0

νkk(1− e−η|α|
2|σ(ϕs)|2) , (2.59)

and for sufficiently high l∗ and |α| � 1, is proportional to one of the diagonal elements
of the input density matrix PON ' νn∗n∗ . Thus, if an ensemble of identical states is
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Figure 2.13: Plot of photon number distribution of a synthesized Fock state. The
experimental parameters are: τ = 0.01, ψ = .4, χt = 0.05, η = 10% and the two pumps
(in modes a1 and d1) are in a coherent state with amplitude α = β = 3. The output
state approaches a Fock state |8〉.

impinged into the device in mode d1, by tuning the cavity to different values of n∗

and measuring the relative frequency of ON photodetections, one can obtain νn∗n∗ .
This allows the measurement of the photon number distribution of an arbitrary state,
using less experimental data and lower quantum efficiency detectors than in homodyne
tomography (which is the currently used experimental procedure for reconstructing the
number distribution of arbitrary states). One must be aware however, that the above
procedure must be modified in the case of non-ideal photodetection (η < 100%), since
in this case a better normalization proceeding has to be applied. In fact, p(n) must
be evaluated by dividing the number of successful photodetections (when ψ is tuned
to |n〉) by the total number of successful photodetections, for any ψ. Caution must
be taken in order to avoid introducing systematic errors: one must be confident that
the ψ–scanning on the Fock components |n〉 is carried out on a range wide enough
to cover all Fock components that are excited in the input state. Moreover, we must
assume that the statistics of the outcomes does not change, when varying ψ. This last
assumption can be dropped by using a chain of Fock filters, the output signal mode of
each impinging in the input of the successive, where each one is tuned to a different
Fock component, as in Fig. 2.14.

A couple of Monte Carlo simulations for the measurement procedure here given are
shown in Fig. 2.15. A minor modification of this same experimental setup allows to
reconstruct also the truncated density matrix of the state in the Fock basis. As shown in
Ref. [19], the displaced Fock-state probability distribution pn(ζ) = 〈n, ζ|%|n, ζ〉, with
|n, ζ〉 = eζa

†−ζ∗a|n〉, can be used to reconstruct the density matrix % by means of a
least-squares inversion method. The displacement parameter ζ can be kept constant in
modulus, varying only the phase of the local oscillator that realizes the displacement on
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Figure 2.14: Chain of Fock filters that allow to recover the photon number distribution
using much less data than the data necessary if using a single cavity. The number of
cavities must be equal to the maximum m that is to be measured.

Figure 2.15: Monte Carlo simulation of two photon number measurements using the
chain of Fock filters depicted in Fig. 2.14. The parameters for these simulations are:
detector quantum efficiency η = 10%; beam splitter transmissivity τ = 10−3; Kerr non
linearity χt = 10−2; coherent pump state intensity |α|2 = 10. The state on the left is
a coherent state (in the Fock basis: |β〉 = e−(1/2)|β|2 ∑

i
1√
i!
βi|i〉), with β = 2. It has

been reconstructed with 1000 measurements, divided into 20 statistical blocks, by a
chain of 15 Fock filters. The state on the right is a thermal state (in the Fock basis:
|γ〉 =

√
1− |γ|2

∑
i γ

i|i〉), with γ = 0.6. Here only 300 measurements, divided into 10
statistical, blocks have been used. A chain of 6 detectors is sufficient. The theoretical
distributions have been superimposed to the histograms.

the signal % through a high-transmissivity beam splitter. The distributions pn(|ζ|eiϕ) at
different phases ϕ can then be measured with the ring cavity method described above.
In Fig. 2.16 we report the result for the reconstruction of a squeezed vacuum state with
average photon number 〈a†a〉 = 0.5 together with the corresponding statistical errors.
Notice that the reconstruction of the whole density matrix has been carried out using
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quantum efficiency as low as η = 20%.

Figure 2.16: Monte Carlo simulation of the reconstruction of a squeezed vacuum state
with 〈a†a〉 = 0.5 average photons. On the left: the real part of the matrix elements.
On the right: the corresponding statistical errors. The ring-cavity method has been
used to measure the displaced photon number distributions pn(ζ), with |ζ| = 1.4 and
25 equally spaced phases ϕ = arg ζ ∈ [0, 2π) with 4000 data each. 10 blocks have been
used to evaluate the statistical errors. The parameters of the set-up are the following:
quantum efficiency η = 20%, beam-splitter transmissivity τ = 10−4, Kerr coupling
χt = 10−1.

2.3.2 Other applications

Superposition generation. In order to produce superpositions of selected equally
spaced number states, one has to provide higher values for the Kerr nonlinearity χt, or
alternatively to provide sufficiently excited input state in mode d1, so that the input
state coefficients νil∗+n∗,jl∗+n∗ are different from zero for different values of i and j. For
example, as shown in Figs. 2.17 and 2.18, starting from a coherent input state with
density matrix νss′ = e−|β|

2 βs(β∗)s′
√
s!s′!

it is possible to generate the superposition

|Ψ〉 =
1√
2
(|n∗〉+ eiΦ|n∗ + l∗〉) (2.60)

by choosing |β|2 =
l∗
√

(n∗−l∗)!
n∗! and arg β = Φ

l∗ . It must be stressed that only superposi-
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Figure 2.17: Plot of the diagonal of the density matrix %out exiting the device for a
coherent input in mode d1 with modulus |β|2 =

5
√

8!
3! and with l∗ = 5, n∗ = 3. The

parameters are chosen so to have the superposition 1√
2
(|3〉+ |8〉) in the Fock basis. In

the left plot, notice a residual component at the Fock state 13, which results from the
term k = 2 in the sum (2.57). Here, the quantum efficiency of detector D is η = 10%,
the modulus of the cavity pump is α = 8, the BS transmissivity is τ = .06. In the right
plot we used τ = .2, to show the smearing effect of a bad cavity.

tions of the type

|Ψ〉 =
∞∑
k=0

ck|n∗ + kl∗〉 (2.61)

may be created, where the coefficients ck are determined by the state incoming in mode
d1, i.e. by the coefficients νss′ .

Entanglement creation. A modified version of the proposed experiment may
also be used for the production of two-mode entangled states. One only has to use two
Kerr crystals inside the cavity, as shown in Fig. 2.19. In this case, the total phase
shift imposed by the cavity is given by the sum of the effect of each Kerr medium.
For identical Kerr crystals K1 and K2 (i.e. χK1 ≡ χK2

def= χ), one has l∗ = π
χt and

n∗ = ψ
2χt = n∗1 + n∗2, where n∗1 and n∗2 are the eigenvalues of the number states in the

modes d(1) and d(2) impinging into each of the Kerr crystals. In this case, Eq. (2.57)
becomes

lim
τ→0

|σ(ϕs)| =
∑
k

δs,kl∗+n∗1+n∗2
, (2.62)

and the output state (2.58) for τ � 1 and |α| � 1 now reads

%out =
n∗∑

n,k=0

ν
(1)
nk ν

(2)
nk |n〉d(1)2 d

(1)
2

〈k| ⊗ |n∗ − n〉
d
(2)
2 d

(2)
2

〈n∗ − k| , (2.63)
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Figure 2.18: Density matrix for the two states given in Fig. 2.17.

that is obtained in the limit of low Kerr nonlinearity χt � 1 (i.e. l∗ � 1). For input
signal pure states |Ψin〉 =

∑
k ν

(1)
k |k〉

d
(1)
1

⊗
∑

j ν
(2)
j |j〉

d
(2)
1

, one finds

|Ψout〉 =
n∗∑
k=0

ν
(1)
k ν

(2)
n∗−k|k〉d(1)2

|n∗ − k〉
d
(2)
2

. (2.64)

It is obvious that any multipartite entanglement between many modes could be synthe-
sized in principle, by increasing the number of Kerr media in the cavity. This method
could then be used also to generate Greenberger–Horn–Zeilinger states.

2.3.3 Feasibility

We now analyze the feasibility of the proposed experimental scheme. In Subsect. 2.3.1
we already analyzed the effect of limited detector efficiency η < 100% for the photon
distribution measurement scheme. Regarding the effect of detector’s D quantum effi-
ciency when the device is used as a Fock state generator, as can be seen from Fig. 2.20,
when one lowers the detector’s quantum efficiency, the result is actually a purification
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Figure 2.19: Modification of the proposed experimental setup, in order to construct
entangled states between the output modes d(1)

2 and d(2)
2 .

of the state. Qualitatively this can be explained by noticing that in Eq. (2.56) the low-
ering of η contributes to the convergence exploited in Eq. (2.58) to produce the Fock
state (or the superpositions). It would seem that one could actually increase the output
signal quality by using low efficiency photodetectors. The drawback is given in terms
of production rate of the desired Fock states. It is obvious that it is less probable for
a non–efficient photodetector to click, so the production rate is drastically decreased.
This is also the reason for which, in the case of inefficient detector D, the probability is
not the relative frequency of successful photodetections, but it must be normalized on
the number of successful photodetections for all values of ψ, as described in Subsect.
2.3.1. In fact, the probability of a successful ON photodetection is given by Eq. (2.59),
from which one can see that PON exponentially decreases with decreasing η, and which
for τ → 0 and |α| � 1 tends to

PON −→
∞∑
k=0

νkl∗+n∗,kl∗+n∗ . (2.65)

The quantum efficiency η of the detector in the proposed device is, therefore, not a
critical parameter, so that ordinary photodetectors may be used in the experimental
setup. Using low efficiency photodetection does not reduce the quality of the output
states, but only it affects their production rate.

The actual feasibility of the proposed experimental setup relies on the availabil-
ity of good ring cavities, suitable Kerr nonlinearities, and ordinary photodetection.
The cavity couples to the outside modes through small transmissivity beam splitters
τ ' 0.1÷ 0.01%. The Kerr nonlinearities that are needed are of the order of χt ' 0.01
for the creation of number states and of the order of χt ' 0.1 for obtaining superpo-
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Figure 2.20: Plots for the same parameters as for the right figure 2.17 (i.e. |β|2 =
5
√

8!
3! ,

l∗ = 5, n∗ = 3, α = 8 and τ = .2). On the left η = 100%, while on the right η = 1%.
This shows how lowering the detector’s quantum efficiency enhances the quality of the
state. The cost is paid in terms of a lower production rate: the probability (2.59) of
obtaining the state depicted on the left is PON ' 0.789, while on the right PON ' 0.106.

sitions. Photodetection with quantum efficiency as low as η = 1% has been shown to
be effective. The output state must be controlled by varying the phase shift ψ which
can be varied, in ordinary experimental setups, in steps of the order of π

500 [50]. To
our knowledge, the experiment for the generation of Fock states or two mode entangled
states should be feasible with laboratory technology now available. The creation of
Fock state superposition may ask for Kerr nonlinearities which are not yet available in
the optical domain, though recent results [47, 48] indicate that giant non-linear shifts
of the order of 0.1 radiant per photon may be obtained through electromagnetically
induced transparency.

2.3.4 Conclusions

In conclusion we have proposed an optical device capable of measuring the photon
number probability of unknown quantum states and of creating optical Fock states,
selected superposition of Fock states, and two mode entangled states in traveling wave
modes. The experimental setup is composed of a high-Q ring cavity coupled with
the signal mode through a cross-Kerr medium and an ON-OFF photodetection. A
successful photodetection reduces the signal mode to a predetermined output state.
We have shown that imperfect photodetection does not affect the quality of the output
states. By counting the number of successful photodetections when the cavity is set into
resonance with the Fock components of the input state, one may recover the input state
photon number probability. Compared to conventional homodyne tomography (the
only efficient known method for the photon distribution measurement), this scheme
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allows the same measurement with less data and with detectors far less efficient, as
is evident from the Monte Carlo simulations that were shown in this section. The
applications for such a device in the modern “Quantum technology” are numerous and
span through many of the fields of advanced quantum optics research.



Chapter 3

Homodyne tomography:

proposed experiments

3.1 Introduction

Optical homodyne tomography, which has been derived in Sect. 2.1 from the general
formulas of Sect. 1.2, allows numerous experiments. In this chapter a number of such
experiments, which I contributed to propose, are outlined. Each of these are not “brute
force” applications of the theory previously outlined, but the homodyne tomography
technique has to be appropriately modified so to adapt to the particular experimental
setups and to obtain the results we need. Monte Carlo simulations will be used to
illustrate the feasibility of the proposed experimental setups. Here a brief outline of
the chapter is given.

In Sect. 3.2 (see [46]) we propose a setup for obtaining the Hamiltonian operator
(for unitary devices) or the Liouvillian superoperator (for devices interacting with the
environment) of an arbitrary phase-insensitive optical device. This, obviously, allows
a complete characterization of the device, at least in the optical domain that is ex-
plored. In Sect. 3.3 (see [51]) an experiment for the generation and detection of optical
Schrödinger cats is proposed. The experimental setup is based on the one proposed
in [52], which would not be feasible with the technology now available. Our proposal,
which in addition to homodyne tomography uses a novel deconvolution procedure,
makes it possible to reconstruct cat states that are produced with heavy noise from
inefficient photodetectors. Homodyne tomography can also be used in fundamental
tests of quantum theory, such as the test of the state reduction mechanism I describe
in Sect. 3.4, or the test of Bell’s inequalities, which I describe in Sect. 3.5. For the
state reduction test, (see [53]), one can take advantage of the fact that in the optical
domain a multitude of completely different detection schemes (direct detection, hetero-
dyne detection, homodyne detection) are available. We compare the “experimental”

76
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state reduced from each of such measurement schemes with the state we would expect
theoretically from the reduction postulate. Regarding the tomographic test of Bell’s
inequalities (see [54]), the tomographic setup is here modified into a “self homodyne”
scheme in order to obtain a Bell experiment based on the spatially correlated photon
state which may be obtained through parametric down conversion. In Sect. 3.6 a fea-
sibility study is presented for the analysis of the experimental data for an homodyne
measurement which is being presently carried out in Prof. De Martini’s group in Roma
University.

In conclusion, in this chapter a series of practical applications of the theory of the
optical homodyne tomography technique presented in Chap. 1 will be described in
the form of proposals for experimental setups. In all cases some numerical computer
simulations will be given to illustrate the proposals and to show their actual feasibility.

3.2 Hamiltonian reconstruction

In this section we show [46, 55, 56] how optical homodyne tomography, described in
Sect. 2.1, can be used to determine the Hamiltonian of an optical phase-insensitive
device that evolves the quantum state of radiation. In the case of non–unitary device
(as is the case for open quantum systems, i.e. systems interacting with an environment
reservoir) the Liouvillian superoperator that evolves the density matrix of the radia-
tion is obtained. Previous theoretical proposals to give a complete characterization of
quantum processes have been made in Refs. [57]. There, the methods are restricted
to systems with finite dimensional Hilbert space, and the method does not lead to an
explicit reconstruction of the Liouvillian. In this section we show how this goal can
be achieved in practice, by presenting a simple experimental setup that measures the
Liouvillian of a phase-insensitive optical device.

3.2.1 Experimental setup

The main idea for reconstructing the Liouvillian of a quantum device is sketched in Fig.
3.1. One should impinge the device with a known input state ρin from an (over)complete
set, determine the state ρout at the output, and finally compare ρin to ρout. For an
optical device the determination of the output state is made possible by the homodyne
tomography technique. Regarding the generation of the set of input states {ρin}, an
experimental method is suggested later in this section. The evolution of the state from
ρin to ρout is governed by the Green (super)operator G

ρout = Gρin , (3.1)

where G has actually a four-index matrix representation, and on the Fock basis {|n〉}
one has 〈n|ρout|m〉 =

∑∞
h,k=0 G

hk
nm〈h|ρin|k〉. For a device that is homogeneous along the
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Figure 3.1: Sketch of the method for measuring the Liouvillian of an optical device.
A known input state ρin is impinged into the device, and quantum tomography of the
output state is performed using a homodyne detector. By scanning an (over)complete
set of states ρin at the input and comparing them with their respective output states,
it is possible to reconstruct the Liouvillian of the device. The histograms of homodyne
data, here given for the sake of illustration, correspond to a device that consists of an
empty cavity, and with the input states as number states ρin = |n〉〈n|.

direction of light propagation the Green superoperator can be written as the exponential
of a constant Liouville superoperator L as follows

G = exp(Lτ) , (3.2)

where τ is the propagation time (i.e. the device length). The Liouvillian L gives the
evolution of the state through an infinitesimal slab of the device media according to
the master equation ρ̇ = Lρ. We restrict our attention to the case of a perfectly phase-
insensitive device: as it will be clear from the following, the case of phase-sensitive
device is much more complicated. A phase-insensitive device is a device that leaves
dephased states as dephased, as in the case of a traveling wave laser amplifier. A
dephased state is diagonal in the photon-number representation, with density matrix
of the form ρ =

∑∞
n=0 rn |n〉〈n|, where {|n〉} denotes the complete set of eigenvectors

of the photon-number operator a†a of the field mode with annihilation operator a. For



3.2 Hamiltonian reconstruction 79

the evolution of dephased states it is sufficient to determine the sector of the Green
superoperator that evolves dephased states, i.e. the two-index Fock matrix

Gnm = 〈n| G
[
|m〉〈m|

]
|n〉 . (3.3)

The Liouvillian Lnm is then obtained as the matrix-logarithm of Gnm [58, 59].

The experimental reconstruction of Lnm could be performed by impinging a number
state ρin = |n〉〈n| on the device, and then making the homodyne tomography of the
output state. In this fashion, the number probability distribution rk(n) of the output
coincides with the n-th row of the Green matrix Gnm, and by varying n one would
reconstruct the whole matrix. Since producing number states is experimentally difficult,
one would try to use coherent states instead. In this way matrix elements of the form
〈ψ| G[ |α〉〈α| ] |ψ′〉 would be obtained, with |α〉 denoting the scanning coherent input
state, and |ψ〉 and |ψ′〉 being a couple of vectors of the tomographically reconstructed
matrix representation. Unfortunately, the relation between Gnm and 〈n| G[ |α〉〈α| ] |n〉
is highly singular, involving the P -function of |m〉〈m|, and hence the matrixGnm cannot
be obtained in this way starting from experimental data, which is always affected by
statistical errors. On the other hand, the Fock representation has a privileged role,
because here the Liouvillian matrix has a transparent meaning in terms of creation and
annihilation operators. How to overcome the problem of generating input Fock number-
states? A solution could be to employ the “optical Fock filter”, which was described
in Sect. 2.3 and is capable of producing Fock states and some selected superposition
of Fock states. This apparatus, though, is experimentally rather challenging, and the
analysis of the imperfections in the produced states is a priori difficult. On the other
hand, the Fock filter may become useful for the analysis of phase–sensitive devices
since it is the only apparatus, to my knowledge, capable of producing the selected
superpositions of Fock states one would need for the characterization of such devices.
However, through the Fock filter only some portions of the Green superoperator may
be accessible, since it is not capable of producing all the necessary superpositions —
such as e.g. 1√

2
(|n〉+ |n+ 1〉) with arbitrary n. Moreover, the extension of the theory

presented in this section to the experimental characterization of phase–sensitive devices
is also complicated by the non–trivial issue of numerically calculating the logarithm of
a four index matrix.

In the following we will use a much simpler apparatus, which can produce the
desired input states and whose imperfections can be taken into account so that the
errors that it introduces can be deconvolved. In fact, for the purpose of analyzing
phase–insensitive devices, it is sufficient to generate number states with random n as
far as n is known. This leads us to devise the setup depicted in Fig. 3.2. A non
degenerate optical parametric amplifier (NOPA) with a strong classical pump down-
converts the vacuum into a pair of twin beams. The twin beams are used as a random-n
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Figure 3.2: Experimental setup, including the apparatus used to generate the input
number states ρin = |n〉〈n| needed for the tomographical reconstruction of the Liouvil-
lian of an optical device. A random-n Fock state |n〉 for the input beam is achieved by
performing photodetection at D on the other twin beam, n being the measured number
of photons. A non degenerate optical parametric amplifier (NOPA) with vacuum input
is used to produce the twin beams. For non 100% quantum efficiency photodetection
at D, an error compensating procedure is proposed —see Eq. (3.6).

Fock state generator by measuring the number of photons on one beam (detector D
in Fig. 3.2) while impinging the other beam on the optical device. For quantum
efficiency ηD = 100% at detector D, the photodetection would reduce the twin-beam
state |TB〉 ∝

∑∞
n=0 ξ

n|n, n〉 into a random-n state |n〉 at the input of the optical device,
with thermal probability distribution wn = |ξ|2n

(
1− |ξ|2

)
, where n is the measurement

outcome atD. The tomographically reconstructed number probability 〈k| G[ |n〉〈n| ] |k〉
of the output state already would provide the nth row Gkn of the Green matrix. On
the other hand, for ηD < 1, a mixed state ρn will actually enter the device instead of
|n〉〈n|, as a result of the state reduction at D (we already remembered in Sects. 2.1
and 2.3 that an inefficient photodetector is equivalent to a perfect detector preceded
by a beam splitter). The outcome n probability distribution then becomes

pn = (1− |ξ|2) (ηD|ξ|2)n

[(ηD − 1)|ξ|2 + 1]n+1
, (3.4)

as will be consistently derived in Sect. 3.6. One can easily show that the tomograph-
ically reconstructed output number probability rk(n) ≡ 〈k|G[ρn]|k〉 is related to the
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Green matrix through the identity

rk(n) = [(ηD − 1)|ξ|2 + 1]n+1
∞∑
m=0

(
m+ n

n

)
[|ξ|2(1− ηD)]mGk,m+n . (3.5)

The relation (3.5) can be inverted as follows

Gkl =
1

[(ηD − 1)|ξ|2 + 1]l+1

∞∑
n=0

(
n+ l

l

)[
(ηD − 1)|ξ|2

(ηD − 1)|ξ|2 + 1

]n
rk(n+ l) . (3.6)

In fact, consider the Bernoulli series

fn =
∞∑
j=0

(
n+ j

n

)
ηn(1− η)j gn+j , (3.7)

where η is a parameter and fn and gn are arbitrary operators. We can prove that the
following inversion

gn =
∞∑
k=0

(
n+ k

n

)
η−n

(
1− 1

η

)k
fn+k (3.8)

holds in any case, apart considerations of convergence of (3.8) depending on the nature
of fn and of gk. By substituting Eq. (3.7) into Eq. (3.8) one obtains

∞∑
k=0

(
n+ k

n

)
η−n(1− 1

η
)k

∞∑
j=0

(
n+ k + j

n+ k

)
ηn+k(1− η)jgn+j+k

=
∞∑
k=0

∞∑
j=k

(
n+ k

n

)(
n+ j

n+ k

)
(η − 1)k(1− η)j−kgn+j

=
∞∑
j=0

j∑
k=0

(
n+ k

n

)(
n+ j

n+ k

)
(η − 1)k(1− η)j−kgn+j

=
∞∑
j=0

j∑
k=0

(
n+ j

n

)(
j

k

)
(−1)k(1− η)jgn+j

=
∞∑
j=0

(
n+ j

n

)
δj0(1− η)jgn+j = gn , (3.9)

where the formula
∑j

k=0

(
j

k

)
(−1)k = δj0 has been used. Notice that this inversion

method is completely general and can be used for the reconstruction of any set of states
gn conditioned by an inefficient photodetection which produces the mixed states fn. In
fact, a similar deconvolution procedure will be also used in Sects. 3.3 and 3.6 for the
reconstruction of Schrödinger cat states and for the measurement of twin beam states
respectively.
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Eq. (3.6) is our algorithm to reconstruct the Green matrix Gkl from the collection
of all tomographically measured number probabilities rk(n) for different outcomes n (in
practice the sum in Eq. (3.6) is truncated at some maximum n). Notice the interplay
of the gain ξ and the quantum efficiency ηD in determining the probability pn on one
hand, and in producing the statistical errors in the reconstructed Green matrix on
the other hand. For decreasing quantum efficiency ηD → 0, larger values of n can be
made more probable by increasing the gain of the NOPA as ξ → 1−. However, at the
same time, convergence of the sum in Eq. (3.6) becomes slower, and statistical errors
of matrix elements Gkl increase as result of tomographic errors on rk(n). Hence, the
effect of quantum efficiency ηD, which reduces the size of the viewable matrix Gkl, can
be partially compensated by increasing the gain of the NOPA, however at expense of
statistical errors for Gkl. For the tomographic measurement, by increasing the number
of experimental data and using ηH -dependent pattern functions, introduced in Sect.
1.1.3 as Eqs. (1.19) and (1.20), can compensate the effect of low quantum efficiency
ηH < 1, which, anyhow, must be above the threshold ηH = 50% (for the reconstruction
in the Fock basis). On the other hand, for quantum efficiency ηD at detector D there
is not such a threshold, as one can see from the convergence and error-propagation
analysis of Eq. (3.6), which will be carried out in Sect. 3.6.

The proposed state-reduction scheme—based on twin beams from a NOPA—is not
a new one, and, for example, a similar setup has been proposed to generate Schrödinger-
cat states with the experimental setup which will be described in Sect. 3.3. As such
state-reduction is the core of our measurement method, we want to examine it at work
in a realistic situation1. Typically the NOPA can be pumped by the second harmonic
of a Q-switched mode-locked Nd:YAG laser, with the output twin beams pulsed at a
repetition rate of 80 MHz, and with a 7ps pulse duration. Thus, the twin beam mode
with annihilator a at the input of the optical device is actually a wideband mode, with
frequency centered around 532nm, and width of 140 GHz (the inverse of the pulse
time-length). The same Nd:YAG laser beam is used for the local oscillator (LO) of the
homodyne detector H. In this way the LO has the same central frequency and the same
time-envelope of the beam at the input of the optical device. The integration time at
photodetector D can be set to 1 ns, which is greater than the pulse width and shorter
than the distance between pulses. In this way each pulse is completely annihilated
by the detector D during the integration time, and, correspondingly, the homodyne
measurement is made with the LO matched on the same pulse shape of the signal twin
beam, which means that the measurement is performed on the right wideband mode
after reduction by detector D. Moreover, the detector D and the optical device can be
geometrically placed in such a way that, within a narrow solid angle, the direction of

1We acknowledge useful discussions with Prof. Tito Arecchi of INO, Firenze, on the experimental

setup.
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the respective input k-vectors are the same relative to the k-vector of the NOPA pump,
so that state reduction at D affects only radiation at the twin k at the input of the
device, so that the state-reduced modes at D and at the device are perfectly matched.
From the above scenario it follows that the mode with annihilator a at the input of
the optical device is actually a wideband mode, and hence we measure the effective
Liouvillian over a 140 GHz bandwidth centered around 532nm. Then, it is clear that
all measurements for different random inputs can be considered as independent only if
the (atomic) relaxation times in the optical devices are shorter than the pulse-repetition
period.

3.2.2 Examples of reconstructions

Now we show the results from some Monte-Carlo simulated experiments to see our
method at work, and estimate the number of measurements needed and the reliability
of the reconstruction of Gkl.

The simplest phase insensitive device is the phase-insensitive linear amplifier (PIA),
with Liouvillian L

L = 2
{
AD[a†] +BD[a]

}
, (3.10)

where the Lindblad superoperator is defined as

D[θ]ρ def= θρθ† − 1/2(θ†θρ+ ρθ†θ) (3.11)

for any complex operator θ. For A = 0, Eq. (3.10) describes an empty cavity. The
Liouvillian matrix has the form

Lnm
def= 〈n|L

[
|m〉〈m|

]
|n〉 = (3.12)

2
{
A(m+ 1)[δnm+1 − δnm] +Bm[δnm−1 − δnm]

}
,

where δik denotes the Kroneker delta. Notice that Lnm is tridiagonal, the upper diag-
onal corresponding to the one-photon absorption aρa† of the loss term D[a], the lower
diagonal corresponding to the one-photon emission a†ρa of the gain term D[a†], and the
main diagonal containing the anticommutators coming from both terms. In Fig 3.3a we
show a typical result of a Monte Carlo experiment of the tomographic reconstruction
of the Liouvillian (3.12). We used quantum efficiency ηD = 80% at the conditioning
detector D and ηH = 85% at the homodyne detector H. One can see that the details of
the matrix are well recovered, and the truncation of the Hilbert space dimension does
not affect the reconstruction. In Fig. 3.4 the three main diagonals of the matrix are
plotted with their statistical errors against the theoretical value, showing a very good
agreement. The statistical errors are of the same size of those of the tomographically
reconstructed output probabilities. Notice that the number of data 1011÷ 1012 needed
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for this experiment could be collected in a reasonable time with a repetition rate of 80
MHz. In Fig. 3.3b we present a simulated experiment using the value ηD = 30% of
quantum efficiency (which is a typical value of η for conventional single-photon resolv-
ing detectors), however for the reconstruction of a smaller matrix 5 × 5. Notice that
only the photodetector D is required to be linear single-photon resolving, whereas the
homodyne detector takes advantage of amplification from the LO, and hence can use
high efficiency detectors (the value ηH = 85% here used has been widely surpassed in
the real-life tomographic experiments, as in Ref. [21]).
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(a) (b)

Figure 3.3: Monte Carlo simulation of the reconstruction, by means of the proposed
experimental setup, of a linear phase insensitive laser amplifier whose Liouvillian Lnm
is given in Eq. (3.12). Here A = 0.194 and B = 9.45 · 10−3. The reconstruction is
performed by using 2 statistical blocks of 106 homodyne data for each of the output
states. Homodyne quantum efficiency is ηH = 85%. In Fig. (a) a conditioning detector
D with efficiency ηD = 80% has been used. Here the NOPA gain is ξ = 0.6, hence a
total of 2.7 ·1011 homodyne data are needed in order to obtain the 106 data per output
state we actually used in the reconstruction. In Fig. (b) ηD = 30% has been used, with
a NOPA gain of ξ = 0.4. Hence a total of 9.9 · 1011 total experimental data are needed.

Figure 3.4: The three main diagonals of the Liouvillian Lnm of Fig. 3.3a are given with
their statistical error bars. The solid line is the theoretical value from Eq. (3.12).
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As another example, we simulated the experimental tomography of the effective
Liouvillian of a one-atom traveling-wave laser amplifier. In Fig. 3.5 the theoretical

Figure 3.5: Theoretical Liouvillian for a one-atom laser, obtained by solving numerically
the master equation (3.13). The parameters for this laser are C def= g2

γγ⊥
= 12; ns

def=
γ‖γ⊥
4g2

= 7; σ0 = 1; f = γ‖
2γ⊥

= 1; γ = 1; t∗ = .0115.

Liouvillian matrix is plotted, as obtained from a long-run quantum jump simulation
[60] of the one-atom-laser master equation [61, 62]. In the quantum jump simulation,
the number of “histories”, which have to be used, must be high enough so that the
statistical fluctuations inherent in such calculation method become inappreciable. The
laser’s master equation is obtained by joining the rotating wave approximation Jaynes-
Cummings Hamiltonian with the Liouvillian of an empty cavity and with the canonical
Bloch single atom Liouvillian. The result (see [63, 64, 65]) is given by

ρ̇ =
{
γ‖
2 (1 + σ0)D[σ+] + γ‖

2 (1− σ0)D[σ−]+

1
4

(
γ⊥ −

γ‖
2

)
D[σz] + γD[a]

}
ρ+ g[σ+a− σ−a

†, ρ] (3.13)

where g is the electrical-dipole coupling, γ‖ and γ⊥ are the decay rates of population
inversion and atomic polarization respectively, γ is the cavity decay rate, σ0 is the
unsaturated inversion (−1 6 σ0 6 1), ρ now denotes the joint atom-radiation density
matrix, and σ±z are the Pauli matrices

σ+
def=
(

0 1
0 0

)
, σ−

def=
(

0 0
1 0

)
, σz

def=
(

1 0
0 −1

)
. (3.14)
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In the quantum jump simulation, the atom is traced out at a time t∗ � γ−1
‖,⊥. In Fig.

Figure 3.6: Monte Carlo simulated experiment for the reconstruction of the laser the-
oretical Liouvillian in Fig. 3.5. Here ηD = 80%, ηH = 85%, and ξ = .65. A set of
8 ·107 homodyne data have been used of a total of 3.7 ·1011 measurements with random
photon number at detector D.

3.6 a Monte Carlo simulated tomographic experiment is shown for the measurement of
the Liouvillian of Fig. 3.5 (the output homodyne probabilities are simulated starting
from the quantum jump Green matrix). An analogous simulated experiment is given in
Fig. 3.7 for the limiting case of perfect photodetection: here only the statistical errors
deriving from the tomographic reconstruction procedure are present. One can see how
the method allows a detailed reconstruction of Lnm, including not only one-photon
processes on the three main diagonals, but also multiphoton-absorptions on the upper
triangular part.

As a final example for the method, we give the simulation of the Liouvillian recon-
struction of a two photon phase insensitive amplifier, which is analogous to the PIA
defined in Eq. (3.10). Its Liouvillian is

L = AD[a†] +BD[a] + CD[a2] +DD[(a†)2] , (3.15)

where a is the annihilation operator for the field mode, B and C are the one photon
and two photon absorption coefficients respectively, and A and D are the one and two
photon creation coefficients. The Liouvillian matrix Lnm is, in this case

Lnm = A(m+ 1)[δnm+1 − δnm] +Bm[δnm−1 − δnm]+
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Cm(m+ 1)[δnm−2 − δnm] +D(m+ 2)(m+ 1)[δnm+2 − δnm] . (3.16)

The plot of the theoretical Liouvillian and the reconstructed one, given also here in the
limiting cases of perfect photodetection (i.e. ηD = ηH = 100%), are given in Fig. 3.8.

In conclusion, we have seen that it is possible to experimentally reconstruct the
Liouvillian of an arbitrary quantum optical phase-insensitive device, using homodyne
tomography in a scheme based on parametric down conversion from a NOPA. We have
shown the feasibility of the reconstruction with an experimental setup that uses stan-
dard technology devices. The problem of low efficiency at the single-photon resolving
detector D—the major obstacle for the experiment—has been solved by implementing
a compensation algorithm that makes the reconstruction of 5×5 Liouville matrix possi-
ble even for ηD = 30%, and with a number of data that can be collected in a reasonable
time of experimental run.
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Figure 3.7: On the upper left a theoretical Liouvillian for a one-atom laser, obtained
by solving the master equation (3.13) by the quantum-jump method. The parameters
for this laser are C def= g2

γγ⊥
= 20; ns

def= γ‖γ⊥
4g2

= .5; σ0 = 1; f = γ‖
2γ⊥

= 1; γ = 1. On
the upper right a Monte Carlo simulated experiment for the reconstruction of the laser
Liouvillian. In the reconstruction ηD = 100%, ηH = 100% (hence only the statistical
errors from the tomographic technique are here appreciable), and five statistical blocks
of 4000 homodyne data for each output state have been used. In the lower graph
some of the non-zero diagonals of the laser Liouvillian are plotted with the error bars.
The full line is the theoretical Liouvillian coming from the quantum jump numerical
solution.
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Figure 3.8: The upper left graph shows the theoretical matrix Lnm plotted versus m
and n from Eq. (3.16). The parameters of the two photon phase insensitive amplifier
are A = 0.3; B = 0.15; C = 5 · 10−4; D = 4 · 10−2 . On the upper right the
result of a Monte Carlo simulation of the measurement of the same Liouvillian is given.
The reconstruction of Lnm is simulated by using only 15000 homodyne measurements
divided into 3 statistical blocks of data for each input state. In the lower graph the
four non–zero diagonals of the reconstructed Liouvillian matrix Lnm are plotted with
the statistical error bars. The dark line is the theoretical value from Eq. (3.16). Notice
that, as for the previous figures, this experiment is in the limiting case of perfect
photodetection at homodyne and at the conditional photodetector. In practical cases
it will be very difficult to reconstruct matrices with these dimensions.
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3.3 Generation and detection of Schrödinger cat states

In this section we show2 [51] the feasibility of a tomographic reconstruction of the
“Schrödinger-cat states” generated according to the scheme proposed by S. Song, C.
M. Caves and B. Yurke (SCY) in [52]. Here also we use the deconvolution technique
that was presented in Sect. 3.2, which tolerates realistic values for quantum efficiency
at photodetectors. The measurement can be achieved with a standard experimental
setup.

Some experiments have been performed to detect Schrödinger cat states in atomic
systems [66]. For radiation, the scheme to detect cat states proposed by SCY was not
supported by a feasibility study for a real experiment, concerning in particular the main
issue of the quantum efficiency of the detectors which washes out the fringes visibility.
In this section a concrete experimental setup for this scheme is proposed by requiring
the detection of the output field by means of homodyne tomography and by making use
of the quantum efficiency compensating method which was presented in Sect. 3.2 for
the deconvolution of the noise introduced by an inefficient conditioning photodetector.
This allows a good reconstruction of the Wigner function of the Schrödinger cat and
the recovery of the visibility of the experiment, even with quantum efficiency ηd = 30%
at the readout photodetector, and ηh = 80% at the homodyne detector. Our proposal
to reconstruct the Wigner function allows to appreciate the detailed structure of the
state rather than just seeing the oscillations in a single quadrature probability distri-
bution. To our knowledge, this is the first method for detecting the density operator
of Schrödinger cat states for free radiation, feasible with current technology.
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Figure 3.9: Experimental scheme for generation and tomographic detection of
Schrödinger cats. The two detectors, homodyne and conditioned-photomultiplier, are
indicated with the letters h and d respectively. [(D)OPA: (degenerate) optical para-
metric amplifier; HWP: half wave plate used as polarization mixer.]

2This work has been supported by the PRA–CAT97 of the INFM. We also thank Prof. T. F.

Arecchi for illuminating discussions on the experimental setup. Prof. Arecchi and his group in Firenze

are currently performing a similar experiment, also based on [52].
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Let us first briefly review the experimental scheme for generating Schrödinger cat
states proposed in Ref.[52] (similar setups were later proposed in Refs.[67]). The main
idea, sketched in Fig 3.9, consists in feeding two orthogonally polarized modes of radia-
tion, called “signal” and “readout”, both initially in the vacuum state, into a parametric
amplifier followed by a half-wave plate. The parametric amplifier generates a correlated
state of the two modes and the half wave plate rotates the polarization directions by
an angle θ. The global state of the two modes at the output of this setup is given by

|ψ〉 = T (θ)V (r)|0〉|0〉 =
∞∑
j=0

j∑
m=−j

Bj,m|j −m〉|j +m〉 , (3.17)

where V (r) = exp[r(aSaR−a†Sa
†
R)] describes the action of the parametric amplifier (aS

and aR being the annihilation operators for the signal and readout mode respectively),
T (θ) = exp[θ(aSa

†
R−a

†
SaR)] describes the polarization rotator and the coefficients Bj,m

are given by

Bj,m =
(− tan θ)m(− tanh r)j

cosh r

√
(j +m)!
(j −m)!

×
j∑

k=max(0,−m)

(j + k)!
k!(j − k)!(m+ k)!

(− sin2 θ)k . (3.18)

The rotation angle θ and the gain parameter r are related by the back-action-evading
condition [68] as sin 2θ = tanh r. The following step of the scheme consists in detecting
the number of photons at the readout mode. As a consequence of this measurement,
given nr photons detected at the readout, the signal mode is reduced to the state

|ψS,nr〉 =
{ 1

P (nr)

∑∞
j=0Bj+nr

2
,j−nr

2
|2j〉 nr even

1
P (nr)

∑∞
j=0Bj+nr+1

2
,j−nr−1

2
|2j + 1〉 nr odd

, (3.19)

where P (k) is the probability of detecting k readout photons with a perfect photode-
tector, namely

P (k) = 2k
(2k − 1)!!

(2k)!!
(sinh r)2k

(2 sinh2 r + 1)k+1/2
. (3.20)

In the scheme of Ref. [52], after detection of the readout mode, the signal mode enters
a degenerate parametric amplifier with gain parameter rs, described by the evolution
operator S(rs) = exp[12rs(a

2
S−a

†2
S )], which increases the distance of the two components

of the superposition in the complex plane without changing the oscillating behavior of
the number probability distribution. The final state of the signal is then described by
the following quadrature probability distribution of obtaining XS(φ) as the result of
the measurement of the quadrature xφ if the conditioning photodetector measured nr

photons, i.e.

P (XS(φ)|nr) =
(2Reλ/π)1/2

(2nr − 1)!!σnr/2
e−2ReλX2

S(φ)
∣∣∣Hnr(

√
λXS(φ))

∣∣∣2 , (3.21)
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where Hn denotes the Hermite polynomial,

λ
def=

1
cosφ(e−2rs cosh 2r cosφ+ i sinφ)

, (3.22)

and

σ
def= 1 + tan2 φ

e2rs

cosh 2r
. (3.23)

Let us now consider the effect of non unit quantum efficiency ηd at the readout
photodetector. As has been already frequently remembered, according to the Mandel-
Kelley-Kleiner formula [38], a detector with non unit quantum efficiency is equivalent
to a perfect photodetector preceded by a beam splitter with transmissivity ηd. Then,
one can see that, when nr photons are detected at the readout, the signal mode is left
in the following statistical mixture of Schrödinger cat states

ρS,nr =
1

Pηd
(nr)

∞∑
k=nr

(
k

nr

)
ηnr
d (1− ηd)k−nrP (k)|ψ̃S,k〉〈ψ̃S,k| , (3.24)

where

|ψ̃S,k〉 = S(rs)|ψS,k〉 (3.25)

is the conditional Schrödinger cat state at the signal mode (3.19) evolved by the degen-
erate parametric amplifier, and Pηd

(k) is the probability of detecting k readout photons
with quantum efficiency ηd, i.e. the Bernoulli convolution of the probability (3.20). In
Fig. 3.11 we plot a Monte Carlo tomographic reconstruction of the Wigner function of
the statistical mixture (3.24) corresponding to an experiment with ηd = 30%, ηh = 80%,
r = rs = 0.4 and nr = 2. This reconstruction must be compared to the theoretical
Wigner function that corresponds to the cat state (3.25) which is plotted in Fig. 3.10.
As expected, the effect of non unit quantum efficiency is to smooth out the oscilla-
tions in the complex plane, which are the typical signature of quantum interference.
Therefore, the resulting state is more similar to a classical mixture of coherent states
rather than a Schrödinger cat. The degradation effects on the cat due to non unit
ηd can be seen also in Fig. 3.12, where the tomographic reconstructed number prob-
ability, obtained from the same simulation, is plotted: the probability still exhibits a
non-monotonic behavior, but the even terms no longer vanish. In Fig. 3.13 we report
a simulation of the quadrature probability distribution at φ = 0, which would be seen
following the original proposal [52], with the corresponding theoretical curve. Here also
it is possible to note a complete wash out of the fringe visibility.

In order to compensate these dramatic effects of the quantum efficiencies we would
find in a real experiment, we may use the same Bernoulli inversion technique that was
presented and derived in Sect. 3.2. The main idea consists in the inversion of formula
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Figure 3.10: Theoretical Wigner function of the Schrödinger cat state (3.25), with
parameters r = rs = 0.4 and nr = 2.

(3.24). In fact, one can see that Eq. (3.24) is of the form (3.7) and hence an inversion
of the type (3.8) can be obtained. This is achieved by shifting the index k in the series
at the right hand side of (3.24), and the formula can be inverted as follows

|ψ̃S,k〉〈ψ̃S,k| = P (k)−1η−kd

∞∑
j=0

(
k + j

k

)(
1− 1

ηd

)j
ρS,k+jPηd

(k + j) , (3.26)

as one can check a posteriori by substituting expression (3.26) into Eq. (3.24). Hence,
a generic k-th Schrödinger cat component of the signal mode can be reconstructed by
measuring all the signal states corresponding to different readout numbers of photons
(larger or equal to k), and weighting each event according to Eq. (3.26). In this way we
have the additional advantage of using all data with nr > k and not just those with nr =
k as in the plain detection in Fig. 3.11. Moreover, by processing the homodyne data
according to Eq. (3.26) we can reconstruct the whole family of Schrödinger cats |ψ̃S,k〉
for different k’s at the same time. In Fig. 3.14 we show a tomographic reconstruction
of the same Schrödinger cat component of Fig. 3.11, with the same values of the
experimental parameters, but using the reconstruction procedure based on the inversion
(3.26). As we can see, all the oscillations in the Wigner function are properly recovered,
and the destructive effects of low quantum efficiencies are defeated. Notice that unlike
other compensation methods based on the inverse Bernoulli transformation [69], where
the convergence radius of the procedure is for η > 50%, the present method works
also for very low values of the quantum efficiency. In our case convergence of the
series (3.26) below the threshold ηd = 50% is due to the additional decaying factor
Pηd

(k + j). An analysis of convergence (see Sect. 3.6) of the series of errors as in
Ref. [70] shows that there is no lower-bound for ηd if r 6 1

2 ln(2 +
√

3) ' 0.658.
Notice that the series convergence is slower for increasing r, which corresponds to more
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Figure 3.11: Monte Carlo tomographic reconstruction of the Wigner function of the
state in Eq. (3.24), with the same parameters as in Fig. 3.10 (i.e. r = rs = 0.4 and
nr = 2). The detectors quantum efficiencies are ηd = 30% and ηh = 80%. Data are
collected for 70 different homodyne phases and 4 · 105 simulated data are used for each
phase.

Figure 3.12: Monte Carlo tomographic reconstruction of the probability distribution
for the same state and same simulated data of Fig. 3.11. The simulated values with the
corresponding statistical error bars are superimposed to the theoretical values (solid
line). Notice how the reconstructed photon number distribution is ruined by the effect
of the detector’s quantum efficiency.

excited (macroscopic) Schrödinger cats. This implies that the more macroscopic the
cat is, the higher ηd must be in order to have a good reconstruction. In Fig. 3.15
we plot the number probability for the same parameters of Fig. 3.14: the simulated
experimental results with corresponding error bars are superimposed to the theoretical
value. As we can see, the tomographic reconstruction is very precise and the oscillations
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Figure 3.13: Monte Carlo tomographic simulation of the quadrature probability at
φ = 0 for the same state of Fig. 3.11. The histogram contains 20000 simulated
data, while the solid curve is the theoretical distribution. This is how the output of
SCY’s proposal [52] would look like if their experiment was carried out with inefficient
photodetectors.

of the probability are perfectly resolved. In Fig. 3.16 we finally report the quadrature
probability distribution for φ = 0 superimposed to the theoretical curve. The visibility
is totally recovered, in contrast to the result in Fig. 3.13, which would have been
obtained according to the original proposal of Ref. [52].

Let us now discuss in more detail the experimental feasibility of the scheme. The
experimental setup is analogous to the one proposed in Sect. 3.2, since, up to the
conditioning photodetector d, the two setups are similar. All the devices needed in the
experiment are available with the current technology. The parametric amplification
can be realized for example by an ordinary KPT crystal pumped with the second har-
monic of a mode locked Nd:Yag pulsed laser working at 80 MHz with 7 ps pulses [71].
The major problem encountered to detect Schrödinger cats in conditional measurement
schemes is the cat’s notorious fragility to any kind of losses and inefficiencies. The nov-
elty of the present proposal is that using the reconstruction method based on Eq. (3.26)
low values of ηd can be tolerated, and hence ordinary linear avalanche photodiodes with
ηd ∼ 30% can be used. On the other hand, the tomographic apparatus needed to detect
the Schrödinger cat at the signal mode is based on homodyne detection, with the pos-
sibility of using high–efficiency photodetectors, because single-photon resolution is no
longer needed due to the amplification from the local oscillator (LO). Moreover, the LO
comes from the same laser source of the classical pump of the OPA, in order to achieve
time matching of modes. In addition, since there is no fluctuating phase in the whole
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Figure 3.14: Monte Carlo simulated reconstruction of the Wigner function of the state
|ψ̃S,2〉 with ηd = 30%, ηh = 80%, r = rs = 0.4, using the reconstruction algorithm
(3.26). The same number of simulated data as in Fig. 3.11 is used. Notice that the
reconstructed Wigner function is almost indistinguishable from the theoretical, shown
in Fig. 3.10.

optical setup, neither in the second harmonic generation stage nor in the homodyne
detection, the LO is also perfectly phase matched with the pump. The resulting setup
is very stable and can take measurements for long periods of time at a rate that might
reach 108 data/sec at the readout photodetector. The tomographic reconstructions
presented in this section were obtained with 2.8 · 107 experimental data. In these ex-
amples the probability of detecting less than two photons at the readout photodetector
is ∼ 0.9967. Therefore, taking into account that only the fraction 3.3 · 10−3 of exper-
imental data collected at the readout is useful for the Schrödinger cat reconstruction,
we can easily see that the whole set of data can be collected in a few minutes. Notice
that increasing k, which corresponds to a more excited cat, the number of useful data
decreases, and the reconstruction becomes slower. For example, to reconstruct the cat
component with k = 4 only 2 · 10−5 of the experimental data are useful, for k = 5 we
can use only the fraction 1.7·10−6 of data, and so on. In order to enhance the data rate,
the parametric amplification parameter r must be increased. Moreover, to reconstruct
more excited cat components, higher index density matrix elements are needed for the
Wigner function, and the effect of statistical errors from tomography becomes more
dramatic [72], with the consequence that more data are needed to reach a prescribed
accuracy. For these reasons, the more excited the cat is, the longer the experiment
and the more difficult the state is to detect. Finally, it has been suggested [73] that by
lowering the gain r some (non tomographic) homodyne visibility could be detected for
high ηh (> 90%) and for ηd as low as 30%, even without our reconstruction algorithm.
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Figure 3.15: Photon number probability of the cat |ψ̃S,2〉 using the reconstruction
algorithm (3.26), with the same parameters as in Fig. 3.14. The simulated values with
the corresponding statistical error bars are superimposed to the theoretical values (solid
line).

Figure 3.16: Quadrature probability distribution at zero phase of the cat state |ψ̃S,2〉,
with the same parameters as in Fig. 3.14. The simulated values with the corresponding
statistical error bars are superimposed to the theoretical curve (solid line).

However, by lowering the gain the data acquisition rate is greatly reduced, whereas our
method works also with high gains.
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In conclusion, we have shown the feasibility of a tomographic reconstruction of a
Schrödinger cat in an experimental scheme which is practical in a laboratory using
standard technology devices. The problem of low efficiencies at the single-photon re-
solving detector, which was regarded as the major obstacle for experiments of this kind
[52], has been solved by the implementation of a suitable data processing technique.
The whole density matrix of the cat, and hence all its characteristics (such as the pho-
ton number probability, the quadrature distribution and the Wigner function), can be
measured in this way, whereas the plain homodyne detection proposed in the original
scheme of Ref. [52] would not have provided visible probability oscillations with the
available low-efficiency single-photon-resolving detectors.

3.4 Homodyne test of the State reduction postulate

In this section, we present3 an experiment for testing quantum state reduction as de-
scribed in [53]. The state reduction rule is tested using optical homodyne tomography
to measure directly the fidelity between the reduced experimental state and the state
we would obtain theoretically by applying the customary state reduction rule.

In quantum mechanics the state reduction (SR) is still a very discussed rule. The
so–called “projection postulate” was introduced by von Neumann [74] to explain the
results from the Compton-Simons experiment, and it was generalized by Lüders [75]
for measurements of observables with degenerate spectrum. The consistency of the
derivation of the SR rule and its validity for generic measurements have been analyzed
with some criticism [76]. In a very general context, the SR rule was derived in a
physically consistent way from the Schrödinger equation for the composite system of
object and measuring apparatus [77, 78]. An experiment for testing quantum SR is
therefore a very interesting matter. Such a test in general is not equivalent to a test of
the repeatability hypothesis since the latter holds only for measurements of observables
that are described by self-adjoint operators with discrete spectrum. For example, joint
measurements like the Arthurs-Kelly one [79] are not repeatable, as the reduced states
are coherent states, which are not orthogonal.

Quantum optics offers a possibility of testing the SR, because several observables
can be chosen to perform different measurements on a fixed system. For instance, one
can decide to perform either homodyne or heterodyne detection, or photon-number
detection. To our knowledge this is a unique opportunity. In fact in other quantum
systems, such as particle physics or spin state analysis, the measurements are mostly
quasi-classical and restricted to only a few observables. In addition, as we have seen
already, tomography is a powerful tool for measuring the density operator of the ra-
diation field through optical homodyne tomography, whereas its applications to other

3This work has been supported in part by the PRA–CAT97 of the INFM.
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quantum systems are sporadic and not yet well assessed.

A scheme for testing the SR could be based on tomographic measurements of the
radiation density matrix after non-demolition measurements. However, such a scheme
would reduce the number of observables that are available for the test, since one would
have to find a way to perform measurements in a non-demolitive manner. Instead, one
can take advantage of the correlations between the twin beams produced by a non-
degenerate optical parametric amplifier (NOPA), in which case one can test the SR
even for demolitive-type measurements. Indeed, if a measurement is performed on one
of the twin beams, the SR can be tested by homodyne tomography on the other beam.

Our scheme for the SR test is given in Fig. 3.17 (for the experimental setup see
Subsec. 3.4.3). Different kinds of measurements can be performed on beam 1: in
Subsect. 3.4.1 we show in detail the SR for heterodyne detection as well as photon-
number detection, but any other kind of detection (such as homodyne or phase detection
by heterodyne) could be considered.
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Figure 3.17: Schematic of the proposed scheme for testing the SR for heterodyne detec-
tion. A NOPA generates a pair of twin beams (1 and 2). After heterodyning beam 1,
the reduced state of beam 2 is analyzed by homodyne tomography, which is conditioned
by the heterodyne outcome. In place of the heterodyne detector one can put any other
kind of detector for testing the SR on different observables. In this section we also
consider the case of direct photodetection.

In this thesis the radiation state of the twin beams produced by a NOPA with
vacuum input has been used in practically all of the proposed setups. It can be written
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as

|ξ〉 = V (r)|0〉|0〉 = (1− |ξ|2)1/2
∞∑
n=0

ξn|n〉|n〉 , (3.27)

where V (r) = exp[r(a†1a
†
2 − a1a2)] (for real r) describes the action of the parametric

amplifier having a gain parameter ξ = tanh(r). The subscripts 1 and 2 refer to operators
of beams 1 and 2.

3.4.1 Physical analysis for heterodyne and direct detections

Before calculating the SR, we briefly recall the concept of Probability Operator-Valued
Measure (POVM). For a system described by a density operator ρ, the probability
p(λ)dλ that the outcome of a quantum measurement of an observable is in the interval
[λ, λ + dλ) is given by Born’s rule p(λ)dλ = Tr[ρPλdλ], where Pλdλ is the POVM
pertaining to the measurement (such that Pλ > 0 and

∫
dλPλ = 11). For an exact

measurement of an observable, which is described by a self-adjoint operator, Pλ is just
the projector over the eigenvector corresponding to the outcome λ. In the case of the
photon number a†a the spectrum is discrete and the POVM is Pm = |m〉〈m| for integer
eigenvalue m. For the Arthurs-Kelly joint measurement of the position and momentum
(corresponding to a joint measurement of the two quadratures of the field) we have [37]
Pα = π−1|α〉〈α|, where |α〉, α ∈ C, is a coherent state, i.e. a1|α〉 = α|α〉.

Now let us analyze the SR for our scheme. When on beam 1 we perform a mea-
surement described by Pλ, the reduced normalized state of beam 2 is

ρ(λ) =
Tr1[|ξ〉〈ξ|(Pλ ⊗ 11)]
Tr1,2[|ξ〉〈ξ|(Pλ ⊗ 11)]

=
ΞP ∗λΞ†

p(λ)
, (3.28)

where Ξ = (1 − |ξ|2)1/2ξa†a, and p(λ) = Tr1,2[ΞP ∗λΞ†] is the probability density of the
measurement outcome λ. In the limit of infinite gain (ξ → 1) ρ(λ) ∝ P ∗λ ; for example,
for heterodyne detection with outcome α, we have ρ(α) = |α∗〉〈α∗|.

If the readout detector on beam 1 has quantum efficiency ηr, then according to the
SR rule [76] the state in beam 2 is

ρηr(λ) =
Ξ(P ηr

λ )∗Ξ†

pηr(λ)
, (3.29)

where pηr(λ) = Tr1,2[Ξ(P ηr

λ )∗Ξ†], and P ηr

λ is the POVM for measurement with a non-
unit quantum efficiency. For heterodyne detection one has [37]

P ηr
α =

1
π

∫
d2z

π∆2
ηr

e
− |z−α|2

∆2
r |z〉〈z| , (3.30)

where ∆2
ηr

= (1 − ηr)/ηr, and ηr is the overall quantum efficiency of the heterodyne
detector. For direct photodetection the ideal POVM Pm = |m〉〈m| is modified to [37]

P ηr
m =

∞∑
j=m

(
j

m

)
ηmr (1− ηr)j−m|j〉〈j| , (3.31)
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which, as usually, is obtained by considering an inefficient photodetector as a perfect
photodetector preceded by a beam splitter of transmissivity η.

The experimental test proposed in this section consists of performing conditional
homodyne tomography on beam 2, given the outcome λ of the measurement on beam
1. Actually, through homodyne tomography we can directly measure the “fidelity of
the test”

F (λ) = Tr[ρηr(λ) ρmeas(λ)] , (3.32)

where ρηr(λ) is the theoretically expected state in Eq. (3.29), and ρmeas(λ) is the exper-
imentally measured state of beam 2. Notice that in Eq. (3.32) we use the term fidelity
even if F (λ) is a proper fidelity when at least one of the two states is pure, which occurs
in the limit of unit quantum efficiency ηr. In the following we evaluate the theoretical
value of the fidelity F (λ) and compare it with the simulation of the tomographically
measured value.

The fidelity (3.32) can be directly measured by homodyne tomography with use
of the kernel function for the operator ρηr(λ), as it can be done for the expectation
value of any (generally complex) operator of the field mode (see Chap. 1 and Sect.
2.1). In fact, for a generic operator O, the expectation value 〈O〉 can be measured by
averaging the kernel function Kηh

[O](x, φ), defined in Eq. (1.20), over the homodyne
data, namely,

〈O〉 =
∫ π

0

dφ
π

∫ +∞

−∞
dx pηh

(x, φ)Kηh
[O](x, φ) , (3.33)

where ηh is the overall quantum efficiency of the homodyne detector, and pηh
(x, φ) is

the probability distribution of obtaining the result x when measuring the quadrature
xφ with a homodyne detector with quantum efficiency ηh. In Sect. 2.1.3 the homodyne
tomography kernel function for a generic operator O is derived, with the following result
for trace–class operators

Kηh
[O](x, φ) =

∫ +∞

0
dk k e

1−ηh
8ηh

k2

Tr{O cos[k(x− xφ)]} , (3.34)

which can be obtained immediately from the deconvolved estimator (2.17). Thus, F (λ)
is obtained from an average of the form

F (λ) =
∫ π

0

dφ
π

∫ +∞

−∞
dx pηh

(x, φ;λ)Kηh
[ρηr(λ)](x, φ) , (3.35)

where pηh
(x, φ;λ) is the conditional homodyne probability distribution for outcome λ

at the readout detector.
For heterodyne detection of beam 1 with outcome α ∈ C, the reduced state of beam

2 according to the SR rule is given by the displaced thermal state

ρηr(α) = ηξD(γ)(1− ηξ)a
†aD†(γ) , (3.36)
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where

ηξ = 1 + (ηr − 1)|ξ|2 , γ =
ξηr
ηξ
α∗ , (3.37)

and D(γ) = exp(γa†−γ∗a) is the usual displacement operator. The kernel function for
measuring F (α) is easily calculated from Eqs. (3.34–3.37). One has

Kηh
[ρηr(α)](x, φ) =

2ηhηξ
2ηh − ηξ

Φ
(

1,
1
2
;−

2ηhηξ
2ηh − ηξ

(x− γφ)2
)
, (3.38)

where γφ = Re(γe−iφ), and Φ(a, b; z) denotes the customary confluent hypergeometric
function of argument z. The kernel in Eq. (3.38) is bounded for ηh > 1

2ηξ, i.e. for
the fidelity measurement, one needs to satisfy the following bound on the quantum
efficiencies:

ηh >
1
2
[
1 + |ξ|2(ηr − 1)

]
. (3.39)

As one can see from Eq. (3.39), for ηh > 0.5 the fidelity can be measured for any value
of ηr and any gain parameter ξ of the NOPA. We recall that the condition ηh > 0.5 is
required for the measurement of the density matrix of a radiation state [70]. However, in
a direct measurement of the fidelity the measurement of the density matrix is bypassed
and we see from Eq. (3.39) that the bound ηh = 0.5 can be lowered.

The tomographically measured fidelity F (α) in Eq. (3.35) with ρηr(α) as given in
Eq. (3.36) must be compared with the theoretical value

Fth(α) = ηξ/(2− ηξ) . (3.40)

Notice that Fth(α) does not depend on α: therefore in the following it will be simply
denoted by Fth.

Now we analyze the SR for direct photodetection of beam 1. For an outcome n at
the readout photodetector, the reduced state of beam 2 is given by

ρηr(n) = ηξ

(
ηξ

1− ηξ

)n( a†a

n

)
(1− ηξ)a

†a . (3.41)

The pattern function for the corresponding fidelity measurement is

Kηh
[ρηr(n)](x, φ) =

ηξ∂
n
z

n!

∣∣∣∣
z=0

2ηhηξ
2ηh − ηξ + z

Φ
(

1,
1
2
;−

2ηh(ηξ − z)
2ηh − ηξ + z

x2

)
. (3.42)

We see that the same bound, Eq. (3.39), on the quantum efficiencies holds true also for
direct photodetection. In this case, the tomographically-measured fidelity F (n) must
be compared with the following theoretical value:

Fth(n) = η2+2n
ξ F

(
2n+ 1, 2n+ 1; 1; (1− ηξ)2

)
, (3.43)

where F (a, b; c; z) denotes the customary hypergeometric function of argument z.
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Figure 3.18: Fidelity ratio F̄ /Fth (see text) for heterodyne detection with quantum
efficiency ηr = 0.8, 0.5, 0.3, and 0.1 (squares, circles, triangles, and stars, respectively).
The open (solid) points are for n = 1 (n = 100) thermal photons per beam. The
number of data used in each case is 2080 (4 blocks of 20 data samples for 26 settings
of the phase φ).

3.4.2 Simulated experiments

In Fig. 3.18 we report results of the tomographically measured fidelity for heterodyne
detection on beam 1. The numerical results are obtained by simulating the quadrature
probability distribution pertaining to the reduced state (3.36), and averaging the kernel
functions in Eq. (3.38). The simulation is performed according to the SR hypothesis,
thus the homodyne probability distribution in Eq. (3.35) corresponds to state (3.36).
Notice that for heterodyne detection the measurement spectrum is continuous and the
probability pηr(α)dα of outcome α is infinitesimal. Therefore, we present the average
value F̄ of the fidelity F (α) over pηr(α). Results for various values of the quantum
efficiencies ηr and ηh are reported along with two different values of the NOPA gain
parameter ξ (given in terms of the number of thermal photons per beam n = |ξ|2/(1−
|ξ|2)). One can clearly see that a decisive test can be performed with samples of a few
thousand measurements only. The error in the measurement, denoted by the vertical
error bars, is rather insensitive to both quantum efficiencies and the NOPA gain in the
considered range of values.

In Fig. 3.19 the tomographically measured fidelity is reported when direct photode-
tection is performed on beam 1. Here the simulation is achieved analogously to the
previous case, but now using Eqs. (3.41) and (3.42). Results for various outcomes n are
given with different values of ηh and n. Again, the test can be performed with samples
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Figure 3.19: Fidelity ratio F (n)/Fth(n) (see text) for direct detection with quantum
efficiency ηr = 0.3, resulting in outcomes n = 0, 1, and 2 at the photodetector (squares,
circles, and triangles, respectively). The thermal photons per beam are n = 10 (open
points) and n = 100 (solid points). In each case 104 data are used and the error bars
are obtained by dividing the data into 10 blocks.

of a few thousand measurements only; the resulting error in the measurement is rather
insensitive to the values of the experimental parameters.

3.4.3 Actual experiment

The actual experiment is in progress in Prem Kumar’s group at Northwestern University
in Chicago, and no real results are yet available. In our lab the NOPA consists of a
type-II phase-matched KTP crystal that is pumped by the second harmonic of a Q-
switched and mode-locked Nd:YAG laser. Previously, such a NOPA was employed,
with parametric gains > 10 (|ξ|2 > 0.9), to generate highly quantum-correlated twin
beams of light at 1064 nm [80]. By appropriately choosing the input quantum state, a
similar setup was then used to demonstrate the production of squeezed-vacuum state
with a high degree (5.8 ± 0.2 dB) of squeezing [81]. In the present context, the twin
beams, which are easily separable because of their orthogonal polarizations resulting
from type-II phase matching, can be separately detected; beam 2 with a homodyne
detector for detecting the reduced quantum state and beam 1 with either a heterodyne
detector or a photon-counting detector. We have recently reported preliminary results
of double homodyne measurements [82], which were performed to reconstruct the joint
photon-number density matrix of the twin-beam state [83]. The main challenge in
the present experiment is the achievement of high degrees of overlap (mode-matching
efficiency) between the down-converted and the LO modes. Such overlap is non-trivial
in pulsed, traveling-wave experiments owing to the distortion of the down-converted
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modes that is caused by the spatio-temporally Gaussian profile of the pump beam.
With suitable choice of LOs, however, we have previously obtained ηh > 0.70 [84], an
adequate value for the present experiment (cf. Figs. 3.18 and 3.19).

3.4.4 Conclusions

In conclusion, we have presented an experiment to test the rule of state reduction upon
quantum measurements. Our goal is achieved by changing the kind of measurement
performed on one beam of a pair of twin beams. The reduced state of the other beam,
which depends on the kind of measurement performed, is then experimentally observed
through a measurement of the fidelity between the theoretically expected reduced state
and the experimental state. The fidelity is measured directly by optical homodyne
tomography, within the validity bounds of quantum efficiency at the various detectors.
We decided to present the test of SR in terms of the fidelity for illustrative purposes.
However, the same test can be performed by tomographic reconstruction of the whole
density matrix of the reduced state, without any modification in the schematic of the
experiment.

3.5 Test of Bell’s inequalities

In this section we present4 [54, 85] a homodyne detection scheme to verify Bell’s inequal-
ity on correlated optical beams at the output of a non-degenerate parametric amplifier.
Our approach is based on tomographic measurement of the joint detection probabili-
ties, which allows high quantum efficiency at detectors. The conventional homodyne
scheme (see Sect. 2.1) is abandoned for a self-homodyne scheme which simplifies the
experimental setup.

In 1935 Einstein, Podolsky and Rosen (EPR) [86] proved the incompatibility among
three hypotheses: 1) quantum mechanics is correct; 2) quantum mechanics is complete;
3) the following criterion of local reality holds: “If, without in any way disturbing a
system, we can predict with certainty [...] the value of a physical quantity, then there
exists an element of physical reality corresponding to this quantity.” The paper opened
a long and as yet unsettled debate about which one of the three hypotheses should
be discarded. While Einstein suggested to abandon the completeness of quantum me-
chanics, Bohr [87] refused the criterion of reality. The most important step forward
in this debate was Bell’s theorem of 1964 [88], which proved that there is an intrinsic
incompatibility between the assumptions 1) and 3), namely the correctness of quantum
mechanics and Einstein’s “criterion of reality”. In Bell’s approach, a source produces a
pair of correlated particles, which travel along opposite directions and impinge into two

4This work also has been supported by the PRA–CAT97 of the INFM.
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detectors. The two detectors measure two dichotomic observables A(α) and B(β) re-
spectively, α and β denoting experimental parameters which can be varied over different
trials, typically the polarization/spin angle of detection at each apparatus. Assuming
that each measurement outcome is determined by the experimental parameters α and
β and by an “element of reality” or “hidden variable” λ (which cannot be known to the
observer), Bell proved an inequality which holds for any theory that satisfies Einstein’s
“criterion of reality”, while it is violated by quantum mechanics. Such a fundamental
inequality, which allows an experimental discrimination between local hidden–variable
theories and quantum mechanics, has been the focus of interest in a number of exper-
imental works [89]. Unfortunately, Bell’s proof is based on two conditions which are
difficult to achieve experimentally. The first is the feasibility of an experimental con-
figuration yielding perfect correlation; the second is the possibility of approaching an
ideal measurement, which itself does not add randomness to the outcome. Since 1969,
attention was focused on improving the correlation of the source on one hand, and,
on the other, on deriving more general inequalities that take into account detection
quantum efficiency or circumvent the problem, however, at the cost of introducing sup-
plementary hypotheses (see Refs. [90]), as the well known “fair sampling” assumption.
Anyhow it was clear also to the authors of the same Refs. [90] that these assumptions
are questionable, and, as a matter of fact, it was proved [91] that in all performed exper-
imental checks the results can be reproduced in the context of Einstein’s assumptions
if quantum efficiency of detectors is less than 82.3%.
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Figure 3.20: Typical experiment for the test of Bell’s inequalities using photons. The
source S emits polarization–correlated photons (indicated by state |Ψ0〉), that are fil-
tered by the polarizers with angles α and β. The detectors A and B measure the
presence or absence of photons. This highly idealized experiment would work only
with high–efficiency single photon resolving detectors and lossless polarizers.
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In a typical idealized experiment, shown in Fig. 3.20, the source emits a pair of po-
larization correlated photons and two detectors (A and B) separately check the presence
of the two photons after polarizing filters at angles α and β, respectively. Alternatively,
one can use four photodetectors with polarizing beam splitters in front, with the ad-
vantage of checking through coincidence counts that photons come in pairs. Denote
by pα,β the joint probability of finding one photon at each detector with polarization
angle α and β, respectively, and denote by ᾱ and β̄ the polarization angles orthogonal
to α and β. The correlation function between photon polarization and detector clicks
is then given by

C(α, β) = pα,β + pᾱ,β̄ − pᾱ,β − pα,β̄ , (3.44)

which will be C(α, β) = 1 if photons in A and B have always polarization both parallel
or both orthogonal to α and β respectively, and C(α, β) = −1 if one of them has
polarization always orthogonal to its polarizer, while the other one always parallel.

Bell’s inequality [88] will now be briefly derived following [92]. In the realistic local
hidden variables hypothesis, each detector click can only be determined by the local
polarizer orientation and by a set of variables λ “hidden” to the observer. Hence, the
correlation function C(α, β) must be an average, with an unknown weight function
w(λ), of the type

C(α, β) =
∫
dλ w(λ)A(α, λ)B(β, λ) , (3.45)

where A(α, λ) = +1 and A(α, λ) = −1 indicate respectively a “click” and a “no click”
event in detector A, and analogously for B. Notice that from the locality hypothesis it
follows that the value of A must be independent of β, and from the reality hypothesis
it follows that A has a determined value for any value of α (even if α is different from
the one the observer is using in the experimental run). By using (3.45), we can write

|C(α, β)− C(α, β′)| =
∣∣∣∣∫ dλ w(λ)A(α, λ)

(
B(β, λ)−B(β′, λ)

)∣∣∣∣
6
∫
dλ w(λ)

∣∣A (B(β, λ)−B(β′, λ)
)∣∣ = ∫ dλ w(λ)

∣∣(B(β, λ)−B(β′, λ)
)∣∣ , (3.46)

and analogously

|C(α′, β) + C(α′, β′)| 6
∫
dλ w(λ)

∣∣(B(β, λ) +B(β′, λ)
)∣∣. (3.47)

Finally, since
∫
dλ w(λ) = 1 and B(β, λ) = ±1 for any β and λ, we obtain Bell’s

inequality from the sum of (3.46) and (3.47)

Γ(α, β, α′, β′) def= |C(α, β)− C(α, β′)|+ |C(α′, β′) + C(α′, β)| 6 2 . (3.48)



3.5 Test of Bell’s inequalities 109

It is well known that, with an appropriate choice of angles, quantum mechanics predicts
that Γ(0, 3

8π,
π
4 ,

π
8 ) = 2

√
2. Thus, from Bell’s inequality it is possible to experimentally

discriminate between Quantum Mechanics and local realistic theories. This is a typical
example of experiment capable of discriminating between two concurrent theories, by
falsifying one of the two: such experiments play a decisive role in epistemology.

In this section we propose a new kind of test for Bell’s inequality based on quantum
homodyne tomography. In our setup the photodetectors are replaced by homodyne
detectors, which along with the tomographic technique can be regarded as a black box
for measuring the joint probabilities pα,β. Since all quantum correlations are recovered,
it is not even necessary to use the polarization filters (that were labelled α and β in Fig.
3.20). It has been objected that in this case there is no “actually performed” photode-
tections as in the ideal experiment, outlined previously. With homodyne tomography
one infers the violation of the inequality which would occur if one had hypothetical
high efficiency photodetectors starting from the homodyne data. However, in practice
one only needs the photon number distributions pα,β, in order to verify the violation
and homodyne tomography can measure these directly, without having to collect any
single–photon–event statistics. Another objection which has been raised is that the to-
mography technique relies heavily on the correctness of Quantum Mechanics, and that
an experiment that could bring to its falsification should not be based on it. We do
not think that this objection can be overcome, but it should be noted that almost all
Bell inequality violation experiments carried out so far are based on photon detection
correlation and hence also rely on the correctness of Quantum Mechanics at least as
far as the quantization of radiation modes is involved. In fact, both EPR’s and Bell’s
argument deal with particles and associated spins. The homodyne reconstruction must
be considered, just like the direct photodetection, like a “black box” which outputs
the needed data5. The main advantage of the tomographic test is that it allows using
linear photodiodes with quantum efficiency η higher than 90% [22]. On the other hand,
the method works effectively even with η as low as 70%, without the need of a “fair
sampling” assumption, since all data are collected in a single experimental run and no
supplementary “normalization runs” are needed. With respect to the customary ho-
modyne technique, which in the present case would need many beam splitters and local
oscillators (LO) that are coherent each other, the setup is greatly simplified by using
the recent self-homodyne technique [23]. Another advantage of self-homodyning is the
more efficient signal-LO mode-matching, with improved overall quantum efficiency.
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NOPA
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Figure 3.21: Experimental setup for the tomographic test of Bell’s inequality. PBS and
BS denote ‘polarizing beam splitter’ and ‘conventional 50–50 beam splitter’ respec-
tively. Input radiation modes cl, c↔, dl, d↔ (at laser frequency ω0) are in a coherent
state, while modes al, b↔, a↔ and bl, whose spectrum is composed the two frequency
components at ω0 + Ω and ω0 −Ω (Ω in the radiofrequency regime) are in the vacuum
state. At the output of the non-degenerate parametric amplifier (NOPA) the four pho-
tocurrents I at radiofrequency Ω are measured, yielding the value of quadratures of the
field modes al, b↔, a↔ and bl. The outcome quadratures are then used to reconstruct
the probabilities of interest through quantum tomography.

3.5.1 Experimental apparatus

We will now describe the self–homodyne experimental setup, described in Fig. 3.21.
The apparatus for generating the correlated beams is a χ(2) nonlinear crystal, cut
for Type-II phase–matching, acting as a non-degenerate optical parametric amplifier
(NOPA). The NOPA is injected with excited coherent states (see Fig. 3.21) in modes
c↔, cl, d↔, dl all with equal intensities and at the same frequency ω0, c and d denoting
mode operators for the two different wave-vector directions, and l and ↔ representing
vertical and horizontal polarization, respectively. The NOPA is pumped at the second
harmonic 2ω0. At the output of the amplifier four photodetectors separately measure
the intensities Ial , Ib↔ , Ia↔ , Ibl of the mutual orthogonal polarization components of
the fields propagating at different wave vectors. A narrow band of the photocurrent is
selected, centered around frequency Ω � ω0 (typically ω0 is optical/infrared, whereas
Ω is a radio frequency). In the process of direct detection, the central modes cl,↔
and dl,↔ beat with ω0 ± Ω sidebands, thus playing the role of the LO of homodyne
detectors. The four photocurrents Ial , Ib↔ , Ia↔ , Ibl yield the value of the quadratures

5The substantial difference is that, using homodyne tomography, there are no classical time–like

separated events (as, for example, detector clicks) whose correlations cannot be explained in a classical

local-hidden-variables framework.
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of the four modes [23]

aπ =
1√
2

(
aπ(+) + aπ(−)

)
; bπ =

1√
2

(
bπ(+) + bπ(−)

)
, π = {↔, l} (3.49)

where aπ(±) and bπ(±) denote the sideband modes at frequency ω0 ± Ω, which are in
the vacuum state at the input of the NOPA. Thus, modes a and b have a spectrum
with two frequency components at ω0 +Ω and ω0−Ω. In the quadrature xφ, defined in
(1.9), the phase φ is the relative phase between the signal and the LO. The value of the
quadratures is used as input data for the tomographic measurement of the correlation
function C(α, β). The direction of polarizers (α, β) in the experimental setup does not
need to be varied over different trials, because, as we will show in the following, such
direction can be changed tomographically, i.e. at the data analysis stage.

3.5.2 Analysis of the setup

We will now enter into details on the state at the output of the NOPA and on the
tomographic detection. In terms of the field modes in Eq. (3.49) the spontaneous
down-conversion at the NOPA is described by the unitary evolution operator

U(ξ) = exp
[
ξ
(
a†lb

†
↔ + eiϕa†↔b

†
l

)
− h. c.

]
, (3.50)

where ξ = χ(2)γL/c is a rescaled interaction time written in terms of the nonlinear
susceptibility χ(2) of the medium, the crystal length L, the pump amplitude γ and the
speed c of light in the medium, whereas ϕ represents the relative phase between the
orthogonal polarization components of the pump field. The state at the output of the
NOPA, for vacuum input, then writes as follows

|ψ〉 = (1− |Λ|2)
∞∑
n=0

∞∑
m=0

Λn+meiϕm|n, n,m,m〉 ≡ |ψ1,2〉 ⊗ |ψ3,4〉 , (3.51)

where Λ = (ξ/|ξ|) tanh |ξ| and |i, l,m, n〉 represents the common eigenvector of the
number operators of modes al, b↔, a↔, bl, with eigenvalues i, l,m and n, respectively.
The four-mode state vector in Eq. (3.51) factorizes into a couple of twin beams |ψ1,2〉
and |ψ3,4〉, each one entangling a couple of spatially divergent modes (al, b↔ and a↔,
bl, respectively).

Notice that conventional experiments, concerning a two-photon polarization-entan-
gled state generated by spontaneous down-conversion, consider a four-mode entangled
state which corresponds to keeping only the first-order terms of the sums in Eq. (3.51),
and to ignoring the vacuum component, as only intensity correlations are usually mea-
sured. Here, on the contrary, we measure the joint probabilities on the state (3.51)
to test Bell’s inequality through homodyne tomography, which yields the value of
Γ(α, β, α′, β′) in Eq. (3.48). As a matter of fact, as shown in Chap. 1, the tomo-
graphic technique is a kind of universal detector, which can measure any observable
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O of the field. As is evident from the tomography theorem given in page 29, for fac-
torized many-mode operators O = O1 ⊗ O2 ⊗ · · · ⊗ On the pattern function that is to
be averaged is just the product of those corresponding to each single-mode operator
O1, · · · , On labelled by variables (x1, φ1), · · · , (xn, φn). By linearity the pattern function
is extended to generic many-mode operators.

Now we consider which observables are involved in testing Bell’s inequality (3.48).
Let us denote by pα,β(i, l,m, n) the probability of having i, l,m, n photons in modes
al, b↔, a↔, bl for the “rotated” state

|ψ〉α,β ≡ U1,3(α)U2,4(β)|ψ〉 , (3.52)

U1,3(α) and U2,4(β) being the unitary operators which describe a polarization rotation

U1,3(α) = exp
[
α
(
a†la↔ − ala

†
↔

)]
, (3.53)

U2,4(β) = exp
[
β
(
b†lb↔ − blb

†
↔

)]
. (3.54)

The probabilities in Eq. (3.44) can be written as pα,β = pα,β(1, 1), pᾱ,β̄ = pα,β(0, 0),
pᾱ,β=pα,β(0, 1), and pα,β̄=pα,β(1, 0), with

pα,β(n,m) =
pα,β(n, 1−m, 1− n,m)

P (1, 1)
, (3.55)

and {n,m = 0, 1}. The denominator P (1, 1) in Eq. (3.55) represents the absolute
probability of having at the output of the NOPA one photon in modes al, a↔ and one
photon in modes bl, b↔, independently on the polarization, namely

P (1, 1) =
∑
n=0,1

∑
m=0,1

pα,β(n, 1−m, 1− n,m) . (3.56)

Notice that our procedure does not need a fair sampling assumption, since we measure
in only one run, both the numerator and the denominator of Eq. (3.55), namely we do
not have to collect auxiliary data to normalize probabilities. On the other hand, since
we can exploit quantum efficiencies as high as η = 90% or more, and the tomographic
pattern functions already take into account η, we do not need supplementary hypothesis
for it.

The observables that correspond to probabilities pα,β(i, l,m, n) in Eqs. (3.55) and
(3.56) are the projectors

| i, l,m, n〉α,β α,β〈 i, l,m, n| (3.57)

= U †1,3(α)U †2,4(β) | i, l,m, n〉〈 i, l,m, n|U2,4(β)U1,3(α) .

After a straightforward calculation using Eqs. (3.55), (3.56) and (3.57), one obtains
that P (1, 1) is measured through the following average AV of homodyne data

P (1, 1) = AV
{(
K1

1 K
3
0 +K1

0 K
3
1

) (
K2

1 K
4
0 +K2

0 K
4
1

)}
, (3.58)
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where Kj
n denotes the diagonal (n = 0, 1) tomographic kernel function for mode j,

namely

Kj
n ≡ 〈n|Kη(x− xφj

)|n〉 . (3.59)

The probabilities in the numerator of Eq. (3.55) are given by the average of a lengthy
expression, which depends on both the diagonal terms (3.59) and the following off-
diagonal terms

Kj
+ ≡ 〈0|Kη(x− xφj

)|1〉 , Kj
− ≡ 〈1|Kη(x− xφj

)|0〉 = (Kj
+)∗ . (3.60)

Here we report the final expression for C(α, β) of Eq. (3.44)

C(α, β)=AV
{

[ cos(2α)
(
K1

1 K
3
0 −K1

0 K
3
1

)
+ sin(2α)

(
K1

+K
3
− +K1

−K
3
+

)
]

×[ cos(2β)
(
K2

0 K
4
1 −K2

1 K
4
0

)
+ sin(2β)

(
K2

+K
4
− +K2

−K
4
+

)
]
}
/P (1, 1) . (3.61)

Caution must be taken in the estimation of the statistical error, because C(α, β)—
and thus Γ(α, β, α′, β′) in Eq. (3.48)—are non linear averages (they are ratios of av-
erages). The error bar is obtained from the variance calculated using some statistical
data computed via a Monte Carlo simulation, starting from the estimated distribution
of the experimental data (which, since we give a simulation of the experiment, is also
simulated). Refer to Sect. 1.2.4 for the description of the procedure to evaluate er-
ror bars starting from poor statistics, as we have here where the tomographic means
converge very slowly. In fact, since the nonlinearity of Γ introduces a systematic error
which is vanishingly small for increasingly larger sets of data, the estimated mean value
of Γ should be obtained from the full set of data, instead of averaging the mean value
of blocks.

3.5.3 Monte Carlo Simulations

We now present some numerical results obtained from Monte–Carlo simulations of the
proposed experiment.

For the simulation we use the theoretical homodyne probability pertaining to the
state |ψ〉 in Eq. (3.51) which, for each factor |ψi,j〉, is given by

pη(xi, xj ;φi, φj)=
2 exp

[
− (xi+xj)

2

d2zij
+4∆2

η
− (xi−xj)

2

d2−zij
+4∆2

η

]
π
√

(d2
zij

+ 4∆2
η)(d2

−zij
+ 4∆2

η)
, (3.62)

where xi (i = 1, 2, 3, 4) is the outcome of the homodyne measurement for quadrature
of the i-th mode at phase φi, and

zij = e−i(φi+φj)Λ , d2
±zij

=
|1± zij |2

1− |zij |2
. ∆2

η =
1− η

4η
. (3.63)
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Figure 3.22: Plot of Γ(α, β, α′, β′) vs. the phase ϕ in the state of Eq. (3.51) for a
simulated experiment. The shaded area represents the classical region for Γ, while the
curve represents the QM prediction. The parameters of the simulation are: α = 0; β =
3
8π; α′ = π

4 ; β′ = π
8 ; quantum efficiency η = 85%; Λ = .5 (see Eq. (3.51)). A total

number of 106 homodyne data (divided into 20 statistical blocks) has been used.

In Fig. 3.22 we present the simulation results for Γ in Eq. (3.48) vs the phase ϕ in
the state of Eq. (3.51). The full line represents the value of Γ in Eq. (3.48) with the
quantum theoretical value C(α, β) given by

C(α, β) = cosϕ sin 2α sin 2β − cos 2α cos 2β . (3.64)

Quantum efficiency η = 85% has been used, nonetheless notice that for ϕ = 2π (corre-
sponding to a maximum violation with respect to the classical bound 2), the obtained
value is over 10 σ distant from the bound. By increasing the number of homodyne
data, it is possible to obtain good results also for lower quantum efficiency. In fact, by
increasing the number of data to 8 · 108, a value of Γ(0, 3

8π,
π
4 ,

π
8 ) = 2.834 ± 0.268 has

been obtained for Λ = .5, ϕ = 2π, and η as low as 65%. This result is to be compared
with the quantum theoretical value of 2

√
2 ' 2.828.

In Fig. 3.23 the results of the measurement of Γ, for different simulated experiments
using the same number of data, are presented for different detector efficiencies η. Notice
how the error bars decrease vs η.

3.5.4 Conclusions

In conclusion in this section we have proposed a test of Bell’s inequality, based on self–
homodyne tomography. We have presented the objections that were raised upon the
presentation of such a device. The rather simple experimental apparatus is mainly com-
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Figure 3.23: Plot of Γ(α, β, α′, β′) vs. the quantum efficiency of the detectors for a
series of simulated experiments. The shaded area represents the classical region for Γ,
while the horizontal line is the QM prediction 2

√
2. The parameters of the simulations

are: α = 0; β = 3
8π; α′ = π

4 ; β′ = π
8 ; ϕ = π; Λ = .5. A total number of 6 · 107

homodyne data (in 20 statistical blocks) has been used for each simulation.

posed of a NOPA medium and four photodiodes. The experimental data are collected
through a self–homodyne scheme and processed by quantum tomography. No supple-
mentary hypotheses, such as the ‘fair sampling’ assumption, are introduced, quantum
efficiencies η as high as 90% are currently available, and, anyway, η as low as 70%
is tolerated for 106 ÷ 107 experimental data. We have presented some numerical re-
sults based on Monte–Carlo simulations that confirm the feasibility of the experiment,
showing violations of Bell’s inequality for over 10 σ with detector quantum efficiency
η = 85%.

3.6 Tomography of the Fock state

In this section we present [93] a feasibility study for an experiment which is currently
being carried out by Prof. De Martini and his group at Roma “La Sapienza” Univer-
sity. I acknowledge useful discussions with Prof. De Martini and his students. Two
experiments for the generation and tomographic detection of radiation Fock states are
analyzed. The two experimental setups differ at the conditional photodetector. In the
first case a nonlinear high efficiency photodetector is used, it is hence impossible to
determine the number of impinging photons. In the second case a linear single photon
resolving detector is needed, however with low efficiency η. The reconstruction method
which was presented in Sect. 3.3 can thus be adapted to this second scheme, in order
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to compensate the quantum efficiency of the conditional detector.

LO

H

NOPA

b

a

D

Data
processing

Figure 3.24: Experimental scheme for the generation and detection of Fock states.
Modes a and b exit a non degenerate optical parametric amplifier (NOPA). Mode a is
reduced to a number state by the conditional photodetector D, while mode a is fed into
the homodyne detector H.

3.6.1 Scheme for generating and detecting Fock states

The scheme for generating Fock states we consider in this section is shown in Fig. 3.24.
It is again based on the state reduction of the twin-beam state exiting a non degenerate
optical amplifier (NOPA). The NOPA is described by the interaction Hamiltonian

H = −ir(a†b† − ab) , (3.65)

where a and b represent the two output modes, and r is the gain parameter. As
already pointed out in Sect. 3.4, the output state for vacuum NOPA input is given by
Eq. (3.27), i.e.

|Ψ〉 = (1− |ξ|2)1/2
∞∑
n=0

ξn|n〉a|n〉b , (3.66)

where ξ = − tanh r. A conditional photodetector D is placed at mode b to measure
the number of photons. As a consequence of this measurement, in the ideal case of
a perfect photodetector D (i.e. with unit quantum efficiency ηD = 100%), mode a is
left in the Fock state |m〉, where m is the result at D. On the other hand, the realistic
process of inefficient photodetection (ηD < 100%) can be described (in the Mandel,
Kelley, Kleiner approach [38]) as a perfect (η = 100%) detector preceded by a beam
splitter (BS) with transmissivity ηD. The action of the BS on the state |Ψ〉 is given by

e−ξ(|Ψ〉〈Ψ|) = (1− |ξ|2)
∞∑

m,n=0

ξnξ∗m|n〉aa〈m| ⊗ e−ξ(|n〉bb〈m|) , (3.67)
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where the BS superoperator e−ξ acts as follows

e−ξ(|n〉bb〈m|) = η
1/2(n+m)
D

min(n,m)∑
p=0

(
n

p

)1/2(
m

p

)1/2

×(η−1
D − 1)p|n− p〉bb〈m− p| . (3.68)

Assuming that we detect n photons at mode b, the reduced state at mode a is given by

ρn =
1
pn

Trb
[
11a ⊗ |n〉bb〈n|e−ξ (|Ψ〉〈Ψ|)

]
. (3.69)

and

pn = Trab
[
11a ⊗ |n〉bb〈n|e−ξ (|Ψ〉〈Ψ|)

]
=

Nn

(N + 1)n+1
(3.70)

(with N = ηD|ξ|2/(1 − |ξ|2) ) is the probability of detecting n photons. The state in
mode a is thus given by the following mixture of Fock states

ρn =
1
pn

(1− |ξ|2)
∞∑
k=n

(
k

n

)
ηnD(1− ηD)k−n|ξ|2k|k〉〈k| . (3.71)

The density operator of mode a now should be detected by means of homodyne
tomography, where each experimental datum (i.e. homodyne outcome) is processed
separately, and no experimental histograms are useful to reconstruct the density ma-
trix. Thus, it is important to set the boxcar integrator at the output of the system
appropriately: no average must be performed on the experimental data.

3.6.2 Nonlinear single photon detection

In this paragraph we analyze the proposed experiment when the photodetector at mode
b is a nonlinear single photon detector, namely it can discriminate only between the
vacuum and all the other Fock states (i.e. between absence and presence of photons). In
order to have a definite Fock state as the outcome of the tomographic reconstruction, it
is necessary that the probability of having in mode b other Fock states than the one we’re
interested in, is negligible. If this is not the case, a systematic error is performed, since
the corresponding state in mode a is the statistical mixture (3.71). In order to reduce
the systematic error one should take a low gain parameter ξ, so that the probability
of having more than one photon in each mode is negligible. In this way only the Fock
state |1〉 can be reconstructed. As an example, we show in Fig. 3.26 a simulation of
a tomographic reconstruction of the Wigner function and the corresponding photon
number probability distribution for the Fock state |1〉. As we can see, since the value
of the gain is very low, the Wigner function is practically indistinguishable from the
theoretical one, shown in Fig. 3.25, and the experiment is very successful.
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Figure 3.25: Theoretical Wigner function for the Fock state |1〉 and |3〉 respectively.

Figure 3.26: Simulation of a tomographic reconstruction of the Wigner function and
photon number distribution for the Fock state |1〉. The parameters for this simulation
are ηD = 15%, ηh = 75%, ξ = .0036. 105 experimental homodyne data have been used
for 100 different phases, from a total of 107 data.

In order to reconstruct more excited Fock states, the detection scheme needs to be
slightly modified. For example, to reconstruct Fock state |2〉 it is possible to use a beam
splitter in mode b and one detector for each of the beam splitter’s output modes, as
shown in Fig. 3.27. We know that if both detectors produce a click, a state with more
than one photon is present. Of course two (or more) photons may be present even if
there is only one click: these cases (half of the events corresponding to the presence of
two photons) will be neglected and do not contribute to the reconstruction. It is also
important to keep the probability of having more than two photons as small as possible
by keeping the gain ξ low, in order to avoid systematic errors. This procedure can, in
principle, be generalized: to generate more excited Fock states |n〉 one can design a
cascade of beam splitters and place a photodetector for each mode at the output of this
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sequence of beam splitters. However for more excited Fock states the systematic error
increases, because the parameter ξ must be increased in order to have a non negligible
probability of having Fock state |n〉. This implies that also the probability of having
|n+ 1〉 is accordingly increased, since the ratio pn+1/pn is independent of n and is an
increasing function of ξ.
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Figure 3.27: Scheme for the generation of the Fock state |2〉.

3.6.3 Linear single photon resolving detection

We will now analyze the case of a linear single photon resolving detection at mode b,
namely a detector D that can discriminate among all Fock states. Notice that linear
single photon detectors have, in general, smaller quantum efficiency ηD than nonlinear
ones. However, as we will show here, it is more advantageous to use linear detectors,
because it is possible to implement the reconstruction technique, which was derived in
Sect. 3.2, that allows to compensate the effects of quantum efficiency of the conditioning
photodetectors and to avoid systematic errors in the tomographic measurement. As
we will see in the following, the method presented here is also more efficient than the
previous for the detection of any Fock state because more experimental data can be used
for the reconstruction. Moreover, by using this method one can increase the parameter
ξ and thus detect also more excited Fock states.

The reconstruction algorithm is based on the inversion of the formula in Eq. (3.71),
that rewrites as

pnρn = (1− |ξ|2)
∞∑
k=0

|ξ|2(n+k)Bnk |k + n〉〈k + n| , (3.72)

where Bnk =

(
k + n

n

)
ηnD(1 − ηD)k. Thus, using the Bernoulli inversion derived in

Eqs. (3.7) — (3.9), we have

|k〉〈k| = 1
(1− |ξ|2)|ξ|2k

∞∑
n=0

(B−1)kn pn+kρn+k , (3.73)
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with (B−1)kn =

(
k + n

k

)(
1− 1

ηD

)n
η−kD .

In the experiment we propose here, Eq. (3.73) allows to reconstruct the Fock
state |k〉〈k| as follows. Each density matrix ρn+k (corresponding to all photodetection
outcomes with result n + k at D) is tomographically reconstructed separately. The
results for the different ρn+k’s are then combined according to Eq. (3.73). Notice that
unlike conventional reconstruction techniques (where only the data relative to the Fock
state of interest are kept), here all experimental outcomes with detected number of
photons larger or equal to k are used, thus increasing the number of available data and
the efficiency of the experiment.

Let us now analyze the convergence behavior of the series (3.73). The convergence
radius is given by the condition∣∣∣∣(1− 1

ηD

)
N

N + 1

∣∣∣∣ 6 1 , (3.74)

which gives the following lower bound on the quantum efficiency ηD

ηD >
1
2

sinh2 r − 1
sinh2 r

. (3.75)

For values of ηD smaller than the above bound the series diverges and the present
technique cannot be applied. Notice that for all values of r corresponding to sinh2 r 6 1,
i.e. r 6 1

2 ln(3 + 2
√

2), there is no lower bound on the quantum efficiency and at
least not very excited Fock states can be successfully reconstructed even with very
inefficient linear detectors. As we already pointed out in previous sections, unlike other
compensation methods based on the inverse Bernoulli transformation [69], where the
convergence radius of the procedure is η > 50%, the present method works also for lower
values of the quantum efficiency. The bound η = 50% is recovered for this method for
the limiting case of r → ∞, namely when the probability distribution pn is flattened
and therefore does not contribute to the convergence of the series (3.73).

In Fig. 3.28 we plot a simulated tomographic reconstruction of the Fock state |3〉
using the proposed reconstruction procedure given in Eq. (3.73). This is to be compared
with the corresponding theoretical Wigner function shown in Fig. 3.25. As we can see,
no systematic errors are present and the Wigner function is perfectly reconstructed.

A comment on the efficiency of the experimental scheme is now in order: to have
an efficient reconstruction of more excited Fock states, i.e. to have a larger probability
of detecting high numbers of photons at mode b, the gain of the NOPA must be in-
creased. However, the convergence of the series (3.73) becomes slower for increasing r
and this implies that ηD must also be increased in order to have a good reconstruction.
Nevertheless, the present method still compares favorably with the one described in the
previous subsection or with conventional schemes where no quantum efficiency compen-
sation methods are used. As an example of comparison between the different methods,
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Figure 3.28: Simulation of a tomographic reconstruction of the Wigner function for the
Fock state |3〉. The parameters for this simulation are ηD = 30%, ηh = 80%, ξ = .4.
106 experimental homodyne data have been used for 70 different phases, for a total of
7 · 107 data.

Figure 3.29: Same measurement as in Fig. 3.28, but without the use of the quantum
efficiency deconvolution technique. The quantum characteristics of the state are washed
out.

consider Fig. 3.29 where the same state measurement of Fig. 3.28 is presented without
using the deconvolution technique. Notice how the quantum features of the Wigner
function (i.e. its negative parts) are washed out.

3.6.4 Conclusions

In conclusion, in this section we presented a feasibility study for a tomographic state
reconstruction experiment which was commissioned for an actual experiment, which is
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currently being carried out in Prof. De Martini’s group. The deconvolution method
which was presented in Sect. 3.2 has been here thoroughly analyzed and its validity
limits (in terms of conditioning photodetector efficiency) derived. By using Monte Carlo
simulations, its effects on the reconstructed state have been compared to analogous
experiments that do not make use of such a technique.



Chapter 4

Conclusions

Here we give the conclusions and the possible further developments of the tomographic
framework that was presented in this thesis.

In this thesis the theory of quantum state reconstruction was analyzed using group
theory. The practical mathematical-statistical techniques needed to implement a to-
mography experiment were also given, along with noise deconvolution and adaptive
tomographic techniques. These allow to achieve good tomographic reconstructions
even when using data coming from inefficient detectors and lossy devices, and when
using little number of data in the reconstruction.

The description of three different state reconstruction procedures was given, namely
homodyne, spin and Kerr tomography. Homodyne and Kerr tomography are state re-
construction techniques for the quantized modes of the electromagnetic field. Notice
that since the electromagnetic radiation is treated like an harmonic oscillator, the to-
mographic reconstruction of a quantum harmonic oscillator is achieved with the same
formulas: one only has to devise an experimental apparatus to collect the oscillator
quadratures. The spin tomography, on the other hand, is used for the state reconstruc-
tion of quantum angular momentum (i.e. spin) state systems.

The third part of the thesis consists in the presentation and numerical simulation
of various experiments based on the homodyne tomography technique. In particular,
we presented a scheme for measuring the Hamiltonian operator (or the Liouvillian)
of optical devices; a scheme for generating and detecting optical Schrödinger cats; a
scheme to test the state reduction postulate and one for the test of Bell’s inequalities;
a feasibility study for an experiment that is presently being carried out concludes the
thesis.

Is there still place for developments of the theoretical framework? Even though from
the generality and self-consistence by now reached we are confident that a standing point
has been reached, there are hints that suggest that a further generalization is possible.
It might be possible, for example, to abandon the group theory formalism. In fact, the

123
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group theory is only used as a support for the theorem demonstrations, and, as the
analysis of Weigert’s state reconstruction method [29] lead to think, the requirement of
having an irreducible unitary ray representation of a group to derive the tomographic
quorum from, may be a too strong requirement. Presently, the research is directed
towards the use of the imprimitivity systems in place of the group structure [26]. The
imprimitivity systems may also lead to the tomographic state reconstruction of the
relativistic particle, which has not been obtained up to now. Another generalization
that needs further investigation is the extensions of the tomographic formulas to the
case of discrete tomographic groups that are not subgroups of Lie groups.
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