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Introduction

Cryptography is the study of message secrecy. This is a subject with im-
mediate practical application: computer passwords and electronic commerce
are two examples. Quantum Cryptography is just an application of principles
of quantum physics to Cryptography. This �eld of study brings a very rel-
evant improvement: security of classic cryptography relies on the unproven
computational complexity of certain mathematical operation (e.g. �nding
prime factors of a given number), whereas the security of quantum cryptog-
raphy relies on the laws af physics alone. C. H. Bennett and G. Brassard in
their famous paper [10] invented a quantum cryptographic protocol which
enables two parties to produce a shared random bit string known only to
them, which can be used as a key to encrypt and decrypt messages.

In this work we will analyse two fundamental quantum cryptographic proto-
cols: quantum bit commitment and quantum coin �ipping ( or quantum coin
tossing). The bit commitment is a protocol to allow a user (Alice) to submit
a bit of information to a second party (Bob) while keeping it hidden, and
while preserving the Alice's ability to reveal the committed value later; on
the other hand the sender must not be able to change the value of the bit
after having submitted it.
A coin �ipping scheme is a cryptographic protocol for two or more mistrust-
ful parties to agree on a random bit; it was originally introduced by Blum
[29], while taking into exam the following problem: �Alice and Bob want to
�ip a coin by telephone. (They have just divorced, live in di�erent cities,
want to decide who gets the car.) Bob would not like to tell Alice heads and
hear Alice (at the other end of the line) say: Here it goes... I'm �ipping the
coin... You lost!� (quoted from [29]). There is a connection between quan-
tum bit commitment and quantum coin �ipping: as Blum pointed out in [29],
quantum bit commitment is a prmitive for coin �ipping. Let consider the
follow situation: Alice commits (by a secure bit commitment protocol) the
bit b to Bob; then Bob tries to guess the value of b and publicly announces
his prevision; if he guessed well, he wins the toss, otherwise Alice wins. In
of this work we review in a rigourous mathematical framework the problem
of quantum bit commitment and quantum coin tossing, showing that both
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of them cannot be unconditionally secure. Then we propose and analyse a
new way to achieve quantum coin tossing in form of a game, with fair coin
tossing obtained as the unique Nash equilibrium of the game.

Here is a brief outlook of the contents of this work.

The �rst chapter introduces the necessary mathematical tools which will
be used when we will formally analyse quantum bit commitment. In par-
ticular we introduce the algebric formalism of C∗-algebras which allows us
to deal with quantum and classical system at the same time in a convenient
way. The two �nal sections of this chapter introduce the concept of channel,
crucial in information theory, together with some results about representa-
tion of channels as maps between C∗-algebras.

The second chapter is an overview on quantum bit commitment. We will
introduce the subject with the famous protocol which C. H. Bennet and G.
Brassard [10] presented in 1984, along with the concept of a concealing and
binding protocol. Then we will give a �rst glance to the impossibility proof
of QBC (as it was �rst given by Lo and Chau [12] [13], and independently
by Mayers [14] [15]) and analysedthe criticism to this proof which was �rst
proposed by H. Yuen [19].

The third and fourth chapter present the complete impossibility proof
for quantum bit commitment, which was derived by G. M. D'Ariano, D.
Kretschmann, D. Schlingemann and R. F. Werner in [26]. Here a rigorous
study of the problem is given and all the gaps of the preceeding proofs are
closed.

The �fth chapter contains a survey on game theory. We will introduce
game in extensive and strategic form and the concept of Nash equilibrium.
Then we will re�ne the idea of Nash equilibrium analysing equilibria in strate-
gic form game: this will lead us to the de�nition of sequential equilibrium.
Then we will apply these concepts to a speci�c class of games: the games
with perfect information. These notions will be useful when dealing with the
coin tossing game presented in the last chapter.

In the sixth chapter we deal with coin �ipping. We illustrate the pre-
cise framework of the problem and then we report the Kitaev's impossibility
proof for coin �ipping as it can be found in [34]. Because this proof need
some preliminaries about semide�nite programming, the impossibility theo-
rem is preceded by a short section about this subject.

In the seventh chapter the exposition of a coin �ipping game takes place.
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We will consider two players Alice and Bob, both interesting in winning a
game representing an example of a coin tossing scheme. We analyse the
strategic options of Alice and Bob, and among these options we consider the
possibility of involving a reliable third party. Looking for the Nash equilib-
ria of the game, we �nd that there is a unique equilibrium which, in some
asymptotic limit corresponds a fair coin tossing without involving any third
party. Finally we claim that the same game-theoretical achievement of coin
tossing is not possible in classical mechanics, and we sketch a proof in a
simpli�ed setting.

5



Chapter 1

Mathematical formalism

Quantum mechanics is a statistical theory. That means that the theory
predictions can be veri�ed only if experiments can be repeted many times in
order to obtain the frequencies of the results.

Let us analyse the characteristic features of an experimental situation:
we have

• preparation procedures, in which a certain physical system is set in a
�xed state;

• registration procedures where the outcome of a measurement process
involving a particular observable is detected.

Saying that an experiment is repeatable means that preparation and regis-
tration procedures are repeatable. The aim of a statistical model is assigning
to a state a probability distribution over a set of events . Let us now try to
give a mathematical formulation to these ideas: we have

• the convex set S describing the possible state (i.e. the preparation of
a system).

• the space of the outcome U with its σ-algebra A(U) whose elements
are the possible events

• an a�ne map µ which associates a probability distribution over U to
each ρ ∈ S, that is

µρ : A(U) −→ [0, 1].

µρ(B) is the probability of the event B taking place with the system
prepared in the state S

Now we want to give a rigorous characterization to the space S and to
the maps µ. We are interested in giving the more general mathematical
description in such a way to include quantum system as well as classical
system.
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1.1 Generalities about C∗-algebras
In this section we introduce C∗-algebras, a crucial building block for the
statistical model we are going to de�ne. The part of chapter regarding
mathematical results about C∗-algebras can be found in [2] where we remind
fore a more detailed analysis. Another valuable introduction to this subject
can be found in [5] together with relevant phisical application.

Let start giving some preliminary de�nition.

De�nition 1.1.1 (∗-algebra) Let A be an algebra. We say that a map
A ∈ A −→ A∗ ∈ A is an adjoint operation or involution if the following
identities are ful�lled

• A∗∗ = A

• (AB)∗ = B∗A∗

• (αA+ βB)∗ = αA∗ + βB∗

∀A,B ∈ A (α is the complex conjugation). An algebra with involution is
called ∗-algebra. If we introduce a norm (‖ · ‖) on A we obtain a normed
∗-algebra. If normed ∗-algebra A is also complete and the properties ‖A‖ =
‖A∗‖ holds, it is a Banach ∗-algebra.

Now we can give the following

De�nition 1.1.2 (C∗-algebra) A C∗-algebra is a Banach ∗-algebra A with
the property

‖A∗A‖ = ‖A‖2 (1.1)
∀A ∈ A

Remark 1.1.1 From the de�nition we automatically have that

‖A‖ = ‖A∗‖ (1.2)
indeed, reminding the inequality ‖AB‖ ≤ ‖A‖‖B‖

‖A‖2 = ‖A∗A‖ ≤ ‖A‖‖A∗‖
and so

‖A‖ ≤ ‖A∗‖
Interchanging the roles of ‖A‖ and ‖A∗‖ we get the thesis.

De�nition 1.1.3 (Identity) An identity I of a C∗−algebra is an element
such that

AI = IA = A ∀A ∈ A
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Remark 1.1.2 We can verify that also I∗ is an identity. Furthermore if I
and I′ both are identity, we have

I = II′ = I′

(for example the identity I = I∗ holds), This means that when it exists the
identity element is unique

Remark 1.1.3 Let now consider the norm of the element I. We have

‖I‖ = ‖I I∗‖ = ‖I‖2

that is ‖I‖ = 0 or 1. Because of the case ‖I‖ = 0 would lead to

‖A‖ = ‖AI‖ ≤ ‖A‖‖I‖ = 0 −→ ‖A‖ = 0 ∀A ∈ A

and to a null algebra (all elements equal to 0), we assume that ‖I‖ = 1

Remark 1.1.4 Not every C∗-algebra is equipped with an identity. However
it is always possible to extend a C∗-algebra without identity into an other one
with identity. Because of this, from now on, we assume that every C∗-algebra
has an identity element.

Now we focus our attention on the main classes of elements of a C∗-algebra.
We will introduce the concepts of normal, selfadjoint, isometric, unitary
and positive element. We give here the de�nition of spectrum.

De�nition 1.1.4 (spectrum) Let A be a C∗-algebra. We de�ne the resol-
vent set rA(A) of an element A as the set of λ ∈ C such that λI − A is in-
vertible. The spectrum σA(A) of A is de�ned as the complement of rA(A) in
C. We de�ne the spectral radius ρ(A) of A as ρ(A) = sup{|λ|, λ ∈ σA(A)}.

De�nition 1.1.5 An element A of a C∗-algebra A is normal if AA∗ = A∗A.
An element A of a C∗-algebra A is selfadjoint if A∗ = A.
An element A of a C∗-algebra A is isometric if A∗A = I.
An element A of a C∗-algebra A is unitary if A∗A = AA∗ = I.

Let now examine some properties of the spectra of these classes of operators

Theorem 1.1.1 Let A be a C∗-algebra and A ∈ A
• if A is normal or selfadjoint we have ρ(A) = ‖A‖
• if A è isometric o unitary we have ρ(A) = 1

• if A è unitary σA(A) ⊆ {λ;λ ∈ C, |λ| = 1}
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• if A is selfadjoint
σA(A) ⊆ [−‖A‖, ‖A‖] e σA(A2) ⊆ [0, ‖A‖2]

Remark 1.1.5 From the identity

A = A′ + iA′′ .=
A+A∗

2
+ i

A+A∗
2i

(1.3)

it follows that each element of A can be written as a combination of two
selfadjoint elements

Let now introduce a new class of elements: the positive elements

De�nition 1.1.6 A selfadjoint element A of a C∗-algebra A is positive
when its spectrum σ(A) is a subset of R+. The set of all positive elements
of A is denoted by A+

The following result characterize positive elements.

Theorem 1.1.2 An element A ∈ A is positive i� A = B∗B for some B ∈ A.
Furthermore there exists a unique B positive such that A = (B)2. B belongs
to the abelian C∗-subalgebra generated by A

Remark 1.1.6 It is possible to introduce a partial ordering relation between
selfadjoint elements.

A ≥ 0 means A ∈ A+ (i.e. A s positive). The inequality A ≥ B is
intedrpreted as A−B ≥ 0, that is A−B ∈ A+

Remark 1.1.7 As a consequence of theorem (1.1.2) we have that the or-
der relation we previously introduced is stable under conjugation with every
element of A, that is

A1 ≤ A2 → B∗A1B ≤ B∗A2B ∀B ∈ A (1.4)

Remark 1.1.8 Thanks to theorem (1.1.2) it is possible to de�ne the square
root of a positive element A as the only positive element

√
A such that A =

(
√
A)2. For every selfadjoint element we can de�ne its modulus: |A| =

√
A2

Remark 1.1.9 It is possible to demonstrate that each selfadjoint element A
can be written as follows

A = A+ −A− A+, A− ∈ A+, A+A− = 0, ‖A±‖ ≤ ‖A‖ (1.5)

Inserting Eq. (1.5) into Eq. (1.3) We see that each element of a a C∗-algebra
can be written as a composition of positive element

A = A′+ −A′− + i(A′′+ −A′′−). (1.6)
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Remark 1.1.10 We now see another type of decomposition. Consider a
selfadjoint element A and suppose it is invertible with inverse A−1. Then
A∗A is invertible too and its inverse is positive. So we have that |A| is
invertible with inverse |A|−1 =

√
(A∗A)−1. Let de�ne U = A|A|−1: we

notice that U is invertible and U∗U = UU∗ = I so we can write

A = U |A|. (1.7)

This is a special case of the polar decomposition. The general case of polar
decomposition concerns closed, densely de�ned operators acting on Hilbert
space; These operators can be written as

A = V |A| (1.8)

where |A| =
√

(A∗A) as usual but V is a partial isometry.

We �nish this section with a de�nition which will be useful in the following

De�nition 1.1.7 (resolution of the identity) Let A be a C∗-algebra and
U be a measurable set together with its σ-algebra E(U)

We de�ne resolution of the identity a family {E(B) t.c. B ∈ E(U)} of
elements of A such that

• E(B) ∈ A+ ∀B ∈ E(U)

• E(U) = I

• for each set {Bi} of element of E(U) one disjoint from each other

E

(⋃

i

Bi

)
=

∑

i

E(Bi).

1.2 Representations
In the preceeding section we gave the fundamental indroductory concepts
concerning C∗-algebre. Now we want to give a handy characterization of
this algebric framework. We are expecially interested in a concrete example
of C∗-algebra, that is the space of operators on a Hilbert space.

The idea of representation leads us towards this direction. Let begin
giving the following

De�nition 1.2.1 (∗-mor�sm) Let A and B C∗-algebras. A ∗-mor�sm is a
map π : A −→ B such that:

• π(αA+ βB) = απ(A) + βπ(B)

• π(AB) = π(A)π(B)
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• π(A∗) = (π(A))∗

∀A,B ∈ A e ∀α, β ∈ C

Remark 1.2.1 Each ∗-mor�sm between C∗-algebras is positive; Indeed we
have

A ≥ 0 → A = B∗B for some B ∈ A
and so

π(A) = π(B∗B) = π(B∗)π(B) = π(B)∗π(B) ≥ 0

Remark 1.2.2 It is possible to demonstrate that every ∗-mor�sm is contin-
uous (and expecially we have ‖π(A)‖ ≤ ‖A‖), and that the range π(A) is a
C∗-subalgebra of B

Remark 1.2.3 A ∗-mor�sm which is injective and surjective is called ∗-
isomor�sm

Now we are able to de�ne what is a representation

De�nition 1.2.2 (representation) A representation of a a C∗-algebra A
is a pair (H, π) where H is a complex Hilbert space, π is a ∗-mor�sm from A
into B(H), the space of bounded operators on H. The representation is said
to be faithful if π is a ∗-isomor�sm on π(A), that is i� kerπ = 0.

Each representation π : A −→ L(H) de�nes a faithful representation
between the quotient algebra A/ kerπ and the range π(A). Reminding that
the kernel of a mor�sm between two algebras is an ideal, we have that a
representation of a simple algebra must be faithful. Let us now give an
intersting result on faithful representation.

Theorem 1.2.1 Given a representation (H, π) of a C∗-algebra A, the fol-
lowing conditions are equivalent

• the representation is faithful

• kerπ = 0

• ‖π(A)‖ = ‖A‖ ∀A ∈ A
• π(A) > 0 ∀A > 0

Another relevant concept concerning representation is the one of re-
ducibility. Let us suppose there is a closed subspace H1 of H invariant under
the action of all representative π(A). Now we consider the projector with
range H1, PH1 ; we can verify that PH1π(A) = π(A)PH1 for each A (and
viceversa). If we de�ne π1(A) = PH1π(A)PH1 , the pair (H1, π1) is still a
representation of A; In this way we have built a subrepresentation of (H, π).
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If H1 is a closed subspace invariant under π, his orthogonal complement
H2 = H⊥1 will be invariant too. We can build, following the preceeding pro-
cedure, a new subrepresentation (H2, π2). H can be decomposed H = H1⊕H2

and the operators π(A) as well: π(A) = π1(A)⊕ π2(A). So it is possible to
decompose the representation (H, π) as direct sum (H1, π1)⊕ (H2, π2)

Remark 1.2.4 A typical case of invariant subspace is:

H0 = {ψ;ψ ∈ H t.c. π(A)ψ = 0 ∀A ∈ A}

A representation with the property H0 = {0} is called non degenerate.

An important class of non degenerate representations is the one of the cyclic
representations. We say that an element ψ of a Hilbert space H is cyclic for
a set ∆ of bounded operators if span{Aψ A ∈ ∆} is dense in H. Let now
give the following

De�nition 1.2.3 (cyclic representation) A cyclic representation is a triple
(H, π, ψ) where (H, π) is a representation and ψ is a cyclic vector for π.

The crucial importance of cyclic representation relies on the following
result

Theorem 1.2.2 Each representation (H, π) can decomposed as direct sum
of cyclic representations

We now introduce the concept of irreducible representation

De�nition 1.2.4 (irreducible representation) Let ∆ a set of operators
acting on a Hilbert spaceH. ∆ is called irreducible if the only subspaces of
H invariant under the action of its elements are 0 and H. A representation
(H, π) of a C∗-algebra A is said to be irreducible if the set of the representative
π(A) is irreducible.

Here's a way for building new representations starting from a given one Let
U be a unitary operator on H. If we de�ne πU (A) = Uπ(A)U∗, (H, πU ) is
still a representation. Anyway we want to identify between representations
that di�er only by an unitary operator action.

De�nition 1.2.5 (equivalent representation) Two representation (H1, π1)
e (H2, π2) are equivalent if there exists a unitary operator U : H1 −→ H2 such
that π1(A) = Uπ2(A)U∗ for all A ∈ A. In this case we have π1 ' π2.
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1.3 States
In this section we introduce functionals on C∗-algebras which bring us to
de�nition of state. We will see how this concept, along with its physical
relevance, has a crucial application in representations of C∗-algebras.

De�nition 1.3.1 (functional on C∗-algebra) A functional on a C∗-algebra
A is a linear and continuous application f : A −→ C. We refer to the space
of functionals as A∗, dual of A.
We can de�ne a norm on the space of functionals:

‖f‖ = sup{|f(A)| ; A ∈ A e ‖A‖ = 1}

Now we can introduce the most relevant class of functionals:

De�nition 1.3.2 (state) Let ω be a functional on C∗-algebra A. If

ω(A∗A) ≥ 0 ∀A ∈ A

We say that ω is positive. If the property ‖ω‖ = 1 (normalization) holds we
say that ω is a state. We denote the set of states as EA.

Let us now analyse some properties of states

• ω(A∗B) = ω(B∗A) ∀A,B ∈ A
• |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B) ∀A,B ∈ A
• States are a convex set; So if we de�ne the convex combination

ω = λω1 + (1− λ)ω2 ∀λ ∈ [0, 1]

we still have a state.
A state is said to be pure if it cannot be written as a convex combina-
tion of other di�erent states. Let denote PA the set of pure states.

In the preceding section we dealt with representations of C∗-algebras.
Now we wonder if something analogue exists for states or functionals. If a
C∗-algebra A is represented on a space of bounded operators B(H), clearly
all states on π(A) will be belong to the dual B∗(H). In the �nite-dimensional
case, this set can be identi�ed with T (H) (the space of the trace-class oper-
ators on H equipped with the trace norm1 ‖ · ‖1 ) under the pairing

ω(A) = Tr(ρωπ(A)) ∀ (1.9)
1We remind that A ∈ B(H) is a trace-class operator if his trace norm is �nite. The

trace norm is de�ned as follow Tr|A|, where |A| has been de�ned in 1.1.8
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that is, every functional ω ∈ B∗(H) can be represented by a ρω ∈ T (H) such
that

If we are dealing with states, the normalization constraint translates into

Tr(ρω) = 1

The representative ρω is usually called density matrix, when ω is a state.
The correspondance between T (H) and B∗(H) does not hold in the general
(in�nite dimensonal) case. T (H) is the pre-dual of B(H), that is T ∗(H) =
B(H). Not every functional (state) in B∗(H) can be represented as a trace-
class operator, the ones we can express in this way are referred to as normal
functionals (states).

In quantum mechanics one usuallyt represents states as normalized vector
of a Hilbert space. We can join with this point of view giving a representation
(H, π) to a C∗-algebra. Le consider a vector ψ ∈ H with norm equal to 1 and
let de�ne the functional2

ωψ(A) = 〈ψ, π(A)ψ〉

If π is not degenerate we can easily verify that ωψ is a state according to our
de�nition. States of this form are referred to as vector states; Moreover, it
is possible to demonstrate that each state on a C∗-algebra is a vector state
in a suitable representation.

Now we are going to do a short digression concerning states and their rep-
resentations (we refer to [1] and [4] fore a more complete presentation). We
will introduce some concept useful for further applications. We begin with
de�ning what is a puri�cation of a state (we restrict to the �nite dimensional
case).

Theorem 1.3.1 Let H be a �nite dimensional Hilbert space. Let ω ∈ T (H)
be a density matrix. Then we can �nd K ∼= H and ψ ∈ H⊗ K such that:

TrK[σψ] = ω.3 (1.10)

where σψ is the density matrix of the state vector derived from ψ. ψ is called
a puri�cation of ρ. Moreover if U ∈ K is a unitary operator, (IH ⊗ U)ψ is
still a puri�cation of ρ.

Remark 1.3.1 It is possible to show that vector state are pure states. A
puri�cation of a vector state ρψ coincides with the vector ψ.

Another useful tool is the
2we denote as 〈α, β〉 the inner product of the Hilbert space H
3TrK denotes the partial trace over TrK.
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De�nition 1.3.3 (�delity) Let α and β be normal states on a (�nite di-
mensional) C∗-algebra A and ρα, ρβ their representatives in T (H) We de�ne
the �delity f(α, β) as follow:

f(α, β) = Tr(
√√

ραρβ
√
ρα) (1.11)

Thanks to a theorem due to Uhlmann, we have:

Theorem 1.3.2 Le ρ, σ ∈ T (H) a pair of states.4
Then

f(ρ, σ) = max
ψρ,ψσ

〈ψρ|ψσ〉 (1.12)

where ψρ, ψσ ∈ H ⊗ K are puri�cation of ρ and σ. In particular we can �x
one of the puri�cation and maximize over the other one: that is

f(ρ, σ) = max
ψσ

〈ψρ|ψσ〉 (1.13)

where now ψρ is a �xed puri�cation.

Remark 1.3.2 The �delity f is a concave function. More precisely we have:

f

(∑

i

piρi,
∑

i

qiσi

)
≥

∑

i

√
piqif(ρi, σi) (1.14)

where ρi, σi are density matrices and pi, qi are probability distributions over
the same index set.

The following proposition shows the strong connection between �delity
and trace norm

Theorem 1.3.3 (Uhlmann) Let ρ, σ ∈ T (H). The trace norm di�erence
‖ρ− σ‖1 is equivalent to the �delity f(ρ, σ) in the following sense

1− f(ρ, σ) ≤ 1
2
‖ρ− σ‖1 ≤

√
1− f2(ρ, σ) (1.15)

1.4 Structure theorems
We already introduced the concept of representation. We also noticed that
each representation can be decomposed as a directy sum of cyclic represen-
tations. The following theorem states that it is always possible to create a
cyclic representation

4from now on, for the �nite dimensional case, we identify C∗-algebras and states with
their representation.
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Theorem 1.4.1 (Gelfand-Naimark-Segal) Let ω be a state on a C∗-
algebra A. Then there exists (unique up to unitary equivalence) a cyclic
representation (Hω, πω, ψω) of A such that

ω(A) = 〈ψω, πω(A)ψω〉 ∀A ∈ A.

Moreover (Hω, πω) is irreducible i� ω is a pure state

Now we can build for each state ω a cyclic representation (Hω, πω, ψω) and
make the direct sum; So we obtain the representation

(H, π) where H =
⊕

ω∈EA

Hω π =
⊕

ω∈EA

πω

It is possible to prove that this representation is faithful. This was a sketch
of the proof of the following result

Theorem 1.4.2 (structure theorem for C∗-algebre) Any C∗-algebra A
is isomorphic to an algebra of bounded operators on a (generally non sepa-
rable) Hilbert space.

This result is very relevant. Thanks to it every time we deal with a C∗-
algebra we can instead turn to an algebra of operator on a Hilbert space
which is the �usual� context of quantum mechanics.
Let now see a structure theorem for commutative C∗-algebra.

Theorem 1.4.3 (structure theorem for abelian C∗-algebras) Let A an
abelian C∗-algebra. then it is isomorphic to C0(X), the algebra of continuous
function over a locally compact Hausdor� space X.

1.5 Tensor product of C∗-algebras
As we will see in the next section, we can give a mathematical description
of an experimental situation by making use of the C∗-algebras formalism.
However we sometimes deal with composite system; if each subsystem cor-
responds a C∗-algebra, the mathematical structure suitable for representing
composite system is the tensor product of these C∗-algebras.

Let us now work out this idea precisely. Thanks to structure theorem we
can focus our attention on operator algebras without loss of generality.

Let Ai, be C∗-algebras on a Hilbert space H . We de�ne
⊙

iAi as the
usual tensor product between these C∗-algebras considered with only its
vector space structure. Let now give

⊙
iAi a ∗-algebric structure in such a

way: (⊗

i

Ai

) (⊗

i

Bi

)
=

(⊗

i

AiBi

)
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(⊗

i

Ai

)∗
=

(⊗

i

A∗i

)

for all (
⊗

iAi) ∈
⊙

iAi. The next step is giving this ∗-algebra a norm with
property (1.1) and ‖ (

⊗
iAi) ‖ =

∏
i ‖Ai‖ In the general case there exist

many norms with these properties. The most common among them is the
C∗-norm which we are going to introduce. Let us start considering faithful
representations (Hi, πi) of the algebras Ai. The C∗-norm is de�ned as follows

∥∥∥∥∥

(⊗

i

Ai

)∥∥∥∥∥ =

∥∥∥∥∥

(⊗

i

πi (Ai)

)∥∥∥∥∥ .

On the right side we made use of the norm over L(H) which is de�ned in
such a way: ‖A‖ = sup{‖Aψ‖;ψ ∈ H‖ψ‖ = 1}

it is possible to demonstrate that the norm we built does not depend of
the particular representations used. We say that the C∗-algebra obtained by
this procedure is the C∗-tensor product of the Ai and it is denoted as

(⊗

i

Ai
)

1.6 The statistical model
Let now come back to the problem of giving a mathematical description to
a physical experiment. We identi�ed the following crucial elements:

• The convex set S of possible states,

• The space of possible results U together with its σ-algebra,

• an a�ne map µ .
Once we have the outcomes space U , we associate to the experiment a C∗-
algebra A (which is commonly referred to as observables algebra). As regards
the set S of physical states it coincides with EA, the set of states over A we
introduced in Def. (1.3.2). then we have

S = EA.

Let now characterize the a�ne map µ; We need the following result [6]:
Theorem 1.6.1 (Holevo) Every a�ne map µ which associates each state
ρ ∈ S = EA with a probability distribution over a measurable set U , has a one
to one correspondence with an identity resolution {E(B) t.c. B ∈ E(U)}.
The correspondence is given by the relation

µρ (B) = ρ (E (B)) . (1.16)

The E(B) are called e�ects.
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Then each a�ne map can be represented by a resolution of the identity; the
probability for the event B taking place with the system in the state ρ is
given by

Pr{B | ρ} = ρ (E (B))

According with this formalism, each measurement situation is represented
by a POVM (positive operator valued measure), which is de�ned as follows

De�nition 1.6.1 (POVM) A POVM is a map which associate an element
E(B) of a C∗-algebra to each B ∈ E(U), in such a way that {E(B) B ∈
E(U)} is a resoltion of the identity.

Remark 1.6.1 While developing this model we did no distinction between
classical or quantum system. This means that the formalism is completely
general. Indeed, classic observable represent a special case of C∗-algebra, the
abelian case.

1.7 Channels
The model we have just considered the statistical escription of an experiment.
Now we want generalize this framework to a generic transformation of a
physical system. We are interested in a situation like this

ρin −→ ρout.

This transformation, in an informational context, is represented by a channel
which turns input states into output states. So we are looking for a map

T∗ : EA −→ EB

which, given a system in a state ρin as input, produces a system in a state
ρout = T∗

(
ρin

)
as output. Let us suppose we want to perform a mea-

surement on the output system: The experiment will be represented by a
speci�c POVM, that is by a set of e�ects E (B) of the outcome algebra B;
the probability distribution will be given by

Pr{B|ρout}
(
T∗

(
ρin

))
(E (B)) .

On the other hand we can consider the e�ects E (B) and describe a
channel as a map

T : B −→ A
which turns e�ects of B into e�ects of A. Using this convention, states are
not subjected to any change of description and the probability distribution
of a generic experiment becomes

ρin (T (E (B)))
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This two descriptions must be consistent, so we have
(
T∗

(
ρin

))
(E (B)) = ρin (T (E (B))) . (1.17)

The �rst convention is usually called (T∗ : EA −→ EB) Schrodinger picture
while the second is (T : B −→ A) the Heisenberg picture; Since dealing with
maps between C∗-algebras it is much more convenient we will make use of
the Heisenberg picture.
Now we have to give a precise charaterization to channels.

1.7.1 Complete positivity
In this subsection we will illustrate some basic result about completely pos-
itive maps: for a more detailed presentation of this subject we refer to [7].
Let begin with the following:

De�nition 1.7.1 let F : A −→ B a map between C∗-algebras A e B. F is
called positive if the following property holds

F (A) ≥ 0 ∀A ≥ 0 (1.18)

Proposition 1.7.1 Let F : A −→ B a positive map.
Then we have

F (A∗) = (F (A))∗ (1.19)

Proof. The (1.19) is easily veri�ed if we apply the map F to the decomposition (1.6).
¤

Now we want to strengthen the positivity property. We expecially de�ne
maps that not only are positive on a given C∗-algebra A, but also remain
positive even when we extend the C∗-algebra they act over. We now are
going to explain what we exactly mean with this idea.
Let us consider the C∗-algebra A⊗Mn(C), whereMn(C) is the C∗ algebra
of n × n complex matrices ; We can �gure elements of this space as n × n
matrices with entries in A (that is, Aij ∈ A). Keeping this de�nition in
mind, we give the following de�nition

De�nition 1.7.2 (complete positivity) Let F : A −→ B A linear map
between C∗-algebras. We de�ne

Fn : A⊗Mn(C) −→ B ⊗Mn(C)

in such a way:
(Fn(A))ij

.= F (Aij).

F is completely positive i� Fn i positive ∀n ∈ N
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Remark 1.7.1 A classic example of completely positive map is a ∗-mor�sm
π : A −→ B. Firs we verify that πn : A ⊗Mn(C) −→ B ⊗Mn(C) is a
∗-mor�sm yet. Then, given a A ≥ 0 in A ⊗Mn(C) from Theorem (1.1.2)
we have A = B∗B, and so π(A) = π(B∗B) = π(B)∗π(B) which is clearly
positive.

Remark 1.7.2 An example of positive map which is not completely positive
is the matrix transpose.

Remark 1.7.3 Let B be a C∗-algebra and C an abelian C∗-algebra. It is
possible to demonstrate that:

• each positive map F : C −→ B is completely positive;

• each positive map F : B −→ C is completely positive;

Remark 1.7.4 It is possible to introduce (complete) positivity for map for
states as well as maps for C∗-algebras. In particular a map F is (completely)
positive i� its Schrodinger representative F ∗ is (completely) positive.

Now we have are ready to give the crucial de�nition of this section:

De�nition 1.7.3 (channel) Let A and B be C∗-algebras; and T : B −→ A
be a linear map. If the following properties hold

• T is completely positive

• T (IB) = IA (unitality)

then T is a channel.

Remark 1.7.5 We need complete positivity when we deal with composite
system. Indeed a channel must sends states into states (positive normalize
functionals) even if it acts only to a portion of a larger system. If we have
a channel T : B −→ A, we can imagine to apply it over an extended system
in B⊗B′ in such a way T ⊗ I : B⊗B′ −→ A⊗B′. The physical consistency
of this situation is guaranteed by the complete positivity of T

Now we can formalize in a better way the heuristic arguments exposed at the
beginning of section (1.7). When the system is initially in the state ω ∈ EA,
the expectation value of an observable B ∈ B at the output side of a channel
described by the map C is given by:

ω (T (B)) (1.20)

If ω is a normal state we can represent it as trace class operator. The
equation (1.20) will become (without making use of a new notation for the
representatives)

Tr(ωT (B)) (1.21)
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However, not for every channel in Heisenberg picture one can de�ne the dual
map, but this is always true for �nite dimensional channels. In this case we
can de�ne

T∗ : A∗ −→ B∗

and we have the duality relation

(T∗ (ω)) (B) = ω (T (B))

that for normal states becomes

Tr(T∗(ω)B) = Tr(ω T (B)) (1.22)

Remark 1.7.6 The de�nition of channel can be seen as a generalization of
the concept of state. Indeed we can read a state as a channel ω : A −→ C.
Completely positivity of ω holds because ω is positive and and C is an abelian
C∗-algebra (see Rem.(1.7.3)).

1.7.2 Stinespring representation
De�nition (1.7.3) is a very simple and intuitive one but it is not handy as
well. In this section we will give a representation of channel which is more
suitable when dealing with applictions.
Before introducing this result we analyse two common examples of channels
(For sake of simplicity we make use of operator spaces instead of generic
C∗-algebras).

Isometric evolution Let consider an isometric operator V : H1 −→
H2 (that is V ∗V = I); we can de�ne:

T : B(H2) −→ B(H1) T (A) = V ∗AV ∀A ∈ B(H2).

Condition (1.7.3) is ful�lled because of V is isometric. We have to check
completely positivity. Consider positive element Γ ∈ B(H2)⊗Mn(C);
This means5

〈v,Γv〉2 ≥ 0 ∀v ∈ H2 ⊗ Cn (1.23)
If we consider an orthonormal basis of Cn, property (1.23) becomes

∑

i,j

(vi, (Γ)ij vj)2 ≥ 0 (1.24)

where vi ∈ H2 and (Γ)ij ∈ B(H2) is de�ned as in Def. (1.7.2). Complete
positivity holds if we can prove that

5〈u, v〉2(1) is the inner product in H2(1)⊗Cn and (u, v)2(1) is the inner product in H2(1)
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〈v, Tn(Γ)v〉1 =
∑

i,j

(vi, (Tn(Γ))ij vj)1 ≥ 0 (1.25)

From Def. (1.7.2) we have

(Tn(Γ))ij = T (Γij) = V ∗ΓijV

if we insert this identity in Eq. (1.25), we obtain
∑

i,j

(vi, V ∗ΓijV vj)1 .

So we have ∑

i,j

((V vi) ,Γij (V vj))2

which is positive thanks to (1.24).

Reduction to a subsystem Suppose we are dealing with �nite di-
mensional Hilbert spaces. Let us de�ne a map

T : B(H2) −→ B(H2 ⊗ K)

such that
T (A) = A⊗ IK :

T represent a reduction from H2⊗K to H2. We remind that Heisenberg
picture goes in the opposite direction compared with Schrodinger pic-
ture. So when we reduce to a subsystem we have to �turn� observables
of a smaller sytem to observables of a larger one (this is the meaning of
the operation ⊗I). We can easily verify that T is a channel. Referring
to the preceeding example (with a suitable change of notation) we have

〈v, Tn(Γ)v〉1 =
∑

i,j

(vi, (Tn(Γ))ij vj)1 =
∑

i,j

(vi, (Γij ⊗ IK) vj)1 . (1.26)

Let us now consider two orthonormal basis en and em of H e K respec-
tively; if we put decomposition

vi =
∑
nm

vnmi en ⊗ em

into the (1.26), we get

∑

ij

∑
n

( (∑
a

vani

)
, Γij

(∑

b

vbnj

) )

2

which is positive. Unitality is trivially satis�ed.
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The previous ones were two typical examples of channel. The following
theorem (the original prove by Stinespring can be found in [8], the proof we
illustrate is reviewed from [3]) proves that each channel can be eventually
represented as a composition of these two types of channels (see Remark
(1.7.7)).

Theorem 1.7.1 (Stinespring Dilation Theorem) Let T : B −→ A a
channel between C∗-algebras. Let us suppose A being represented by πK on
a subalgebra of B(K).
Then there exist

• a representation πH : B −→ B(H)

• A partial isometry6 V : K −→ H

such that
πK(T (B)) = V ∗πHV ∀B ∈ B (1.27)

Proof. Let us de�ne the linear form 〈 , 〉0 over B ⊗ K (B considered as a vector space)
as

〈A⊗ v,B ⊗ w〉0 = (v, πK (T (A∗B))w)K (1.28)
where (v, w)K is the inner product in K and extend by linearity. Eq. (1.19) guarantees
that 〈 , 〉0 is Hermitian while the completely positivity of T tells us that it is also positive
semide�nite7. Indeed
*X

i

Bi ⊗ vi,
X
j

Bj ⊗ vj

+

0

=
X
i

 
vi,
X
j

πK (T (B∗i Bj))wj

!

K

= (−→v , πKn (T (B∗i Bj))−→w )Kn

In the last equality we made use of a representation over K⊗n (n tensor copies of K), which
is the space where the elements B(K) ⊗Mn act. The expression above is positive if we
can prove that πKn (T (B∗i Bj)) is positive; this amounts, because of completely positivity
of T and πK, to prove positivity of th matrix (B∗i Bj). This veri�cation is straightforward;
let us de�ne Γ ∈ B(K)⊗Mn by the relation Γi,j = πKn (B∗i Bj). So we have

(−→z ,Γ−→z )Kn =
X
ij

(zi, πK (B∗i Bj) zj)K =
X
ij

(πK (Bi) zi, πK (Bj) zj)K =

˛̨
˛̨
˛

˛̨
˛̨
˛
X
i

Aivi

˛̨
˛̨
˛

˛̨
˛̨
˛

2

K

≥ 0

We proved that the linear form we introduced is positive semide�nite. Now we have to
restrict to a positive form which will become an inner product. Let consider N , the null
space of 〈 , 〉0 de�ned in such a way:

N = {u ∈ B ⊗ K, t.c. 〈u, u〉0 = 0}.
N is a subspace of B⊗K. Now we consider the quotient space (B⊗K)/N and the canonical
projection ρ : B ⊗ K −→ (B ⊗ K)/N . The following form

〈u, v〉 = 〈u+N , v +N〉0
6a partial isometry is an operator which is isometric over the orthogonal complement

of its kernel
7that is (α, α) ≥ 0 for all α ∈ B ⊗ K
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acts in a natural way over (B⊗K)/N and has the same properties of an inner product (is
positive de�nite). We call H the Hilbert space which is the closure of (B ⊗ K)/N in this
inner product. Now we have to build a representation of B over H. Let us de�ne the map

πH : B −→ L((B ⊗ K)/N ) (1.29)

by linearly extending
πH(B)ρ(A⊗ v)

.
= ρ(BA⊗ v) (1.30)

πH has the following properties

πH(B1B2) = πH(B1)πH(B2) and πH(B∗1 ) = (πH(B1))
∗

πH is well de�ned because it let N invariant (πHN ⊆ N ).
Now we have to linearly extend πH(B) from (B ⊗ K)/N to all H in order to obtain a
representation. This is e�ectively possible because of the continuity of πH . Indeed, the
following identity holds 8

‖πH(B)‖ ≤ ‖B‖ (1.31)
Now we get the representation we are looking for:

πH : B −→ B(H).

The last step is to construct the partial isometry V . Let de�ne V : K −→ H in such a
way:

V (v) = ρ(IB ⊗ v).

We now veri�y that this is a suitable partial isometry. The adjoint V ∗ can be de�ned by
linearly extending

V ∗(ρ(B ⊗ v)) = πK(T (B))v;

an easy veri�cation gives V ∗V = IK . Now we have to show that condition (1.27) holds to
complete the proof:

V ∗πH(B)V v = V ∗πH(B)ρ(IH ⊗ v) = V ∗ρ(B ⊗ v) = πK(T (B))v

¤

Remark 1.7.7 Let now focus on the �nite dimensional case. Consider
T : B(HB) −→ B(HA), where HA(B) are �nite dimensional. Looking at
the expression (1.30) we can reformulate the Stinespring representation in
this way:

T (B) = V ∗B ⊗ IHEV (1.32)
where HE is a �nite dimensional Hilbert space called dilation space. Since we
are in a �nite dimensional context, T is normal and so we can consider its
dual T∗ :. By making use of the relation (1.22) we can obtain the Stinespring
representation for T∗ : B∗(HA) −→ B∗(HB),

T∗(ρ) = TrE(V ρV ∗) ∀ρ ∈ B∗(HA) (1.33)

The (1.33) gives us a physical interpretation of the Stinespring theorem. It
fundamentally states that every channel can be depicted as an evolution that

8The proof of Eq. (1.31) relies on Eq. (1.4) and on the complete positivity T ; we omit
details.
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transorm an input state ρ into a state V ρV ∗ possibly correlated with the en-
vironment (which is represented by the dilation space HE); the output is then
recovered by tracing out the environmental degrees of freedom (reduction to
a subsistem). Notice the change �tensoring identity ↔ partial trace� moving
from Heisenberg to Schrodinger picture

Theorem (1.7.1) gives a representation of a channel but it does not state that
this representation is unique. We call Stnespring representation of a channel
T : B −→ A a triple (πH, V,H) such that πK(T (B)) = V ∗πH(B)V . Let now
consider H1

.= span {πH(B)V v, v ∈ H, B ∈ B}. It is possible to verify that
H1 is an invariant subspace for πH, then this representation can be reduced.
Let πH1 the reduction of πH over H1. We notice that also (πH1 , V,H1) is a
Stinspring representation of channel T and the following identity holds:

H1 = span {πH1(B)V v, v ∈ H, B ∈ B}

. Let now give the following

De�nition 1.7.4 (minimal Stinespring representation) Let (πH, V,H)
be Stinespring representation of channel T : B −→ A. If

H = span {πH(B)V v, v ∈ H, B ∈ B}

this re presentation is said to be minimal

The following result de�nes a unitary equivalence between two minimal
Stinespring representation of the same channel;

Theorem 1.7.2 Consider the channel T : B −→ A and let (πH1 , V1,H1)
and (πH2 , V2,H2) be two minimal Stinespring representation of it. Then there
exists a unitary operator UH1 −→ H2 such that

UV1 = V2 and UπH1U
∗ = πH2

Proof. It su�ces to de�ne

U(
X
i

πH1(Bi)V1vi) =
X
i

πH2(Bi)V2vi)

and verify that it is a unitary operator. ¤

1.8 Distance measure between channels
In the preceeding section we introuced the concept of channel and gave, by
means of Theorem (1.7.1), a handy representation. For our purposes it will
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be useful being able to measure the distance between di�erent channels. We
begin generalizing the operator norm to channel by the following de�nition

‖T1 − T2‖∞ .= sup
B 6=0

‖T1(B)− T2(B)‖
‖B‖ (1.34)

This de�nition allows us to introduce the idea of bounded map, which we
now de�ne in the general case not only for channels.

De�nition 1.8.1 (bounded map) Let F : B −→ A be a linear map be-
tween C∗-algebras B e A. We say that F is bounded if

‖F‖∞ < +∞

where ‖F‖∞ is given by Eq. (1.34).

In the preceeding Section we introduced the Schrodinger dual for normal
channels. We can obviously de�ne a norm on maps between states in analogy
with de�nition (1.34):

‖T∗‖′∞ = sup
‖ω‖≤1

‖T∗(ω)‖ (1.35)

In a �nite dimesional context (1.35) becomes

‖T∗‖′∞ = sup
‖ω‖1≤1

‖T∗(ω)‖1 (1.36)

where now ω are trace class operators and ‖ · ‖1 is the trace-norm. It is
possible to demonstrate that Eq. (1.36) is exactly equivalent to Eq. (1.34),
so we have

‖T∗‖′∞ = ‖T‖∞ (1.37)
in the �nite dimensional case.

Let us now consider two experimental setups which measure the same
physical quantities on system prepared in th same initial state an evolved
with the channels T1 and T2. Then the norm de�ned in (1.34) is twice
the maximum of the di�erence between the probabilities distriutions of the
two experiments. However we have not considered yet situations in which
channels act only on a portion of a larger system (see Remark (1.7.5)). This
leads us to strenghten the notion of boundedness as we already did with the
notion of positivity.

De�nition 1.8.2 (complete boundedness) Let F : B −→ A be a map
between C∗-algebras B and A. We consider Fn as it was de�ned in (1.7.2);
if

sup
n
‖Fn‖∞ < +∞
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then we say that F is completely bounded. We also de�ne a norm over
completely bounded map as follows.

‖F‖cb = sup
n
‖Tn‖∞ (1.38)

Remark 1.8.1 We can easily notice that for every linear map F we have
‖F‖cb ≥ ‖F‖∞.

Remark 1.8.2 For any two completely bounded maps T, S : B −→ A the
identity

‖T ⊗ S‖cb = ‖T‖cb‖S‖cb
holds.

Remark 1.8.3 Now we focus on the �nite dimensional case. Let T be a
map between �nite dimensional algebras B(K) and B(H), and let n = dim H

In this context, it can be proved that only an n-dimensional extension is
su�cient, that is

‖T‖cb = ‖IMn(C) ⊗ T‖∞ (1.39)
This result allows us9 to use a copy B(H) as extension space; so we frequently
use this identity:

‖T‖cb = ‖IB(H) ⊗ T‖∞ (1.40)

Now we state (without proof) a crucual theorem that links complete
positivity and complete boundedness.

Theorem 1.8.1 Let F : B −→ A a map between C∗-algebras B and A. If
F is completely positive then F is completely bounded too, and the properties

‖F (I)‖ = ‖F‖∞ = ‖F‖cb (1.41)
holds.

Remark 1.8.4 When dealing with channels, Eq. (1.41) gives ‖T‖cb = 1

Remark 1.8.5 We remind (see Rem. (1.7.3)) that a positive map G between
C∗-algebras which one of them abelian is completely positive. Then, thanks
to theorem (1.8.1), G is completely bounded.

9Finite dimensional Hilbert spaces with the same dimension are isomorphic
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1.8.1 Continuity of Stinespring representation
We now have a tool to evaluate distance between channels. Since we can give
a Stinespring representation to every channel, we wonder how the distance
between two channels translates into distance between the representations.
We are interested in knowing if two channels close by cb-norm, would have
the isometry of their Stinespring representation close in the operator norm;
this clearly would be a continuity result for Stinespring representation.
A tool useful for the proof of the continuity theorem is the operational �delity.
This is nothing but a generalization to (normal) channels of �delity for states
already introduced in (1.3.3). Let's give the following

De�nition 1.8.3 (operational �delity) Let T1, T2 be channels between
�nite dimensional C∗-algebras B, A. Suppose B and A represented on B(HB)
and B(HA) respectively. We de�ne the operational �delity between T1, T2 as
follow (this concept was �rst introduced in [11]):

F (T1, T2)
.= inf

{
f( (IHA ⊗ T1∗)ω, (IHA ⊗ T2∗)ω ) with ω ∈ B∗(HA)⊗2, ‖ω‖1 ≤ 1

}
(1.42)

Remark 1.8.6 This de�nition of �delity, accordigly with that of complete
boundedness, takes into account the possibility of applying channels to a sub-
system of a larger system.

Remark 1.8.7 Because of the joint concavity of �delity for states (see Rem.
(1.3.2)) it is su�cient to minimize over pure states in Eq. (1.42), which
becomes10

F (T1, T2)
.= inf {f( (IHA ⊗ T1∗) |ψ〉〈ψ|, (IHA ⊗ T2∗) |ψ〉〈ψ| )

t.c. |ψ〉 ∈ H⊗2
A , ‖ |ψ〉 ‖1 ≤ 1

}
(1.43)

Before dealing with the continuity theorem we need a generalization of
Th. (1.3.3). The following proposition (which is reviewed from [9]) proves
the equivalence between operational �delity and cb-norm.

Proposition 1.8.1 Let T1, T2 : B(HB) −→ B(HA) be two channels. Then
we have

1− F (T1, T2) ≤ 1
2
‖T1 − T2‖cb ≤

√
1− F 2(T1, T2) (1.44)

Proof. Let de�ne n = dimHA The channel di�erence T1−T2 is obviously a linear map.
So the following equation holds (see Remark (1.8.3))

‖T1 − T2‖cb = ‖In ⊗ (T1 − T2)‖∞
Then, using Eqns. (1.36) and (1.37) we have

‖In⊗ (T1−T2)‖∞ = sup
˘‖(In ⊗ (T1∗ − T2∗))ρ‖1 t.c. ρ ∈ B∗(HA)⊗2, ‖ρ‖1 ≤ 1

¯
(1.45)

10from now on we will make use of Dirac notation
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Now we are just dealing with trace norm of states; so, combining eq. (1.15) with the
de�nition of operational �delity given in eq. (1.42) leads to the thesis. ¤

Now we are ready to state the following theorem, that was �rst proved
in [9]:

Theorem 1.8.2 (Continuity of Stinespring representation) Let HA and
HB �nite-dimensional Hilbert spaces. Let

T1, T2 : B(HB) −→ B(HA)

be channels with Stinespring representations (HB ⊗ HE , πHB⊗HE , V1), and
(HB ⊗HE , πHB⊗HE , V2). (We can suppose that the two representations share
a common dilation space: it su�ces adding extradimensions to one of the
dilation spaces and performing unitary transormations.) Then we have

inf
U
‖(IHB ⊗U)V1− V2‖2

∞ ≤ ‖T1− T2‖cb ≤ inf
U

2‖(IHB ⊗U)V1− V2‖∞ (1.46)

Where U ∈ B(HE) are unitary operators

Proof. 11 If we have two states ρ, σ ∈ B∗(HA) from Eq. (1.3.2) and reminding Th.
(1.3.1) we have f(ρ, σ) = maxU∈B(HR)〈ψρ|(IA ⊗ U)ψσ〉 where ψρ, ψσ ∈ HA ⊗ HR are two
�xed puri�cation of ρ, σ and U is a unitary operator on HR. Because (IHA ⊗ Vi)|ψ〉 is a
puri�cation of the state (IHA ⊗Ti∗)|ψ〉〈ψ|, i = 1, 2 (the veri�cation is straightforward) we
can write:

F (T1, T2) = inf
ψ
f((IHA ⊗ T1∗)|ψ〉〈ψ|, (IHA ⊗ T2∗) |ψ〉〈ψ|) =

= inf
ψ

sup
U
|〈ψ|(IHA ⊗ V ∗1 )(IHA ⊗ IHB ⊗ U)(IHA ⊗ V2)|ψ〉| =

= inf
ρ∈B(HA)

sup
U
|Tr[ρV ∗1 (IHB ⊗ U)V2]| =

= inf
ρ∈B(HA)

sup
U

Re(Tr[ρV ∗1 (IHB ⊗ U)V2]) (1.47)

Where U are unitary operators of B(HE). The (1.47) gives an estimation of the opera-
tional �delity in terms of the isometries V1 and V2. However, because of the order of the
optimization in the (1.47), the optimal unitary in general is a function of ρ. If we de�ne
for a �xed ρ, X = TrB [V2ρV

∗
1 ] Eq. (1.47) becomes

sup
U
|Tr[XU ]|.

We have the bound
|Tr[XU ]| ≤ Tr[|XU |]

We achieve the supremum when U is the unitary of the polar decomposition of X; In this
case we have

sup
U
|Tr[XU ]| = Tr[|X|] = ‖X‖1 (1.48)

Now we remind the following bound

|Tr[XY ]| ≤ ‖X‖1‖Y ‖∞ ∀X ∈ T (H), Y ∈ B(H). (1.49)
11In this proof we make use of basic results of operator theory. We refer to [1] for a

precise presentation of this subject
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Thanks to Eqs (1.48) and (1.49) we can extend the optimization range from the set of
unitaries to the set {U ∈ B(HE) t.c. ‖U‖∞ ≤ 1}. This set as the advantage of being a
convex set like the set of states; So we have to optimize over two convex sets a function
which depends linearly on both inputs. In this case we can apply Von Neumann minimax
theorem and exchange in�mum and supremum. We obtain

F (T1, T2) = sup
‖U‖∞≤1

inf
ρ∈B(HA)

Re(Tr[ρV ∗1 (IHB ⊗ U)V2]) (1.50)

knowing that the optimal U can be chosen unitary. We �nally prove the bound

inf
U
‖(IHB ⊗ U)V1 − V2‖2∞ = inf

U
‖(V ∗1 (IHB ⊗ U∗)− V ∗2 )((IHB ⊗ U)V1 − V2)‖∞ =

= inf
U

sup
ρ

Tr[ρ(V ∗1 (IHB ⊗ U∗)− V ∗2 )((IHB ⊗ U)V1 − V2)] =

= 2− 2 sup
U

inf
ρ
Re(Tr[ρ(V ∗1 (IHB ⊗ U∗)V2]) =

= 2(1− F (T1, T2)) ≤
≤ ‖T1 − T2‖cb (1.51)

Where we made use of Proposition (1.8.1) in the last inequality. Now we have to prove
the right hand side of the (1.46). First we consider the equality:

1− F (T1, T2) = 1− sup
U

inf
ρ
Re(Tr[ρ(V ∗1 (IHB ⊗ U)V2]) =

=
1

2
inf
U
‖(IHB ⊗ U)V1 − V2‖2∞ (1.52)

From the proposition (1.8.1) follows

‖T1 − T2‖cb ≤ 2
p

1− F 2(T1, T2) ≤ 2
√

2
p

1− F (T1, T2) (1.53)

From (1.52) and (1.53) follows the thesis

‖T1 − T2‖cb ≤ 2 inf
U
‖(IHB ⊗ U)V1 − V2‖2∞. (1.54)

¤
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Chapter 2

Quantum Bit Commitment:
introduction and overview

Bit commitment is a cryptographic primitive involving two mistrustuful par-
ties, referred to as Alice and Bob. In a bit commitment protocol Alice is
supposed to submit an encoded bit to Bob in such a way that he has no
chance to read it before Alice later reveal it: this means that the protocol
is concealing ; on the other hand Alice is supposed not to be able to change
the committed bit before the revealing phase: in this case we say that the
protocol is binding.

We can better illustrate a bit commitment protocol with an example:
Alice writes down the bit on a piece of paper and puts it in a box, then she
padlocks the box and sends it to Bob; At a later time (the opening phase)
Alice gives Bob the padlock key and unveils the bit.

Coming back for a while to the previous practical example, we can imag-
ine that Bob is an excellent burglar able to unlock the box, read the bit an
leave no evidence of what he did. So the previous scheme is in principle
insecure. This result holds for all bit commitment protocols implemented
using only classical physics; indeed, all bit commitment schemes that are
used in the real world rely on technological constraint, for example on the
assumption that certain computations are hard to perform.

The situation may be di�erent if we consider quantum mechanics. The
�rst example of a quantum bit commitment (QBC) protocol appeared in [10].
The protocol works as follows:

• Alice choses the value of the committed bit b: if b = 0 she sends Bob
a sequence of n photons randomly polarized vertically or horizontally,
if b = 1 the photons are 45-degree or 135-degree randomly polarized.
That means that Alice encodes the qubit by chosing between two mu-
tually unbiased basis.

• Bob (who does not know the polarization) randomly choses between
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the rectilinear and the diagonal basis to measure the polarization of
each photon. Since the density matrix describing the n photons is the
same for b = 0 and b = 1 Bob cannot discover the value of b in any
way.

• At a later time Alice reveals the committed bit by announcing the
basis and the polarization of the photons. For those photons that Bob
measured using the correct basis (they are n/2 on average), he can
verify whether the polarization announced by Alice matches with his
results.

A trivial example of Alice's cheating is the following; she sends rectilin-
early polarized photons but announces at the opening phase that they are
polarized diagonally. Alice now has to guess the polarization of the photons
that Bob measured along the correct basis. The probability for Alice suc-
ceeding in cheating is, on average, (1/2)n/2. However quantum mechanics
o�ers a much more subtle way of cheating which is commonly known as the
EPR attack. Alice prepares n maximally entangled states1 and sends one
half of each to Bob. At the beginning of the opening phase Alice decides the
value of b and measures the corresponding basis on her qubits. Because her
results are perfectly correlated with Bob's results, Alice can announce the
polarizations without possibility of being caught cheating.

2.1 A �rst impossibility proof for QBC
Many quantum cryptographers tried to �nd unconditionally secure (that is,
security is guaranteed by the laws of quantum physics alone) quantum bit
commitment protocol which did not allow this kind of cheating. However
Lo and Chau [12] [13] and independently Mayers [14] [15], proved that all
previously proposed bit commitment protocols were vulnerable to generalized
version of the EPR attack. Let us brie�y see how this proof works.

According to the authors ([12], actually this is not the general case: see
e.g. the next section) bit commitment protocol can be schematized in the
following way:

• Alice chooses the value of the committed bit b.

1. If b = 0 she choses an element of the states mixture ρ0 = {αi, |φi〉B}
2. If b = 1 she choses an element of the states mixture ρ1 = {βj , |φ′j〉B}

Both Alice and Bob know the mixtures.
1let represent rectilinearly polarized photons in the basis {|0〉, |1〉} and the diagonally

polarized ones in the basis {|+〉 = 1√
2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)} of C2; then let the

maximally entangled states be |I〉〉 = 1√
2
(|0〉|0〉+ |1〉|1〉))
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• Alice sends Bob the state she chosed

• Alice reveals the committed bit and which state she sent.

• Bob veri�es by performing a measurement.

Let focus on the perfect-concealing case; it means that Bob has no infor-
mation about the committed bit: mathematically it becomes:

ρB0 = ρB1 (2.1)

Let us �rst consider the following puri�cation of the mixtures ρB0 and ρB1 :

|0〉〉 =
∑

i

√
αi|e′i〉A|φi〉B

and
|1〉〉 =

∑

j

√
βj |e′j〉A|φ′j〉B

where 〈ei|ej〉A = δij and 〈e′i|e′j〉A = δij . However, because of Schmidt de-
composition, we can �nd the following puri�cations too:

|0〉〉 =
∑

k

γk|ek〉A|φ′k〉B =
∑

i

√
αi|ei〉A|φi〉B (2.2)

|1〉〉 =
∑

k

γk|e′k〉A|φ′k〉B =
∑

j

√
βj |e′j〉A|φ′j〉B (2.3)

where now |ek〉A, |e′k〉A and |φk〉A are orthonormal basis of their respective
Hilbert spaces. Let now consider the unitary operation U which maps |ek〉A
into |e′k〉A: the following identity holds:

U ⊗ IB|0〉〉 = |1〉〉. (2.4)

Alice can turn |0〉〉 into |1〉〉 performing a unitary operation on her local
system. Then a dishonest Alice can follows the following cheating strategy:
she prepares the state |0〉〉, sends the second register to Bob (she does not
actually decide a speci�c |φi〉B or |φ′j〉B); if she wants to unveil the value 0
she just performs a measurement on the basis {|ei〉} and follows the protocol;
if she wants to unveil the value 1, �rst she apply the unitary U to her portion
of system and then performs a measurement on the basis {|ei〉} follows the
protocol. We stress that Alice's cheating rely on her possibility of delaying
the measurement process until just before the opening phase. We analysed
the perfect concealing case; anyway, a continuity argument provides a similar
proof for the near-perfect (or ε-concealing , that is when ‖ρB0 − ρB1 ‖1 ≤ 2ε)
case.
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2.2 Secret parameters
The most relevant objection (�rst proposed by H. Yuen [19]) that can be
raised against the preceeding proof is that it establishes the existence of a
�cheating transformation� U but there is no guarantee that this unitary is
known by Alice. Indeed it is possible to suppose that the overall state (|0〉〉 or
|1〉〉) depends on some probability distribution ω unknown to Alice2. In this
case the unitary transformation U would depend on ω too, and Alice would
not be able to cheat. The authors of the impossibility proof asserts that �In
order that Alice and Bob can follow the procedures, they must know the
exact forms of all unitary transformations involved� [12],[13] which means
that the �nal overall state cannot depends on a secret distribution ω. This
assertion limits the validity of the impossibility proof. However, a result by
C. Y. Cheung extends this proof to protocols with secret parameters: for any
perfectly concealing3 QBC protocol the cheating unitary which allows Alice
to cheat is independent of any secret distribution unknown to Alice4. Imagine
a QBC protocol where Bob is expected to chose a probability distribution
ω among a �nite set {ωi}in secret. We can also suppose that Bob puri�es
his choice with a probability distribution π = {pi} in order to postpone this
choice (now π becomes the secret parameter). So, the overall state is of the
form5:

|Ψ′(b)
AB(π)〉 =

∑

i

√
pi|Ψ(b)

AB(ωi)〉|χi〉 (2.5)

where |χi〉 are orthonormal states under Bob's control. Now let consider
Bob's density matrix:

ρ
′(b)
B (π) = trA[|Ψ′(b)

AB(π)〉〈Ψ′(b)
AB(π)|] (2.6)

the perfect concealing condition gives

ρ
′(0)
B (π) = ρ

′(1)
B (π). (2.7)

The impossibility prof guarantees the existence of a cheating transformation
UA on Alice's side:

UA ⊗ IB|Ψ′(0)
AB(π)〉 = |Ψ′(1)

AB(π)〉 (2.8)
2we can assume without loss of generality that probability distribution are the only

secret parameters; indeed, in a fully quantum description probability distribution are the
only unknown left.

3C. Y. Cheung proposed [17] a proof for the near concealing case too; however this proof
has a dimensional dependent bound. The only impossibility proof for near concealing QBC
with secret parametars is the one in [26]

4
5In the previous section it was Alice who prepares the overall state and commits one

half of it to Bob. This is not the case in a potocol with a secret parameter chosen by
Bob. So we can imagine that is Bob who �rst prepares an overall state depending on a
parameter π and, after having sent one half to Alice, Alice encodes the bit by performing
a unitary operation on her system.

34



Now if we multiply by (IA〈χi|) both members we get

UA ⊗ IB|Ψ′(0)
AB(ωi)〉 = |Ψ′(1)

AB(ωi)〉 ∀ωi. (2.9)

so UA is independent from the ωi. By linearity UA is independent of any
combination of ωi that is UA is independent from π: this concludes the proof.

2.3 Analysis of a protocol
In this section we analise a quantum bit commitment protocol (proposed
by H. Yuen in [25]) showing in a practical context how the concealing and
binding conditions cannot hold at the same time. The protocol is as follows:

1. Bob sends Alice m sequences of n qubits each randomly in one of the
four BB84 states6 |jl〉 named by their position in the sequence

2. Alice randomly picks one for each sequence , modulates them by U0 =
R(π/16) or U1 = R(−π/16), rotation by ±π/16 on the great circle
containing {|j〉} and sends them back to Bob. The committed bit is
encoded by the two unitaries.

3. Alice opens the commitment by sending back all the other states and
revealing everything.

At �rst sight this protocol is clearly not ε-concealing. Indeed, it su�ces
that Bob prepares m sequences of identical states, for example he can set
|jl〉 = |0〉, instead of a random sequence; In this case Bob knows that the
states he receives are either ρ0 = U0|0〉〈0|U∗0 or ρ1 = U1|0〉〈0|U∗1 . Then
‖ρ0 − ρ1‖1 > δ and cannot be made arbitrarily small. This Bob's cheating
strategy is defeated if we add a check by Alice on the states she receives.
We can suppose that Alice asks Bob to reveal a half of the qubits he sent
and then she veri�es by a measurement process if Bob said the truth. If the
states Alice veri�es are all the same she �nds Bob cheating .

Then let's assume that Alice has m sequence of n states which are really
randomly generated. This is an ε-concealing protocol (the proof is similar
to the one given in ref [20]) but on the other hand we can �nd that Al-
ice can cheat almost perfectly. This is an example of an anonymous state
protocol but as we prevously mentioned Alice's cheating transformation is
independent of such information. Indeed Alice can prepare the state

|Ψb〉 = Ub
1√
n

n∑

l=1

|l〉 ⊗ P l|j1〉...|jn〉 (2.10)

6We remind that, given {|0〉, |1〉} an orthonormal basis for C2, the BB84 states are
{|0〉, |1〉, |+〉 = 1√

2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉)}
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where P is the cyclic shift unitary operator on n qubits, Ub acts on the �rst
qubit and |l〉 ∈ HA are the entanglement ancilla states. Then it is possible
to demonstrate that Alice can turn |Ψ0〉 to |Ψ1〉 near perfectly.

Now we try to overcome this di�culty by adding a check performed by
Bob with the the aim of destroying Alice's possible entanglement. Before
opening, for each sequence of n qubits, Bob asks Alice to send back 1/2 of
the n qubits chosen randomly by Bob. If the committed bit is in the fraction
Bob choosed, he can verify the other fraction instead. Alice can perform a
measurement with controlled swaps on her ancilla qubits, projecting into the
qubits chosen by Bob. With probability 1/2 (per sequence of n qubits) the
checking qubits contain the committed one and Alice's cheating is no longer
possible. Now we can set m −→ ∞ with n/m −→ ∞ for the ε-binding
level. However, a Bob's cheating strategy can be found and the ε-concealing
condition ceases to be valid. Bob prepares a set of 2n maximally entangled
states |I〉〉 = 1√

2
|0〉A|0〉B+ |1〉A|1〉B, sends the A parts to Alice and keeps the

B parts for himself. He can pass Alice's check by measuring on his side the
bits she desires to check. Then Alice performs the codi�cation on whatever
bit she wants and sends back it to Bob. Bob now choses a basis (let us
suppose |0〉, |1〉) and measures it on his part of the n qubits (let us focus on
a single sequence of n qubits). Then Bob knows that a fraction λ of bits is in
the state |0〉 and a fraction 1−λ is in the state |1〉 In the limit n −→∞ we can
suppose λ = 1/2 Then Alice performs the codi�cation (this operation and
the previous one by Bob commute, so the order is unimportant) on whatever
bit she wants and sends back it to Bob. Now Bob is expected to chose 1/2
of the n qubit for a check; He choses the half in which the qubits are all in
the same state |0〉 So (we are in the limit n −→ ∞) he exactly knows in
which kind of state (|0〉 or |1〉) Alice did the unitary. In the ε-binding limit7
m −→ ∞ with n/m −→ ∞ (m is the amount of sequences) Bob can near
perfectly discriminate between U0 and U1.

7See [22] and [23] for a description of how this protocol can be extended to a near-
perfect binding one.
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Chapter 3

Formal description of Quantum
Bit Commitment

The purpose of this chapter is to give a rigourous and general description
of QBC protocols. This and the following chapter are a review of the paper
[26], in which it is possible to �nd a more detailed analysis of these subjects.

A Bit Commitment protocol regulates the exchange of information be-
tween the two parties, the set of istruction that �x this exchange is called
the communication interface of the protocol. Players' plans for supplying
the required messages are called strategies; we denote as a the strategy of
Alice and b the strategy of Bob.

In any Bit Commitment protocol we can distinguish three phases:

1. the commitment phase where exchange of messages between players
takes place. By de�nition, at the end of this phase the bit of informa-
tion is considered committed to Bob.

2. the holding phase where no exchange of messages between the party is
allowed. Within this phase only local operation are possble.

3. the opening phase when Alice announces the value of the bit she claims
to have committed, together with all the information that Bob needs to
verify her announcement. Bob has to perform a veri�cation measure-
ment which can have two outcome: one that con�rms Alice's announce
and the other one that means that Alice is a cheater.

Now we can start with the algebric description of a protocol. Systems
are identi�ed by their observable algebras. Thanks to this formalism we are
able to deal with classical and quantum information at the same time. A
quantum system is represented by a C∗algebra A of operators on a suitable
Hilbert space; if a system carries classical information labelled by the value
x of a classical parameter, the observable algebra will be referred to as Ax.
We can also deal with a (�nite) set of observable algebras, {Ax}x∈X each
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of them carring di�erent classical information (speci�ed by the value of the
x parameter). The natural way to describe a quantum carrying classical
informationa x ∈ X, is the direct sum algebra

⊕
x∈X Ax. A (normal) state

on such an algebra is of the form
⊕

x∈X pxρx, where {ρx} are states on Ax
and px is a probability distribution on the classical parameters X.

3.1 The communication tree
This one and the following section provide a description of how Alice and
Bob can exchange information.

We denote Ax, Bx the observable algebras in Alice's and Bob's labora-
tories respectively, x representing the classical information shared by Alice
and Bob: the joint observable algebra will be Ax ⊗ Bx. Ax and Bx do not
depend only by the communication interface but also on the strategy Alice
and Bob decide to follow: a strategy is a plan for operating a local labora-
tory to supply the required messages. Labelling a and b Alice's and Bob's
strategy respectively, we stress this dependence writing Ax(a) and Bx(b).

Following a special protocol, they are expected to exchange messages,
which can be of quantum or classical type. Let us now focus on classical
information. This one never gets lost, and following the classical information
�ux, we can provide the protocols with a tree structure.

A

B

B

B

A

B

A

0

x

m
k

Figure 3.1: Example of communication tree. The dashed lines represent the
holding phase where no communication is possible, the open circles represent
the revealing phase followed by a measurement by Bob

Referring to picture (3.1) branches of the tree consist a possible exchange
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of a classical message. Nodes of the tree are labelled by an index x which
has to carry the following information:

• Whose the turn is: this is represented by the position of the node

• What kind of classical messages can be sent by this person to the other.
We suppose this ones form a �nite set Mx. For each classical message
we have a possible branch departing from the x node; the following
nodes will be labelled x′ = mx, where m is a signal belonging to Mx

• What kind of quantum system accompanies a given classical signal
m ∈ Mx. We identify this system with its observable algebra which
will be denoted byMx

m. We also suppose thatMx
m can be represented

by a �nite dimensional operator algebra that is the algebra of d × d
matrices with d = d(x,m) <∞.

• Each node can be characterized by the history of classical messages
exchanged between Bob and Alice (x = m1m2 . . .mn).

Let Xc the set of nodes at which the protocol is known to be reached;
the observable algebra at that stage will be

⊕
x∈Xc Ax(a)⊗ Bx(b)

3.2 The communication step
We already stated that during the execution of a protocol Alice and Bob
are expeted to exchange information in the form of a classical message m
accompanied by a quantum system Mx

m. Let us focus on Alice's situation.
She is expected to send a messagem accompanied by a quantum systemMx

m

to Bob. If we suppose that at the beginning of the turn Alice's observable
algebra is Ax(a) the natural way to schematize this situation is a channel
that sends states on Ax(a) to states on

⊕
m∈Mx

Axm(a) ⊗ Mx
m (we will

always order tensor product as Alice ⊗ message ⊗ Bob), that is

Tx(a) :
⊕

m∈Mx

Axm(a)⊗Mx
m −→ Ax(a). (3.1)

m being the classical outcome of the channel Tx(a). The choice of the strat-
egy (that is of the channel) and the choice of the input state determine
the probabilities for the outcome m; Obviously Alice can choose a channel
that simply force a previously determined outcome m. Let us now suppose
that we obtain the outcome m. Alice splits the output system into a part
Axm(a) which she keeps, and a part Mx

m which she can send to Bob: Bob's
observable algebra changes in the following way

Bxm(b) = Mx
m ⊗ Bx(b) (3.2)
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The same happens at Bob's turn; equations (3.1) and (3.2) are replaced
by:

Tx(b) :
⊗

m∈Mx

Mx
m ⊗ Bxm(b) −→ Bx(b). (3.3)

and
Axm(a) = Ax(a)⊗Mx

m. (3.4)
At the beginning of the protocol we have neither classical information

nor quantum system, so Alice's and Bob's observable algebras at this stage
are A0 = B0 = C

3.3 Veri�able, Concealing and Binding
After having given a formal description of the communication interface of a
general protocol we now analyse three crucial properties that a QBC protocol
must have. First, we have to tell what procedures Alice has to follow in order
to commit the bit b = 0 or b = 1; So we must specify two special honest
strategies a0 and a1, which Alice has to follow if she wants to commit the
bit values 0 or 1. These two strategies must be distinguished with high
probability by Bob's �nal veri�cation measurement (which will depend on
the bit Alice announces to have committed). If Bob checks for the value 0
and Alice correctly follows strategy a0, she passes the check with probability
≥ 1 − η; if Alice dishonestly claims that she committed the bit 0 while she
has chosen the stategy a0, she passes the check with probability ≤ η; If these
requirements are ful�lled, we say that the protocol is η-veri�able. This is a
condition that can be easily satis�ed, because it concerns only two strategies.

Now let us denote as ρc(a, b) :
⊕

x∈Xc Ax(a) ⊗ Bx(b) −→ C the state
at the commitment stage. The concealing condition states that Bob must
not be able to distinguish between Alice's honest strategies a0,a1 at the
commitment stage, i.e. the restrictions ρBc (ai, b) to Bob's laboratory of the
states ρc(ai, b) musy coincide for every startegy b (i = 0, 1). Let us now
formalize this concept in the following

De�nition 3.3.1 A QBC protocol is said to be ε-concealing i�

‖ρBc (a0, b)− ρBc (a1, b)‖1 ≤ 2ε for every strategy b. (3.5)

If ε = 0 the protocol is perfectly concealing.

The concealing condition is expressed by a trace norm inequality: now
we will show that this is a correct way. All that Bob can do to distinguish be-
tween two strategies bt Alice are measurements on the states ρ1 = ρBc (a0, b),
ρ2 = ρBc (a1, b). Requiring the protocol being ε-concealing means that the
largest di�erence of outcome probabilities in an experiment is less or equal
to ε; let us formalize this concept. A measure process is described (cfr. sec
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(1.6)) by a POVM {Ei} where Ei ≥ 0,
∑

iEi = I. Saying that the largest
di�erence of probabilities is smaller than ε means that

sup
i
|Tr(Eiρ1)− Tr(Eiρ2)| ≤ ε

We want the condition hold for every measurement process, that is for every
POVM; this generalization leads to the request

sup
F
|Tr(Fρ1)− Tr(Fρ2)| = sup

F
|Tr(F (ρ1 − ρ2))| ≤ ε

Where F ranges over the e�ects (cfr. th. (1.6.1)). It is easy to show the
equality

sup
F
|Tr(F (ρ1 − ρ2))| = 1

2
‖ρ1 − ρ2‖1

Remark 3.3.1 In the de�nition of concealing we supposed that Bob can't
distinguish between Alice's strategies at the commitment stage of the protocol.
One can obviously suppose that Bob makes measure experiments at an earlier
time, but if he is able to distinguish between Alice's strategies before that
stage he can obviously record the result and he will be able to distiguish at
the commitment time too. Saying that the protocol is concealing at a certain
stage means that it is concealing up to that stage.

Let us now deal with the binding condition. We said that a QBC proto-
col is δ-binding if there is not a δ-cheating strategy (a]0, a

]
1) for Alice. The

characteristic feature of the couple (a]0, a
]
1) is that a]0 and a]1 must be the

same throughout the commitment phase, and di�er only by a local oper-
ation in Alice's lab. Let denote the �nal state, on which Bob makes the
veri�cation measurement, as ρf (a, b). A δ-cheating strategy (a]0, a

]
1) is such

if Bob cannot distinguish a]0 from a0 and a]1 from a1 with a di�erence in
outcome probabilities larger than δ. Following a scheme analogous to the
one we developed for the concealing condition we give the following

De�nition 3.3.2 (a]0, a
]
1) is a δ-cheating strategy if

‖ρBf (a]i, b)− ρBf (ai, b)‖1 ≤ 2ε (3.6)

for i = 0, 1 and for every strategy b

41



Chapter 4

The impossibility proof

Now we proceed towards the general impossibility proof for quantum bit
commitment. This proof will give a rigourous and unifying mathematical
framework to all the ideas we exposed in Chapter 2. In the former chapter
we gave a general description of a bit commitment protocol. We did not make
any simplifying assumption in order to cover as many di�erent protocols as
possible. This leads us a wide and intricate class of strategies to consider.
Beacause of this, before presenting the no-go theorem we have to make order
of that generality by making some assumption that, without weakening the
no-go result, will make handly the class of strategies.

4.1 Strenght of strategies and puri�cation
The �rst simplifying assumption we are do is to exclude obviously inferior
strategies for Alice and Bob. It is clear that now we have to specify what we
mean by saying that a startegy is obviously inferior than another.

Consider two Alice1's strategies a and a′; we say that a′ is stronger than
a if whatever Alice can achieve by strategy a she can also achieve by strategy
a′. Giving a precise form to this concept, we request that at each node x
of the protocol there exist a revert operation Rx : Ax(a) −→ Ax(a′) which
allows Alice to move from strategy a′ to strategy a′ at every stage of the
protocol. This claim is satis�ed requiring:

RxTx(a) = Tx(a′)
⊕

m∈Mx

(Rxm ⊗ IMx
m

) (4.1)

at Alice's nodes, and

Rxm = Rx ⊗ IMx
m

(4.2)
1We begin examining Alice's strategies. Later on we will make some considerations

about Bob's ones
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at Bob's nodes.
It is easy to show that strategies a and a′ are indistinguishable by Bob.

Let us focus on the commitment state

ρc(a, b) :
⊕

x∈Xc
Ax(a)⊗ Bx(b) −→ C

if Alice follows the a′ strategy we will have for ρc(a, b) an action like this

ρc(a, b)

( ⊕

x∈Xc
Rxm ⊗ IMx

m

)
.

Tracing over Alice's lab space we obtain the same result: this proves that
Bob cannot distinguish between a and a′.

Intuitively the easiest way one can imagine to have a stronger protocol is
to avoid every decoherences, except that ones needed for the communication
exchange beween the two parties. Now we will give a precise characterization
to the locally coerent strategies which make possible to have a protocol with
the above mentioned properties.

De�nition 4.1.1 We say that a strategy a of Alice is locally coherent i� for
every nodes x of the protocol:

• we can set
Ax(a) = B(Hx(a)) (4.3)

• the channel

Tx(a) :
⊕

m∈Mx

Axm(a)⊗Mx
m −→ Ax(a)

can be de�ned in such a way

Tx(a)

(⊕
m

Am ⊗Mm

)
=

∑
m

V ∗x,m(a) (Am ⊗Mm)Vx,m(a) (4.4)

∀Am ∈ Axm(a), ∀Mm ∈Mx
m.

where, setting Mx
m = B(Kxm)

Vx,m(a) : Hx(a) −→ Hxm(a)⊗ Kxm (4.5)

The key of this de�nition is that each summand in the (4.4) is a contrac-
tion, that is it cannot be decomposed into a sum of other completely positive
maps. Now we have to show:

• how to get a locally coherent strategy for a general one
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• that coherent strategies are e�ectively stronger.

To achieve these purposes we will generate a locally coherent strategy a′ from
generic a and its corresponding revert operations Rx . We will proceed by
induction, so let us �x a node and suppose the space Hx(a′) of Eq. (4.3) and
the reverts channels Rx : Ax(a) −→ Ax(a′) be already de�ned for all earlier
nodes. Now we have to de�ne the revert operation for the successive nodes
xm. If x is a Bob's node there is nothing to do because Rxm is automatically
de�ned as we have seen in Eq. (4.2) so let suppose x belong to Alice. In this
case we have to consider the composition

RxTx(a) :
⊕

m∈Mx

Axm(a)⊗Mx
m −→ B(Hx(a′)). (4.6)

Thanks to the theorem (1.7.1) we have a Stinespring representation
(πx, Vx,Kx) of this channel. Let now Pm be the projections on each of
the summand in (4.6). These ones will be mapped by πx to projections
on Kx; so this space can be decomposed as follow: Kx =

⊕
m K

m
x where

πx(Pm)Kx
.= Kmx . The K

m
x can be shown to be invariant for all representative

πx(A) and so we can easily obtain a set of representations on K
m
x by de�ning

(see def. (1.2.4) and the following discussion) A 7−→ πx(Pm)πx(A)πx(Pm).
Now we restrict such representation to the algebra Mx

m. We can now
split the subspaces in such a way: K

m
x = Hxm(a′)⊗ Kxm and we have

πx(I⊗X)πx(Pm) ' I⊗X (4.7)
πx(A⊗ I)πx(Pm) ' πxmA⊗ I. (4.8)

Eq. (4.8) comes from πx(A ⊗ I) commutes with all the πx(I ⊗ X) and so
it has the form πxmA ⊗ I for a certain πxm. Let now write explicitely the
channel (4.6):

RxTx(a) (Axm ⊗Mx
m) = V ∗x πx(

⊕
m∈Mx

Axm(a)⊗Mx
m)Vx

= V ∗x
(⊕

m∈Mx
πx(Pm)πx(Axm(a)⊗Mx

m)πx(Pm)
)
Vx

=
∑

m∈Mx
[V ∗x πx(Pm)]πx(Pm)πx(Axm(a)⊗Mx

m)πx(Pm)[πx(Pm)Vx]
=

∑
m∈Mx

[V ∗x πx(Pm)]πxm(Axm(a))⊗Mx
m[πx(Pm)Vx]

(4.9)

We can easily recognize the revert operation

Rxm = πxm : Axm −→ B(Hxm(a′))

an the isometries of the coherent startegies (4.5)

Vxm(a′) ' πx(Pm)Vx(a).

Deriving a coherent a′ strategy from a given one a we automatically notice
that a′ is stronger than a.
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We dealt with Alice strategies but the same arguments hold for Bob: His
analysis' power on Alice's actions is not weakened if he follows a coherent
strategy. In order to simplify the analisys without loss of generality (remind-
ing the discussion at the beginning of the section) from now on we assume
that Bob follows a coherent strategy.

4.2 Reduction to the �nite dimensional case
Now we have to make another crucial simpli�cation. Our presentation of bit
commitment protocols considers that no limitations are imposed to Alice's
and Bob's cababilities. As a �rst consequence of this there is no reason not
to consider in�nite dimensional local lab spaces. In this section we will show
that we can restrict to the �nite dimensional case without loss of generality.

Let us focus our attention on Bob's local lab, the same results will hold
also for Alice's strategies. We can suppose, according with the last section,
that both Bob and Alice follow coherent strategies. Bob's local space �grows�
as follows:

Vx,m(b) : Hx(b) −→ Kxm ⊗ Hxm(b) (4.10)
Hxm(b) = Kxm ⊗ Hx(b) (4.11)

where the Vx,m(b) are the Kraus operators of channel Tx(b) at Bob's node x,
and Kxm the space of the message Alice sends to Bob at her turn. Let Hx(b)
and Kxm be �nite dimensional. The Stinespring construction respects �nite
dimensionality and the range of Vx,m(b) has known �nite dimension. We can
�nd a subspace H′xm(b) ⊂ Hxm(b) such that Vx,m(b)(Hx(b)) ⊂ Kxm ⊗H′xm(b).
So we have the bound

dimH′xm(b) ≤ dimHx(b) · dimKxm (4.12)

Now we just proceed by induction, that is by a previously constructed
H′x(b) ⊂ Hx(b). This reasoning makes sense because at Alice's nodes the
bound holds with equality and at the root we have dimH0(b) = dimH′0(b) = 1.
This procedure leads us to a new strategy b′ with the same isometries of b
but restricted ranges and domains. It is possible to show that b′ is stronger
than b (more exactly, as the intuition suggests, they are equally strong) and
the revert operation is just the subspace embedding jx : H′x(b) −→ Hx(b).
By making use of the revert operation and of appropriate expansions (which
add extra dimensions where all states vanish) when required, we can convert
every startegy b into another one where the bound (4.12) holds with equal-
ity. The last step is to identify all the spaces H′x(b) with a �xed space of
appropriate dimension HB

x The same reasoning holds for Alice's lab space,
and so we introduce a strategy-indipendent Hilbert space HA

x ; this expecially
means HA

x = Hx(a0) = Hx(a1).
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4.3 Bob's strategy register
In the previous section we reduced the Hilbert spaces of Alice's and Bob's
labs. In this section we deal with Bob's space of strategies and we give it a
workable representation. The �rst simpli�cation is to reduce Bob's strategies
to a �nite set. Indeed, reminding that the set of bounded operators between
�nite Hilbert spaces, the following proposition holds:
Proposition 4.3.1 For each ξ > 0 there exists a �nite set S of Bob's locally
coherent strategies with Hilbert space HB

x such that:
∀b ∃b′ ∈ S : ‖ρc(a, b)− ρc(a, b′)‖1 ≤ ξ ∀a. (4.13)

Where a, b are respectively Alice's and Bob's possible strategies.
Now we want to replace all Bob's strategic choices with a unique choice

he makes at the beginning of the protocol by preparing an initial state. We
just have to de�ne an appropriate Hilbert space HR in such a way that each
possible Bob's strategic choice is represented by a state of HR. This space
is refereed to as the strategy register and is represented by the Hilbert space
`2(S) (complex valued functions on S). Each strategy b ∈ S corresponds to
a state |b〉. Now we de�ne

H
B
x = HB

x ⊗ `2(S) (4.14)
V x,m : H

B
x −→ H

B
x,m ⊗ Kxm (4.15)

V x,m =
∑

b∈S
Vx,m(b)⊗ |b〉〈b| (4.16)

(4.17)
Bob at the beginning of the protocol choses the initial state of the register

and his later choices are consequences of quantum controlled operations. The
Hilbert space structure of the strategy register gives Bob the possibility of
chosing not only pure strategies but also mixed ones and superposition of
di�erent strategies. By preparing superpositions, Bob can extract infomation
about Alice's actions by measuring the strategy register at a certain step of
the protocol. This happens because the register is a�ected by superpositions
and the control-unitary operations create entaglement.

The concealment condition requires that Bob cannot distinguish dif-
ferent strategies of Alice; we now translate this condition in the strategy
register formalism. At the commitment stage the observable algebra is⊕

x∈Xc Ax(a) ⊗ B(HB
x ); we notice that the dependence on Bob's strategy

does not appear explicitely in the algebra. It is the state obtained on this
algebra which depends on Bob's strategy by the initial state of the strategy
register. This dependence is given by a quantum channel

Γ(a) :
⊕

x∈Xc
Ax(a)⊗ B(HB

x ) −→ B(`2(S)). (4.18)
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The reduced channel on Bob's side is
ΓB(a) :

⊕
x∈Xc B(HB

x ) −→ B(`2(S)) (4.19)

ΓB(a)
(⊕

x∈Xc Bx
)

= Γ(a)
(⊕

x∈Xc IAx(a) ⊗Bx
)
. (4.20)

The concealment condition requires that the reduced channels ΓB(a0) and
ΓB(a1) corresponding to di�erent values of the bit are close.

In order to improve resolutions between channels Bob can keep an enta-
gled record of his strategy; this means that Bob can use an entangled pure
state on `2(S)⊗ `2(S′) with a certain S′ (it possible to choose S′ ∼= S) where
the second register is left out from the dynamics. In this case Bob actually
plays a puri�cation of a mixed strategy.

So the concealment condition must prevent this possibility too. This
translates into

∥∥(
ΓB(a0)− ΓB(a1)

)⊗ IMn(C)

∥∥ ≤ ε ∀n ∈ N (4.21)
which becomes (cfr. def. (1.8.2))

∥∥(
ΓB(a0)− ΓB(a1)

)∥∥
cb
≤ ε (4.22)

4.4 The no-go theorem
The impossibility proof for unconditionally secure quantum bit commitment
relies on the continuity of Stinespring representation which we introduced in
theorem (1.8.2). However the theorem does not apply directly to our case,
since in a bit commitment protocol we deal with direct sum channels (cfr.
def. (4.1.1)). The �rst step towards the demonstration of the no-go theorem
is the generalization of Th. (1.8.2) to direct sum channel, which we review
from [26].
Proposition 4.4.1 Let

• {HA
x }x∈X and {HB

x }x∈X be two sets of �nite dimensional Hilbert spaces
and H a Hilbert space;

•
Γ1,Γ2 :

⊕

x∈X
B(HA

x ⊗ HB
x ) −→ B(H)

be two quantum channels such that

Γi

(⊕

x∈X
(Ax ⊗Bx)

)
=

∑

x∈X
W ∗
i,x (Ax ⊗Bx)Wi,x =

= V ∗i

(⊕

x∈X
(Ax ⊗Bx)

)
Vi (4.23)
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•
ΓBi :

⊕

x∈X
B(HB

x ) −→ B(H)

be the local restrictions of the previous channels de�ned by

ΓBi

(⊕

x∈X
Bx

)
= V ∗i

(⊕

x∈X

(
IAx ⊗Bx

)
)
Vi

Then we have:
inf
U
‖(U ⊗ IB)V0 − V1‖2 ≤ ‖ΓB0 − ΓB1 ‖cb ≤ 2 inf

U
‖(U ⊗ IB)V0 − V1‖ (4.24)

where the in�mum is taken over the block diagonal unitaries U = ⊕xUx ∈
⊕xB(HA

x ).

This result extends the continuity of Stinespring representation to direct sum
channels. We notice that the minimization is over unitary operators which
respects the direct sum decomposition.

Now we can state the main result of paper [26]
Theorem 4.4.1 (No-Go Theorem) Any ε-concealing bit commitment pro-
tocol (see def. (3.3.1)) admits a 2

√
ε-cheating Alice's strategy.

Proof. Alice plays the puri�cation a′0 of the strategy a0. If she wants to unveil the bit
0 she has just to apply the revert operation R. If she wants unveil the bit 1 she:

• applies the cheat channel
Cx : B(Hx(a

′
1)) −→ B(Hx(a

′
0)) (4.25)

de�ned as
Cx(A) = U∗xAUx (4.26)

where U = ⊕xUx ∈ ⊕xB(HAx ) is the unitary operator which ful�ls the in�mum in
Eq. (4.24)

• then applies the revert operation to move from a′1 to a1

Because of the protocol is ε-concealing we have:‚‚‚ΓB(a0)− ΓB(a1)
‚‚‚
cb
≤ ε.

From proposition (4.4.1) follows the bound
‚‚‚‚‚

 
Γ(a′0)

 M
x

Cx ⊗ IHB
x

!
− Γ(a′1)

!‚‚‚‚‚
cb

≤ 2
‚‚‚
“
U ⊗ IHB

x

”
V (a′0)− V (a′1)

‚‚‚ ≤

≤ 2
q
‖ΓB(a0)− ΓB(a1)‖cb ≤ 2

√
ε (4.27)

Because the cb-norm cannot increase if we apply a quantum channel the bound (4.27) still
holds after the revert operation R has been performed:‚‚‚‚‚

 
Γ(a′0)

 M
x

Cx ⊗ IHB
x

!
R− Γ(a1)

!‚‚‚‚‚
cb

≤ 2
√
ε (4.28)

Equation (4.28) means that probability of Alice's cheating being detected is upper bounded
by 2

√
ε

¤
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Chapter 5

Game theory

In this chapter we give some notion about game theory: the main source of
this part of the work is Myerson's book [28]. Here a more detailed analysis
can be found as well as all the missing proof of the theorem we will mention.
As a less technical introduction to the subject we suggest [27].

Game theory is a mathematical subject which deals with strategic inter-
action among players. Players are supposed to be:

• intelligent, that is they understand the situation they are in and they
are able to do reasonings of arbitrary complexity;

• rational, that is they make decisions consistent with their objectives.
We suppose that every player has the only objective to maximize his
utility function.

The utility function of a player is a relation that associates to each outcome
of the game a real number; we refer to these number as the possible payo�s
of the game for the speci�ed player. Each player has his own utility function
and his purpose, according with the rationality demand, is to maximize his
payo�.

For the purposes of this work we add two more assumption considering
only:

• non cooperative games, which means that players cannot make binding
pacts;

• complete information games, that is each player knows all tha game's
rules and all the utility functions of every other player.

Now we have to provide a formal description of games. In order to do
this, two possible representation are usually used: the extensive form and
the normal (or strategic) form.
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Games in extensive form
We now give a rigourous de�nition of a game in extensive form. We begin
giving some basic concepts from graph theory.

• A graph is a �nite set of nodes together with a �nite set of branches
each of them connects only two nodes; a branch can be identi�ed by
the pair of nodes it connects (xi, xj).

• A path is a set of branches of the form

{{x1, x2}{x2, x3}...{xn−1, xn}};

we say that such a path connects the nodes x1 and xn

• A tree is a graph where each pair of nodes is connected by an only path

• A rooted tree is a tree with a special node (arbitrary) denoted as the
root. When we refer to the path to a node x we mean the path con-
necting the root and x.

• A node (or a branch) x follows a node (or a branch) y if y is in the
path to x

• An alternative at a node in a rooted tree is any branch connecting it
to another node which does not belong to his path.

• A node (or a branch) x immediately follows a node (or a branch) y if
x follows y and there is an alternative at y that connects y to x

• A terminal node in a rootes tree is a node with no alterantives following
it.

Now we are ready to give the following de�nition

De�nition 5.0.1 (extensive form game) A n-person extensive form game
Γe is a rooted tree with functions that assign labels to each node and branch.
The following conditions must be satisfed

1. Each non-terminal node has a player label i, i ∈ {0, 1, 2, ..., n}.
If i ∈ {1, 2, ..., n} we have a decision node where the player labelled
with i has to make a move, that is choosing an alternative.
If i = 0 we have a chance node.

2. Each alternative at a chance node has a label which specify its proba-
bility (chance probability).
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Figure 5.1: Extensive form game (the dashed line groups the nodes which
have the same player and information labels)

3. Each decision node of a player i has a label which speci�es the infor-
mation state of the player, that is all what the player i knows if the
game reaches that node. Two di�erent nodes x and y have identical
information state labels if the player is not able to distinguish if he is
in x or in y. We denote as Si the set of all possible information states
s for player i in the game

4. Each alternative at a decision node has a move label. If two nodes
x and y have the same information state label, for each alternative at
the node x must correspond an alternative at the node y with the same
move label. The set of moves available to a player when he is in a
decision node with information state s, is referred to as Ds

5. Each terminal node has a payo� label, a vector of Rn (u1, u2, ..., un);
ui denotes the payo� of the player i when the node is the outcome of
the game.
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Figure 5.2: Game with perfect information

The following speci�c case of extensive form game that will be of special
interest in this work (when we will analyse classical coin �ipping games).

De�nition 5.0.2 (game with perfect information) We say that an ex-
tensive form game has perfect information if no two nodes have the same
information label.

In a game with perfect information a player exactly knows the past moves
of all other players and chance.

Now we introduce the signi�cant concept of strategy :

De�nition 5.0.3 (pure strategy in extensive form game) A pure strat-
egy for a player in an extensive form game is a function which maps infor-
mation states into moves. The set of strategies for player i is

⊗
s∈Si Ds

Roughly speaking a strategy is a rule for determining a move at each
nodes of the game. We used the adjective pure because (as we will see later)
it is possible to introduce mixed strategies which map information states into
probability distribution over the possible moves.

Strategic form games
Now we introduce a simpler form to represent games, the strategic form. In
this description the only components of the game are:

• the set of players,

• the set of possible strategies available to each player
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• a payo� function which depends on what strategies the player choosed.

Let us now formalize this idea giving the following

De�nition 5.0.4 (strategic form game) A strategic form game Γ is a
t-uple

Γ = (N, (Ci)i∈N , (ui)i∈N ), (5.1)
Where:

• N is an non empty set, representing the ensemble of players

• Ci is (for any i) a non empty set, representing the possible (pure)
strategies for player i. We de�ne

C
.=

⊗

i∈N
Ci

Each element c (called strategy pro�le) of C corresponds to a combi-
nation of strategies.

• ui is (for any i) a function

ui : C −→ R

ui(c) represents the payo� for i when c is the combination of strategies
chosen by the players

The most signi�cant simpli�cation of strategic form compared with the
extensive form is that a game in strategic form is static; indeed, all players
are supposed to choose their strategies simultaneously. Eliminating the time
dimension is a very substantial sipli�cation and it holds as long as time
ordering questions are not essential in the analysis of games. Because of
this, a procedure to turn a game from extensive form into strategic form
is usually followed: tThis procedure is usually called normal representation.
We do not carry the formal description of this procedure but we just give
these intuitive ideas:

• the set N of the player in the strategic form game is the set { 2, .., n}
in the extensive form;

• the sets of strategies Ci of the normal form are the sets
⊗

s∈Si Ds of
the extensive form;

• the payo� functions ui are constructed by matching each strategy pro-
�le c with the corrispective terminal nodes in the extensive form and
reading the payo� labels. If more terminal nodes correspond to the
same strategy pro�le (in the event of chance nodes) the payo� func-
tions are de�ned as the weighted means of the payo� labels.
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Figure 5.3: The popular game �Rock, Paper, Scissors� in extensive form

1/2 r p s
R (0, 0) (−1, 1) (1,−1)
P (1,−1) (0, 0) (−1, 1)
S (−1, 1) (1,−1) (0, 0)

Table 5.1: The strategic form for �Rock, Paper, Scissors� game

Multiagent representation
The normal representation is non the only way to turn a game from extensive
from to strategic form. Now we introduce an alternative procedure called
the multiagent representation.

• The set N of players in the multiagent representation is (we suppose,
without loss of generality, that Si ∩ Sj = ® if i 6= j) the set S∗ =⋃
i∈{1,2,...,n} Si; that is, we have one player for each possible information

state of every player in Γe. We refer to these players as temporary
agents.

• Let Ds be the set of moves available to player i when he is in the
information state s ∈ Si; Ds becomes the set of strategies for the
temporary agent s.

• The utility functions vr :
⊗

s∈S∗ Ds −→ R in the multiagent repesen-
tation are de�ned as:

vr((ds)s∈S∗) = ui((cj)j∈N )

∀(ds)s∈S∗ ∈
⊗

s∈S∗
Ds such that cj(t) = dt ∀j ∈ N, ∀t ∈ Sj
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Figure 5.4: Extensive from game

1/2 w z
ax (5, 0) (1, 1)
ay (4, 0) (4, 0)
bx (8, 3) (0, 1)
by (7, 3) (3, 0)

Table 5.2: This is the normal representation of game in Fig. (5.4) We notice
that strategy ax is strongly dominated for player 1. If we apply the iter-
ative elimination of weakly dominated strategies criterion (see the following
section) we �nd out that the solution of the game is (bx, w)

where ui are the utility functions and cj the strategy pro�les given by
the normal representation.

The t-uple (S∗, (Dr)r∈S∗), (vr)r∈S∗) is the multiagent representation of a
game Γe in extensive form.

5.1 Nash equilibria
The main target in analysing a game is to foresee the behaviour of the
players. Let consider games in strategic form; we can try to �nd out a set of
strategies that each player is expected to use: this is a simple kind of solution
concept. The most intuitive way to �nd out this set of strategies is by iterated
dominance. Within this approach strictly dominated strategies are eliminated
from the set of strategies that might be played; a stricly dominated strategy
is one for which there is a strategy that a player is always better o� playing.

The solution concept we considered before is a very weak one and so we
have to re�ne our ideas to attain a more e�cient solution concept. We begin
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II w z
I/III x y x y
a (5, 5, 0) (4, 4, 0) (1, 1, 1) (4, 4, 0)
b (8, 8, 3) (7, 7, 3) (0, 0, 1) (3, 3, 0)

Table 5.3: The multiagent representation of the game in Fig. (5.4). We have
two temporary agents (I and III) which represent player 1. If we compare this
representation with the normal one we immediately see that in the multiagent
case we have have no strategy which is dominated by another one.

introducing this very crucial tool:

De�nition 5.1.1 (randomized strategy) Let Γ = (N, (Ci)i∈N , (ui)i∈N )
a strategic form game. A randomized strategy for player i is a probability
distribution over Ci. We denote ∆(Ci) the set of all randomized strategies
for player i. Coherently we de�ne a randomized strategy pro�le as a vector
that speci�es a randomized strategy for each player.

⊗
i∈N ∆(Ci) represent

the set of all strategies pro�les.
If σ ∈ ⊗

i∈N ∆(Ci) is a strategy pro�le, σi(ci) represent the probability
that player i will choose the pure strategy ci (we can write σ = (σi)); it must
be ∑

ci∈Ci
σi(ci) = 1.

ui(σ) is the expected payo� for player i when the players choose their
strategies accordingly to the pro�le σ and it is de�ned as follows

ui(σ) =
∑

c∈C


∏

j∈N
σj(cj)


ui(c) ∀i ∈ N

Intuitively, in a game we say that we have an equilibrium at a given situ-
ation if each player has no advantage to move his choices from this situation.
Specifying this concept will take us to the de�nition of Nash equilibrium.
Suppose that a strategy pro�le σ is an equilibrium for the game Γ; then
each player i is expected to choose the pure strategies that maximize his
payo� and the probability of chosing a strategy that does not achieve this
maximum must be zero, that is

σi(ci) > 0 −→ ci ∈ argmaxdi∈Ciui(σ−i, [di]) (5.2)

Where [ci] denotes the pure strategies ci and (σ−i, τi) denotes a random-
ized strategy pro�le where all the components are as in σ except for the i
component which is equal to τi We can now give the following
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De�nition 5.1.2 (Nash equilibrium) A randomized strategy pro�le σ is
a Nash equilibrium for a game Γ if no player has interest to unilaterally
deviating from the prediction of σ, that is

ui(σ) ≥ ui(σ−i, τi), ∀i ∈ N, ∀τi ∈ ∆(Ci) (5.3)

The following proposition proves that condition (5.3) is equivalent to condi-
tion (5.2)

Proposition 5.1.1 For any pro�le σ and any player i of the game

max
di∈Ci

ui(σ−i, [di]) = max
τi∈∆(Ci)

ui(σ−i, τi)

and so we have that

ρi ∈ argmaxτi∈∆(Ci)ui(σ−i, τi) ⇐⇒ ρi(ci) = 0 ∀ci /∈ argmaxdi∈Ciui(σ−i, [di])

Proof. Clearly
max
di∈Ci

ui(σ−i, [di]) ≤ max
τi∈∆(Ci)

ui(σ−i, τi)

because Ci ⊆ ∆(Ci). We recall that

ui(σ−i, τi) =
X

di∈Ci

τi(di)ui(σ−i, [di]).

A weighted average cannot be greater than the maximum term being averaged, and so

ui(σ−i, τi) ≤ max
di∈Ci

ui(σ−i, [di]).

Taking the maximum at the left side gives the proof. ¤

Example

Let consider the following game in strategic form

1/2 x y
a (1,6) (9,4)
b (4,0) (-1,2)

Let use the following notation:
• ϕ1(2) is the �rst(second) player's payo�
• p(q) is the probability for the �rst(second) player chosing strategy a(x).
• the nash equilbrium will be a couple (p, q)

So the expression for the payo�s are:

ϕ1(p, q) = pq(1) + p(1− q)(9) + (1− p)q(4) + (1− p)(1− q)(−1) =
= 10p− 13pq + 5q − 1 (5.4)
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and

ϕ2(p, q) = pq(6) + p(1− q)(4) + (1− p)q(0) + (1− p)(1− q)(2) =
= 4pq + 2p− 2q + 2. (5.5)

Condition (5.3), because of the linearity of ϕ1 and ϕ2, translates into:

∂ϕ1

∂p
(p, q) = 10− 13q = 0

∂ϕ2

∂q
(p, q) = −2 + 4p = 0. (5.6)

Then the Nash equilibrium of the game is (p = 1
2 , q = 10

13 )

Now we can wonder when there exist Nash equilibria in a game. This
following theorem answers this question

Theorem 5.1.1 (Nash (1951)) Let Γ a �nite game in strategic form; then
there exists at least one Nash equilibrium in

⊗
i∈N ∆(Ci)

This crucial result assures us the existence of a Nash equilibrium for a
game but it does not say that there is an only one. Indeed a game may have
multiple equilibria.

1/2 T F
t (2,1) (0,0)
f (0,0) (1,2)

Table 5.4: Battle of sexes

Let give a look to Tab. (5.4); in this case we have 3 Nash equilibria:
two equilibria in pure strategies (t, T ) and (f, F ), and one equilbrium in
randomized strategies (2

3 ,
1
3) where 2

3(1
3) is the probability of player 1(2)

chosing t(T )
Another observation we have to do is that a game may have equilibria

that are ine�cient, i.e. the game provides outcomes di�erent from the equi-
librium one that are better for each player. On the other hand, we say that
an outcome of a game is weakly Pareto e�cient i� there is no other outcome
that would make all player win more. We can say that a Pareto e�cient out-
come is the most suitable from an ethical point of view; Nash equilibria may
not to correspond with Pareto e�cient outcomes because these equilibria are
found assuming sel�sh behaviour of the player.

Let give this famous example (see Tab.(5.5)). Iterative elimination of
weakly dominated strategies gives (c, C) as the unique Nash equilibrium; we
can easily see that the outcome resulting from (c, C) is the only one which
is not Pareto e�cient.
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1/2 C NC
c (-5,-5) (-1,-6)
nc (-6,-1) (-2,-2)

Table 5.5: Prisoners' Dilemma

5.1.1 Two-person zero-sum games
Now we introduce a speci�c kind of game that will be of interest in the
following of this work, the

De�nition 5.1.3 (two-person zero-sum game) A two-person zero-sum
game in strategic form is given by

Γ = ({1, 2}, C1, C2, u1, u2)

with
u2(c1, c2) = −u1(c1, c2), ∀c1 ∈ C1, ∀c2 ∈ C2

In a two.person zero-sum game one's gain is equal to the other's loss;
because of this we can say that player 2's objective is to minimize player
1's gain. The most important prperties of this kind of game are held by the
following theorem:

Theorem 5.1.2 (von Neumann (1928)) (σ1, σ2) is an equilibrium of a
�nite two-person zero-sum game Γ if and only if

σ1 ∈ argmaxτ1∈∆(C1) min
τ2∈∆(C2)

u1(τ1, τ2) (5.7)

and
σ2 ∈ argminτ2∈∆(C2) max

τ1∈∆(C1)
u1(τ1, τ2). (5.8)

If (σ1, σ2) is an equilibrium the following equality holds:

u1(τ1, τ2) = max
τ1∈∆(C1)

min
τ2∈∆(C2)

u1(τ1, τ2) = min
τ2∈∆(C2)

max
τ1∈∆(C1)

u1(τ1, τ2)

Proof. We suppose that (σ1, σ2) is an equilibrium. Then from the de�nition of
equilibrium we have

u1(σ1, σ2) = max
τ1∈∆(C1)

u1(τ1, σ2) ≥ max
τ1∈∆(C1)

min
τ2∈∆(C2)

u1(τ1, τ2)

and
u1(σ1, σ2) = min

τ2∈∆(C2)
u1(σ1, τ2) ≤ min

τ2∈∆(C2)
max

τ1∈∆(C1)
u1(τ1, τ2).

Obviously we have

max
τ1∈∆(C1)

min
τ2∈∆(C2)

u1(τ1, τ2) ≥ min
τ2∈∆(C2)

u1(σ1, τ2)
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and
min

τ2∈∆(C2)
max

τ1∈∆(C1)
u1(τ1, τ2) ≤ max

τ1∈∆(C1)
u1(τ1, σ2).

Then all the inequality are equality and the equalities and the inclusion of the theorem
are satis�ed. Now we suppose that the Eqns. (5.7) and (5.8) hold. The theorem 5.1.1
guarantees the existence of one equilibrium (σ1, σ2). Then the equality

max
τ1∈∆(C1)

min
τ2∈∆(C2)

u1(τ1, τ2) = min
τ2∈∆(C2)

max
τ1∈∆(C1)

u1(τ1, τ2)

holds and so we have

u1(σ1, σ2) ≥ max
τ1∈∆(C1)

min
τ2∈∆(C2)

u1(σ1, τ2) = min
τ2∈∆(C2)

max
τ1∈∆(C1)

u1(τ1, σ2) ≥ u1(σ1, σ2).

All of these expressions are equal and (σ1, σ2) is an equilibrium of the game ¤

Remark 5.1.1 As a corollary of the theorem we notice that all equilibria of
a two-person zero-sum game give the same payo�. Then, although there are
di�erent equilibria in a two-person zero-sum game, both players are indi�er-
ent regarding them.

5.2 Equilibria in extensive form games
In the previous section we indroduced equilibria for strategic form games.
Anyway it is possible to improve analysis of equilibria of a game by taking
into exam its extensive form. Indeed it is possible to �nd Nash equilibria of
a game that are only virtual; i.e. may happen that the strategies de�ning an
equilibrium cannot be e�ectively executed. Let's give a look to this example

Figure 5.5: Virtual equilibrium
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This game has two equilibria (in pure strategies): (T,L) and (B,R).
However, the second one does not expect that player 2 e�ectively plays R,
because the choice B of the player 1 terminates the game. We can read the
equilibrium (B,R) has a threat of vengeance of player 2: if player 1 does not
play B player 2 will punish him by choosing R. But this choice is not e�cient
for player 2 because he obtain a better payo� by playing L; Generalizing we
can say that a Nash equilibrium can predict non optimal choices for some of
the player but these choices belong to decision nodes that are not e�ectively
reached when the equilibrium pro�le is played.

We have found out that not every Nash equilibria are equivalent. So,
we will indroduce a more subtle notion of equilibrium the sequential equilib-
rium. Before formally de�ning this new concept we have to introduce some
technical tools.

De�nition 5.2.1 (mixed and behavioural strategy pro�le) Let Γe be
an extensive form game:

• a mixed strategy pro�le is any randomized strategy pro�le for the nor-
mal representation of Γe. The set of all mixed strategies pro�les is

⊗

i∈N
∆(Ci) =

⊗

i∈N
∆


⊗

s∈Si
∆(Ds)




• a behavioural strategy pro�le or a scenario is any randomized strat-
egy pro�le for the multiagent representation of Γe. The set of all be-
havioural strategies is

⊗

s∈S∗
∆(Ds) =

⊗

i∈N

⊗

s∈Si
∆(Ds)

Each mixed strategy pro�le corresponds to a behavioural strategy pro�le,
and so we can speak of a behavioural representation of a mixed strategy
pro�le. However this is not a one to one correspondence: namely many
mixed strategy pro�les can have the same traslation as behavioural strategy
pro�le.

With this change of perspective from mixed strategy pro�le to behavioural
strategy pro�le, we can identify di�erent Nash equilibria which are the result
of mixed strategy pro�le that share the same behavioural representation. We
can give this following de�nition.

De�nition 5.2.2 (Nash equilibrium of an extensive form game) A Nash
equilibrium of an extensive form game Γe is any equilibrium σ of his multi-
agent representation such that its representation as a mixed strategy pro�le
is an equilibrium for its normal representation.
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The following theorem asserts that to �nd the equilibria for an extensive
form game it is enough to �nd the equilibria of its normal form.

Theorem 5.2.1 Let σ be any Nash equilibrium of the normal representation
of an extensive form game Γe. Then any behavioural representation of σ is
an equilibrium of the multiagent representation of Γe.

Theorem (5.2.1) together with theorem (5.1.1) gives this result:
Theorem 5.2.2 For any extensive form game Γe there exist at least one
Nash equilibrium in behavioural strategies.

We now make the �rst step towards the de�nition of a sequential equi-
librium. The �rst concept to be introduced is the sequential rationality.
Intuitively speaking we say that a strategy is sequentially rational if the
player would e�ectively want to do what this strategy specify for him at an
information state s when s actually occurred. To formalize this idea we have
to introduce the following tool.
De�nition 5.2.3 (belief probability) Let Γe be an extensive form game
We denote Ys the set of all decision nodes of player i which carry the infor-
mation state s. For any information state s of any plyer i a belief probability
distribution πi.s for i at s is a probability distribution over Ys (πi.s ∈ ∆(Ys)).
A beliefs vector is any vector π = (πi.s)i∈N,s∈Si ∈

⊗
i∈N

⊗
s∈Si ∆(Ys)

For all nodes x ∈ Ys πi.s(x) is the conditional probability that i assigns
to the event �I am at node x� when he knows he is making a move at some
node in Ys.

We are now ready to give the following
De�nition 5.2.4 (sequentially rational pro�le) A behavioural strategy
pro�le σ is sequentially rational for i at information state s with beliefs
vector π i�

σi.s ∈ argmaxρs∈∆(Ds)

∑

x∈Ys
πi.s(x)Ui(σi.s, ρs|x) (5.9)

where Ui(σ|x) is the expected utility payo� to player i if the game began to
node x instead of the root.
This de�nition asserts that σi.s is sequentially rational if it maximize i's
expected payo� when a node in Ys occurres in the path of game given the
belief probability πi.s and assuming that all moves after this node would
be determined by σ. Now we wonder how the belief probability can be
determinated. Belief probabilities depend on the information accumulated
during the game, so they are related (by Bayes's formula) to what a player
believe at the beginning of the game. Let suppose σ be a scenario that a
player anticipates in the play of Γe, then σ and the belief probability πi.s
must be compatible; this is expressed by the following
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De�nition 5.2.5 (weak consistency) Let P (z|σ) be the probability that
the path of play will reach the node z given the scenario σ. We say that π is
weakly consistent with the scenario σ i�

πi.s(x)
∑

y∈Ys
P (y|σ) = P (x|σ) (5.10)

is satis�ed for every player i, for every information state s and every node
y ∈ Ys.

The following theorem tell us when an equilibrium strategy is sequentially
rational.
Theorem 5.2.3 Let σ be an equilibrium in behavioural strategies, and s be
an information state (s ∈ Si) that occur with positive probability under σ.
Suppose π be a belief vector weakly consistent with σ. Then σ is sequentially
rational for player i at s with beliefs π
This theorem seems to give a de�nitive solution of the question of sequential
rationality. However we notice the hypothesis asking that the information
state s must occur with positive prbability. This one might not seem a
relevant limitation but it is not the case. Indeed, as we have seen at the
beginning of this section, If we allow that players can make irrational choices
in events that get zero probability we discover that these events get zero
probability only because players are afraid by the possibility that one of
them can behave so irrationally; this is what happens in the example of
Fig. (5.5). To avoid situations like this one we have to apply the criterium
of sequential rationality at all information states and not only at the ones
occurring with positive probability. This lead us to the following de�nition.
De�nition 5.2.6 (weak sequential equilibrium) A weak sequential equi-
librium of an extensive form game Γe is any (σ, π) such that σ is a scenario,
π is a beliefs vector, σ is sequentially rational fro every player at every in-
formation state with beliefs π and π is weakly consistent with σ

The following theorem assures that the previous de�nition is well done.

Theorem 5.2.4 Let (σ, π) a weak sequential equilibrium for an extensive
form game Γe. Then σ is an equilibrium in behavioural strategies.

Remark 5.2.1 In this section we have introduced the concept of weak con-
sistency and consequently of weak sequential equilibrium. It is possible that
in some situations these new tools does not solve our problems, that is there
are games which admit unreasonable equilibria that are not excluded by the
concept of weak sequential equilibrium. To avoid this kind of troubles it is
possible to introduce the stronger notions of full consistency and full sequen-
tial equilibrium. For our purpose it seems not very intersting making such
technical precisations but from now on, for sake of rightness, when we talk
about sequential equilibrium we mean full sequential equilibrium.
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5.2.1 Games with perfect information
In de�nition (5.0.2) we introduced the idea of game with perfect information.
This will be a case of special interest in the sequel of this work and because
of this we now give the most important result for this kind of games.

Theorem 5.2.5 (equilibria of games with perfect information) Let Γe

be an extensive form game with perfect information. Then there exists at least
one sequential equilibrium of Γe in pure strategies.

Proof. Because of Γe has perfect information we knows that

x ∈ Ys −→ Ys = {x}.
Then beliefs vector π is such that πs(x) = 1 for each s ∈ S∗. So we have, for games with
perfect information, that a behavioral-strategy pro�le σ is a sequential equilibrium i�

σi,s ∈ max
ρs∈∆(Ds)

Ui(σ−i,s, ρs|x) ({x} = Ys) (5.11)

for each player i in N and each state s in Si. This would be satis�ed if

σi,s = [ds], where ds ∈ max
es∈Ds

Ui(σ−i,s, [es]|x), ({x} = Ys) (5.12)

We notice that both Ui(σ−i,s, [es]|x) and Ui(σ−i,s, ρs|x) depend only on σ for moves at
nodes following the x node. Let nox be ν(x) the number of decision nodes in the subgame
starting at node x, for each s ∈ S∗ let ν(s) = ν(x), where {x} = Ys. If we suppose
that ν(s) = 1, Ui(σ−i,s, ρs|x) depends only on ρs, because after x there are no decision
nodes. In this case we have that maxes∈Ds Ui(σ−i,s, [es]|x) does not depend on σ and so
σi,s automatically satisfy (5.12). Now we suppose that σj,r has been already de�ned at
all j and r such that r ∈ Sj and ν(r) < k for a certain k; we also suppose that (5.12) is
satis�ed for s such that ν(r) < k. Then for any (i, s, x) such that s ∈ Si, {x} = Ys and
ν(x) = k, Ui(σ−i,s, [es]|x) is well de�ned for all es ∈ Ds and we can construct σi,s such
that (5.12) holds for (i, s, x). Proceeding by induction on k we can construct σ such that
(5.12) is satis�ed for all i and s; σ is a behavioral-strategy pro�le in pure strategies.

¤
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Chapter 6

Coin �ipping: introduction and
overview

The problem of coin �ipping arises when two or mor parties need to produce
a bit b of classical information with the folowing properties:

• the value of the bit (0 or 1) is the same fo all parties (perfect correla-
tion), and

• the probabilities of the values 0 and 1 are both equal to 1
2 (complete

randomness).

If all parties are allowed to meet in the same place, a trivial solution is
possible, namely to publicly toss an unbiased coin, that everyone can verify.
However, in many realistic situation this is not possible. Suppose for example
that two di�erent parties can communicate only via the Internet: of course it
is still possible that one of them tosses a coin and communicates the outcome
to the others, but in this case the latter would have would have no guarantee
that the value of the bit is truly random, as they have no way to verify
that the coin was unbiased. It is then intersting to ask if there exist coin
tossing protocols for the situation in which (from now on we restrict to the
two-players case):

• the players are far apart, namely none of them has access to the labo-
ratory of the other;

• no reliable third party (which would honestly perform the toss) are
involved

• the outcome of the protocol is random and no player is able to in�uence
the probability of this outcome.

• the players ave no technological nor computationale limitations
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The third istance can better formalize as follows:

• if the players are honest Pr[b = 0] = Pr[b = 1] = 1/2

• if only one player is honest, then |Pr[b] − 1/2| ≤ ε independently of
what the other player does. ε is called the bias: if it can be made
arbitrarirly small we say that the protocol is secure.

The above requirements characterize an unconditionally secure coin �ip-
ping. The notion of bias take us to the distinction between strong coin
tossing and weak coin tossing. In the weak version of coin �ipping we know
in advance that an outcome bene�ts Alice and the other bene�ts Bob. In
this case a player is supposed to be interested in biasing the outcome only
with the aim to force the result which he is favored by; For example let us
suppose that the outcome 0 bene�ts Alice: we have to ensure that a dis-
honest Alice cannot increase the probability of outcome 0 (no matter if she
is able to force the outcome to be 1). In the strong version of coin �ipping
one is interested in bounding the probabilities of a dishonest party altering
the probabilities in both directions either increasing Pr[b = 0] or increasing
Pr[b = 1]. In this work we focus our attention on strong coin �ipping.

We proceed in the analysis of the problem by making a further notable
distinction; a coin tossing protocol lies on messages generation and exchange:
so we can distinguish between

• classical coin �ipping protocols, where only classical messages are al-
lowed;

• quantum coin �ipping protocols, where there is also the possibility of
exchange of quantum information.

It is quite intuitive that classically if one of the two players is dishonest,
no unconditionally secure protocols with bias < 1/2 exists [31], that is, the
dishonest player can entirely determine the outcome of the tossing. The
situation is signi�cantly di�erent when quantum protocols are considered.
In this context it is possible having protocols with bias < 1/2 as it is shown
in [35]. However, even in the quantum case, unconditionally secure coin
�ipping is impossible as Kitaev [33] proved. In the following section we will
introduce the tools necesary to prove this impossibility theorem.

6.1 Semide�nite programming
Semide�nite programming is a generalization of linear programming con-
cerning the optmization of a linear function over the intersection of the cone
of positive semide�nite matrices with an a�ne space. We start our brief
survey on this subject from linear programs over cones (for a more detailed
discussion of the subject see [32]).
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De�nition 6.1.1 Let K be a closed convex cone in Rn, c ∈ Rn ,b ∈ Rm and
A m× n matrix. The problem

p∗ .= sup{cTx : Ax = b, x ∈ K} (6.1)

is called Cone-LP
Now we want to introduce the dual of the problem p∗. Let �rst de�ne the
dual cone K∗ in such a way:

K∗ .= {y ∈ Rn : yTx ≥ 0 ∀x ∈ K}. (6.2)

Now we can give the following
De�nition 6.1.2 (dual problem) Let p∗ a Cone-LP as in def. (6.1.1)
and K∗ the dual cone of K as de�ned in Eq. (6.2). Then the Cone-LP:

d∗ .= inf{bT y : y ∈ Rm, AT y − c ∈ K∗} (6.3)

is the dual problem of p∗.
Let now introduce the Lagrange multipliers for the problem (6.1); we

obtain the Lagrangian

L(x, y) = cTx+ yT (b−Ax). (6.4)

For the Lagrangian the following identities holds:

inf
y
L(x, y) =

{
cTx if Ax = b
−∞ otherwise (6.5)

and so we have
sup
x∈K

inf
y
L(x, y) = p∗. (6.6)

Now we rewrite the Lagrangian in the following way

L(x, y) = bT y − xT (AT y − c) (6.7)

From the de�nition of the dual cone K∗ the following identity holds:

sup
x∈K

L(x, y) =
{
bT y if AT y − c ∈ K∗

+∞ otherwise. (6.8)

So we have
inf
y

sup
x∈K

L(x, y) = d∗ (6.9)

From the minimax inequality we get:

p∗ = sup
x∈K

inf
y
L(x, y) ≤ inf

y
sup
x∈K

L(x, y) = d∗. (6.10)

The (6.10) is the weak duality relation for a pair of two dual cone-LP. Now
we give a su�cient conditions that insures equality in (6.10).
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Theorem 6.1.1 (strong duality) Let p∗ be a �nite cone-LP. If exists an
inner point x′ of K such that Ax′ = b, then p∗ = d∗. In this case we say
that for the pair p∗, d∗ the strong duality relation holds.

Now we come apply this formalism to semide�nite programs. Let Sn the
space of n×n symmetric matrices with the scalar product 〈X,Y 〉 = Tr[XY ].
Let consider the cone of the positive semide�nite matrices:

C
.= {X ∈ Sn : X ≥ 0}.

Because X ≥ 0 if and only if Tr[XY ] ≥ 0 ∀Y ≥ 0, we notice that C is self
dual. Let now A : Sn −→ Rm be a linear map; A is usually represented
as an m-uple {Ai} of symmetric matrices in such a way that: A(X) =
(A1(X), ..., Am(X)) whereAi(X) = Tr[AiX]. The adjoint ofA is represented
as AT (y) =

∑
i yiAi, y ∈ Rm. Now we can give the following

De�nition 6.1.3 Let:

• C,X positive matrices of Sn;
• A : Sn −→ Rm be a linear map;

• b ∈ Rm.
Then

p∗ .= maxTr[CX] : A(X) = b,X ≥ 0 (6.11)
is a semide�nite program and

d∗ .= min{bT y : y ∈ Rm, AT (y)− C ≥ 0} (6.12)

is its dual.

Weak duality automatically holds and for strong duality we a have an
analogous of Th.(6.1.1)

Theorem 6.1.2 Let p∗ be a �nite semde�nite program. If exists X ≥ 0 such
that A(X) = b, then p∗ = d∗. In this case we say that for the pair p∗, d∗ the
strong duality relation holds.

6.2 The impossibility theorem
In this section we quote the Kitaev proof for the impossibility theorem of
quantum coin �ipping as can be found in [34]. Before introducing this result
we have to give a rigorous mathematical description of what �coin �ipping
protocol� means.
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De�nition 6.2.1 Let H = A⊗M⊗B be an Hilbert space. A 2N -round coin
�ipping protocol is a t-upla

Ω = (UA,1, ..., UA,N , UB,1, ..., UB,N ,ΠA,0,ΠA,1,ΠB,0,ΠB,1)

where:

• UA,j is a unitary operator on A⊗M for each j = 1, ..., N

• UB,j is a unitary operator on M⊗B for each j = 1, ..., N

• ΠA,0,ΠA,1are projections onto orthogonal subspaces of A

• ΠB,0,ΠB,1 are projections onto orthogonal subspaces of B

such that
(ΠA,0 ⊗ IM ⊗ IB)|ψN 〉(IA ⊗ IM ⊗ΠB,0⊗)|ψN 〉 (6.13)
(ΠA,1 ⊗ IM ⊗ IB)|ψN 〉(IA ⊗ IM ⊗ΠB,1⊗)|ψN 〉 (6.14)

‖(ΠA,1 ⊗ IM ⊗ IB)|ψN 〉‖ = ‖(ΠA,0 ⊗ IM ⊗ IB)|ψN 〉‖ (6.15)
where

|ψN 〉 = (IA ⊗ UB,N )(UA,N ⊗ IB) · · · (IA ⊗ UB,1)(UA,1 ⊗ IB)|0〉

The idea underlying this de�nition is straightforward; A(B) is Alice's
(Bob's) laboratory Hilbert space, while M is the space of the message. The
protocol is assumed to have a �nite number of �round�, N for each player; at
round i, the player P = A,B whose the turn is, performs a unitary operation
UP,i acting on P⊗M and then sends the message part to the other player.
|0〉 is the state at the beginning of the protocol and |ψN 〉 is the �nal state.
At the end of the procedure the players are supposed to make on the �nal
state a measurement process which result (0, 1 or err)is the outcome of the
protocol. This measure process is represented, for player P by the POVM
(ΠP,0,ΠP,1, IP−ΠP,0−ΠP,1) Both Alice and Bob make the �nal measurement
on their private laboratory space and (if they are honest) they must agree
on the outcome of the protocol taht is the two measurements have to be
perfectly correlated: this is the meaning of eqns. (6.13) and (6.14). The
eqn. (6.15) states that when Alice and Bob are honest the probabilities of
outcome 0 and outcome 1 are the same.

What we are in order to do by proving the impossibility theorem for
unconditionally secure coin �ipping, is valuating the probability that a dis-
honest player force the outcome of the protocol if the other party id honest.
More correctly we will evaluate how much the dishonest player can bias the
result of the honest player's �nal measurement, that is
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Theorem 6.2.1 (Kitaev) Let Ω be a two party coin �ipping protocol. Let
p∗,1(p1,∗) be the probability that a dishonest Alice(Bob) can force the outcome
of the other party, supposed honest, to be 1. Then we have

p∗,1p1,∗ ≥ p1 (6.16)

where p1 is the probability of outcome 11 with both of the players being honest.
Proof. We study the problem from an honest Alice's point of view. That is, we want
optimizing Bob's strategy in such a way to maximize the probability of outcome 1 when
Alice performs her measurement. This can be expresse by a semide�nite porgramming.
Let introduce the following notation

• ρA,0 is the initial state on A⊗M. Alice is supposed to prepare in her local laboratory
the state |0〉A while Bob is free to determine the initial state in the message space,
that is trM(ρA,0) = |0〉〈0|A.

• ρA,i is the state of the protocol on A ⊗M at Alice's round i. ρA,i is produced by
Bob by applying a unitary operation on M⊗B when the state in A⊗M is given
by ρ′A,i

• ρ′A,i = UA,i+1ρAiU
∗
A,i+1

The SPD we obtain is the following

maximize tr((ΠA,1 ⊗ IM)ρA,N ) (6.17)

subject to

trM(ρA,0) = |0〉〈0|A (6.18)
trM(ρA,j) = trM(UA,jρA,j−1U

∗
A,j) j = 1, .., N (6.19)

the constraints given by eqns (6.19) assure that Bob cannot modify the portion of the
sistem which is in Alice's laboratory. This is our primal problem, we now introduce its
dual which is as follows:

minimize 〈0|ZA,0|0〉 (6.20)

subject to

ZA,i ⊗ IM ≥ U∗A,i+1(ZA,i+1 ⊗ IM)UA,i+1 i = 0, ..., N − 1 (6.21)
ZA,N = ΠA,1 (6.22)

Where {ZA,i} are Hermitian operator on A.
Let be {ZA,i} be the optimal solution of th problem; the procedure works mutatis

mutandis for a cheating Alice (and honest Bob) so let {ZB,i} be the optimal solution for
this second case. At round j of the the protocol, when both of the parties are honest is

|ψj〉 = (IA ⊗ UB,j)(UA,j ⊗ IB) · · · (IA ⊗ UB,1)(UA,1 ⊗ IB).

We de�ne now
Fj = 〈ψj |ZA,j ⊗ IM ⊗ ZB,j |ψj〉

Just assuming a honest Bob assures us that the strong duality theorem holds for the
problem in eqns (6.17), (6.18) and (6.19) and so the optimal values of the primal and the
dual coincide; so we have

p∗,1 = 〈0|AZA,0|0〉A p1,∗ = 〈0|BZB,0|0〉B
1the situation is symmetrical for outcome 0; we are not dealing with weak coin �ipping.
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and so

p∗,1p1,∗ = 〈0|AZA,0|0〉A · 〈0|MIM|0〉M · 〈0|BZB,0|0〉B = 〈0|ZA,0 ⊗ IM ⊗ ZB,0|0〉 = F0

From the constraints (6.21) follows

Fj ≥ Fj+1. (6.23)
The equality (6.22) implies

〈φ|ZA,N ⊗ IM ⊗ ZB,N |φ〉 =

= 〈φ|ΠA,1 ⊗ IM ⊗ΠB,1|φ〉 =

= ‖(ΠA,1 ⊗ IM ⊗ IB)(IA ⊗ IM ⊗ΠB,1)|φ〉‖2. (6.24)

Evaluating (6.24) at the �nal state |ψN 〉 we have (using (6.15))

FN = 〈ψN |ΠA,1 ⊗ IM ⊗ΠB,1|ψN 〉 =

= ‖(ΠA,1 ⊗ IM ⊗ IB)(IA ⊗ IM ⊗ΠB,1)|ψN 〉‖2 =

= ‖ΠA,1 ⊗ IM ⊗ IB|ψN 〉‖2 = p1 (6.25)

From (6.23) and (6.25) follows the thesis

p∗,1p1,∗ = F0 ≥ FN = p1 (6.26)

¤
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Chapter 7

Coin �ipping as a game

In this chapter we introduce a two party game which admits a unique Nash
equilibrium. The most interesting feature is that this equilibrium, in the
limit of some parameters going to 0 or ∞, reproduces the situation of a fair
coin tossing. We stress that using a game theoretical setting we deal with
two parties (Alice and Bob) which are both interested in maximizing their
utilities: this one seems a more realistic situation compared with the usual
one of cheat sensitive coin tossing; indeed, in the last case we have a �xed
protocol and we suppose that at least one party behaves honestly according
to it. This framework forced us to the unpleasant adding of a reliable third
party (the �police�); however, we will �nd out that the equilibrium of the
game converges to a fair coin tossing which makes no use of this third party.
Another result we are in order to show is that this situation has no classical
analogous; that is, there exists no classical game (i.e. which makes no use of
quantum mechanics) having an equilibrium converging to a fair coin tossing
not grounded on the use of a third relied party. We now begin with the
description of the game.

7.1 Coin tossing game
The game is made up of two round: the �rst one is Alice's turn , the second
one Bob's turn.

• At her turn Alice can either

1. prepare a state ρ ∈ C2 ⊗ C2 supposed to be the honest state
1√
2
|I〉〉 = 1√

2
(|0〉A|0〉B + |1〉A|1〉B) ∈ C2 ⊗ C2 an send the B-part

of the singlet to Bob
2. or ask for being honest and certi�ed which means sending a clas-

sical message to a reliable third party, (which we refer to as �the
police�), that prepares a state |ψC〉 = 1√

2
(|0〉A|0〉B + |1〉A|1〉B)
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(which we refer to as the certi�ed state), and sends one part to
Bob keeping the other for itself.

Saying that the police is a reliable third party means that it exactly
does what is expected to do. There is nothing like a payo� function of
the police which is not a player and so it has no strategic choices.

• Bob receives a quantum state in C2 (but it does not know if it was
produced by Alice or by the police) and he is expected either to call
for a check, in this case

� Bob and Alice (if she has one) send their states to the police
� the police, by a measurement process, controls if the composite

state is e�ectively the honest state (by measuring the POVM
{1

2 |I〉〉〈〈I|, I− 1
2 |I〉〉〈〈I|})and the game ends.

or to perform a measurement process with this POVM {|0〉〈0|, |1〉〈1|},
and to publicly show the outcome. In this case, if it was the police
which prepared the state, the police sends to Alice the remaining part
of the state.

• If Bob decided to show the outcome of his measurement, Alice performs
the same POVM of Bob on her part of system checking that the two
outcomes are the same.

Now we have to specify for each outcome of the game the payo�s of Alice
and Bob.

• Bob calls the police for a check and it was Alice who prepared the
state:

� if the check is passed (the outcome of the measurement is 1√
2
|I〉〉

) Bob loses −cB and Alice gains 0

� if the check is not passed Bob loses −cB and Alice loses −v
• Bob calls the police for a check and it was the police who prepared the

state:

� if the check is passed Bob loses −cB − w and Alice loses −cA
� if the check is not passed Bob loses −w− cB and Alice loses −cA

• Bob shows the outcome of the measurement {|0〉〈0|, |1〉〈1|} and it was
Alice who prepared the state:

� if the outcome is 0 Bob loses −1 and Alice wins 1

� if the outcome is 1 Bob wins 1 and Alice loses −1
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• Bob shows the outcome of the measurement {|0〉〈0|, |1〉〈1|} and it was
the police who prepared the state:

� if the outcome is 0 Bob loses −1 and Alice wins 1− cA

� if the outcome is 1 Bob wins 1 and Alice loses −1− cA

Remark 7.1.1 We did not take into account the possibility of the game end-
ing with Alice and Bob showing opposite result (when both Alice and Bob
claims they have won); indeed, we interpret this situation as Alice and Bob
not really interested in playing the game. If they both accept to enter the
game, they are surely supposed to do everything they can to maximize their
payo� but not to lie about the results of their measurements.

Remark 7.1.2 The payo�s (1,−1) Alice and Bob receive when the game
does not end with a check by the police are the subjective values that the
players give to winning or losing the game. The amounts (cA, cB, v, w) can
be interpreted as �penalties� forced by the police itself; we can imagine that

• cA is how much Alice has to pay to have her honest behaviour �certi�ed�;

• cB is how much Bob has to pay for checking Alice's honesty;

• v is the penalty Alice must pay if she is supposed to have prepared a
bias state;

• w is the penalty Bob must pay if the police cathes a bias state but it is
sure that Alice behaved honestly (because she asked for a certi�cation).

7.2 Analysis of the game
Now we analize in detail the stretegic options available to Alice and Bob and
we then we will proceed with the calculation of the Nash equilibrium.

Alice's space of strategies
At the beginning of the game Alice has to decide either to be certi�ed by
the police or to produce the state by herself; we refer to the probability of
Alice chosing to be certi�ed as q1. If Alice decides to produduce the state
by herself, she has to choice which state to prepare, th honest state or a
di�erent state in order to improve the probability of the outcome 0;

Now let us analize the case of an Alice not askink for the police's help.
In this situation she can

• prepare whatever state she wants in C2 ⊗ C2 (and perhaps keep it
entangled with another state in her private memory);
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• perform whatever operation she wants on her side before sending her
part of state to the police, if Bob asks for a check.

In order to reduce this huge amount of possibilities, we have to �nd out
which of them are the best one for Alice maximizing her payo�. So let now
examine Alice's payo� function when she decide not to ask a certi�cation by
the police.

ϕA = p1 (Pr[passing] · 0 + Pr[not passing] · (−v))+
+(1− p1) (Pr[b = 0] · 1 + Pr[b = 1] · 0) (7.1)

Where p1 is the probability of Bob asking for a check and 1 − p1 is the
probability of Bob measuring his portion of state. The probability of passing
the check and the probability of outcome 0 on Bob's side are given by:

Pr[b = 0] = TrB[TrA[ρ] · |0〉〈0|] (7.2)

Pr[passing] = Tr
[
(T ∗A ⊗ IB) (ρ) · 1

2
|I〉〉〈〈I|

]
(7.3)

Where: ρ ∈ C2 ⊗ C2 is the state prepared by Alice at the beginning of the
game and (T ∗A ⊗ IB) represent the channel Alice can do on her side before
sending her state to the police in the event of Bob having asked for a check.
Then the Alice's expected payo� is:

ϕA = p1(−v)
(

1− Tr [(T ∗A ⊗ IB) (ρ)] · 1
2
|I〉〉〈〈I|

)
+

+(1− p1)(TrB[TrA[ρ] · |0〉〈0|]− (1− TrB[TrA[ρ] · |0〉〈0|]))(7.4)
We have to maximize the (7.4) over all the possible ρ and over all the possible
T ∗A. Because of the expression (7.4) is linear in ρ and the set of states (or
density operator) is a convex set, the optimal value for ρmust be a pure state;
we can now suppose that ρ = |ψ〉〉〈〈ψ|. So the expression (7.4) becomes:

ϕA = −vp1

(
1− 1

2
〈〈I|(T ∗A ⊗ IB)(|ψ〉〉〈〈ψ|)|I〉〉

)
+

+(1− p1) (2 · 〈0|TrA[|ψ〉〉〈〈ψ|]|0〉 − 1) (7.5)

Neglecting for a while the constant terms, we have to maximize something
like this:

f = α · 〈〈I|(T ∗A ⊗ IB)(|ψ〉〉〈〈ψ|)|I〉〉+ β · 〈0|TrA[|ψ〉〉〈〈ψ|]|0〉

= α · 〈〈I|
(∑

n

((Mn ⊗ IB)|ψ〉〉〈〈ψ|(M∗
n ⊗ IB))

)
|I〉〉+

+β · 〈0|TrA[|ψ〉〉〈〈ψ|]|0〉 (7.6)
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In the second equality we made use of Krauss representation of channels.
We can now simplify the (7.6) which becomes

f = α
∑
n

|〈〈Mn|ψ〉〉|2 + β〈0|(ψ∗ψ)>|0〉 = α
∑
n

|Tr[M∗
nψ]|2 + β〈0|ψ∗ψ|0〉

(7.7)
The following bound holds:

∑
n

|Tr[Mnψ]|2 =
∑
n

|Tr[MnV |ψ|]|2 =

=
∑
n

∣∣∣Tr[MnV |ψ|
1
2 |ψ| 12 ]

∣∣∣
2

=
∑
n

∣∣∣Tr[|ψ| 12MnV |ψ|
1
2 ]

∣∣∣
2
≤

≤
∑
n

∣∣∣∣
√

Tr[|ψ|]
√

Tr[|ψ| 12V ∗M∗
nMnV |ψ| 12 ]

∣∣∣∣
2

=

=
∑
n

Tr[|ψ|]Tr[V |ψ|V ∗M∗
nMn] =

= Tr[|ψ|]Tr
[
V |ψ|V ∗

(∑
n

(M∗
nMn)

)]
=

= Tr[|ψ|]Tr [|ψ|] = (Tr[|ψ|])2 (7.8)

In the previous calculation we used the polar decomposition ψ = V |ψ|, where
|ψ| = √

ψ∗ψ The bound is reached when:

ψ = |ψ| (7.9)
T ∗A = IA. (7.10)

It means that the best strategy for Alice is preparing a state

|ψ〉〉 =
√
λ0|0〉|0〉+

√
1− λ0|1〉|1〉 (7.11)

where λ0 is a real number λ0 ∈ [12 , 1] and doing nothing if Bob calls for a
check. We notice that even in the case of a dishonest Alice the state that
the two players share is a perfect correlated one. This make sense and �ts
into our assumption that Alice's and Bob's outcomes must be equal. So,
thanks to the (7.11), Alice's payo� (when she decides not to call the police)
becomes:

ϕA = (1− p1)(2λ0 − 1)− p1v(1− 1
2
(
√
λ0 +

√
1− λ0))2 =

= (1− p1)(2λ0 − 1)− p1v

(
1− 1

2

(
1 + 2

√
λ0 − λ2

0

))
=

= (1− p1)(2λ0 − 1)− p1v

(
1
2
−

√
λ0 − λ2

0

)
(7.12)
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As one can expect if λ0 = 1
2 Alice is not penalized and his expected payo�

becomes 0.
As an early approach to the game, we suppose that Alice, when she

decides to prepare the state by herself, is only able to produce either the
honest state 1√

2
|I〉〉 or the �completely dishonest� one |0〉|0〉. In this easier

context we have

ϕA = (1− p1)(q2 · 0 + (1− q2) · 1) +

+p1(q2 · 0 + (1− q2)
(

1
2
· 0 +

1
2
· (−v)

)
(7.13)

where q2 represents the probability of Alice producing the fair state. The real
advantage in using (7.13) is that this expression is linear in the parameter
q while the full expression (7.12) is not linear in λ0. This simpli�cation
which limits the real strategic choices of Alice seems not to be relevant as
regards the crucial features of the game (it is reasonable to suppose that the
properties of the equilibrium are the same).

Now we turn our attention to the strategic options available to Bob.

Bob's space of strategies
After Alice performed his choice, Bob receives a state σ ∈ C2, where σ =
TrA[|ψ〉〉〈〈ψ|]. He can do whatever operation he wants on this state but he is
eventually expected to decide if either showing the outcome of the measure-
ment {|0〉〈0|, |1〉〈1|}, (in the following when we write �the measurement� we
mean this measurement) or asking for a check by the police. Now we have
to do the following considerations:

• Let assume that Bob wants to show if the outcome is 1 or 0. As we
exposed at the beginning, Alice's and Bob's outcome of measurements
must be equal. That means Bob cannot do on his state operations
which bias the correlation of the overall state; So, the only operation
available to Bob before showing the result are either the identity (triv-
ial) or the measurement itself.

• Let assume that Bob wants to ask for a check by the police. In this case
Bob has no interest in Alice being caught cheating; indeed he always
pays−cB unless a �certi�ed state� prepare by the police is found biased:
in this case Bob pays −w (obviously w > cB).

in the light of this, let analyse Bob's strategic options:

1. Asking for a check by the police: in this case Bob as no interest in
performing any operations (he prefers that Alice is found honest).

2. Performing the measurement: in this case Bob has now two �nal op-
tions
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• Showing the result publicly
• Asking the police for a check: obviously he will make this choice

only if the outcome of the measurement is 0. In this case Bob
has a way out for not declaring he has lost; owever this way out
is not completely safe: if Alice let the police to prepare the state
and the state is found biased, Bob has to pay −w.

Now we are ready to write down Bob's general payo� function

ϕB = p1 · (−cB) + (1− p1)(Pr[b = 1] · (1) + Pr[b = 0]
(p2 · (Pr[A not certi�ed] · (−cB) + Pr[A certi�ed]
·(Pr[passing] · (−cB) + Pr[not passing] · (−cB − w))) +
+(1− p2) · (−1)) (7.14)

Where:

• p1 is the probability of Bob asking for a check without doing anything
on his state

• (1− p1) is the probability of Bob performing the measurement on his
state

• p2 is the probability of Bob asking for a check once he knows that the
outcome of the measurement is 01

• (1−p2) is the probability of Bob showing the result of the measurement
once he knows that the outcome is 0: (1−p2) is the probability of Bob
�accepting his lost�.

The Nash equilibrium
We examined the space of strategies of Alice and Bob. Now we have only to
write down the payo� functions and compute the Nash equilibrium. Alice's
payo� function is given by:

ϕA = q1(p1 · (−cA) + (1− p1)(Pr[b = 1](−1− cA) + Pr[b = 0]
(p2 · (−cA) + (1− p2) · (1− cA)))) +
+(1− q1)(p1(Pr[check passed] · (0) + Pr[check not passed] · (−v)) +
+(1− p1)(Pr[b = 1] · (−1) + Pr[b = 0](p2(Pr[check passed] · (0) +
+Pr[check not passed] · (−v)) + (1− p2) · (1)))) (7.15)

1p2 is a conditional probability.
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While Bob's payo� function is:
ϕB = p1 · (−cB) + (1− p1)(Pr[b = 1] · (1) + Pr[b = 0]

(p2((1− q1) · (−cb) + q1

(Pr[check passed] · (−cB) + Pr[check not passed] · (−w − cB))) +
+(1− p2) · (−1)) (7.16)

Now we assume that Alice, when she decides to behave dishonestly, can only
prepare the state |0〉|0〉. In this case we have

• if Alice his honest Pr[b = 0] = Pr[b = 1] = 1
2

• if Alice is dishonest Pr[b = 0] = 1, P r[b = 1] = 0.

• Pr[check passed] = 1 if Alice is honest and Bob does not measure his
part of state before sending it to the police.

• Pr[check passed] = 1
2 if Alice is dishonest or Bob decided to perform

the measurement befor asking for a check.
With this constraint the (7.15) becomes

ϕA = q1

(
p1 · (−cA) + (1− p1)

(
1
2
(−1− cA) +

1
2

(p2 · (−cA) + (1− p2) · (1− cA)))) +

+(1− q1)
(
p1

(
1 + q2

2
· (0) +

1− q2
2

· (−v)
)

+

+(1− p1)
(
q2
2
· (−1) +

2− q2
2

(
p2

(
1
2
· (0)+

+
1
2
· (−v)

)
+ (1− p2) · (1)

)))
(7.17)

and the (7.16) become

ϕB = p1 · (−cB) + (1− p1)
((

q1
1
2

+ (1− q1)
q2
2

)
· (1) +

(
1−

(
q1

1
2

+ (1− q1)
q2
2

))

(
p2

(
(1− q1) · (−cb) + q1

(
1
2
· (−cB) +

1
2
· (−w − cB)

))
+

+(1− p2) · (−1))) (7.18)
Now we have two payo� functions ϕA,B(p1, p2, q1, q2) (with pi, qj ∈ [0, 1])

which depend linearly from their variables. Finding a Nash equilibrium for
this game means �nding a (p1, p2, q1, q2) such that

ϕA(p1, p2, q1, q2) ≥ ϕA(p1, p2, q1, q2) ∀q1, q2 (7.19)
ϕB(p1, p2, q1, q2) ≥ ϕB(p1, p2, q1, q2) ∀p1, p2 (7.20)

Let begin our analysis looking at the pure strategies.
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• Alice decides to be certi�ed with probability q1 = 1; Then Bob, with
the aim of maximizing his payo�, never asks for a check. But if Bob
makes this choice Alice's best response strategy is to always prepare a
dishonest state. In this situation we have no equilibrium.

• Alice decides to always prepare the state by herself. In this case Bob's
best strategy is to always measure his system and if the result is 1
asking for a check (p1 = 0, p2 = 1). With this strategy of Bob, Alice's
payo� becomes:

ϕA = q1

(
1
2
− cA

)
+ (1− q1)

(
−q2

2
+

2− q2
2

(
−v1

2

))
(7.21)

Clearly cA < 1 and v > 1; because our interest concern the high
penality limit, let suppose v > 2. So
(
−q2

2
+

2− q2
2

(
−v1

2

))
<

2− q2
2

(
−v1

2

)
< −v

4
< −1

2
<

(
1
2
− cA

)

and Alice best response will be setting q1 = 1, that is asking to be
certi�ed (exactly the opposite of our starting assumption). Then, the
situation we analysed is not an equilibrium.

This discussion shows that there is no equilibrium in pure strategy. Mathe-
matically speaking, we knows that the equilibrium of the game is not at the
boundary values of pi or qj . Nash theorem assures the existence of at least
one equilibrium, so it will be found at not extremal values of the pi, qj . So
the equilibrium belongs to the internal point of the dominion of ϕA,B), and
here these payo� functions are di�erentiable. Then, the conditions (7.19)
and (7.20) are ful�lled if

∂ϕA
∂q1

(z) = 0
∂ϕA
∂q2

(z) = 0 (7.22)

∂ϕB
∂p1

(z) = 0
∂ϕB
∂p2

(z) = 0 (7.23)

z = (p1, p2, q1, q2)

The calculation gives
∂ϕA
∂q2

=
1
4

(4 + 2p1p2 − 4p1 + vp1p2 − 2vp1 − 2p2 − vp2) q1 +

−1
4

(4 + 2p1p2 − 4p1 + vp1p2 − 2vp1 − 2p2 − vp2) (7.24)

The 7.24 is equal to 0 if either x = 0 or the expression in parenthesis is equal
to 0. However, we said that the equilibrium is not in the boundary so the
only possible condition is

4 + 2p1p2 − 4p1 + vp1p2 − 2vp1 − 2p2 − vp2 = 0 (7.25)
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The other derivative is as follows:
∂ϕA
∂q1

= (4 + 2p1p2 − 4p1 + vp1p2 − 2vp1 − 2p2 − vp2) q2 +

2(2 + 2cA − 2p1 − p2 + p1p2 − p1v − p2v + p1p2v) (7.26)

The �rst term in parentesis is equal to 0 by (7.25) so, if we wants the
expression to be null it must be:

2 + 2cA − 2p1 − p2 + p1p2 − p1v − p2v + p1p2v = 0 (7.27)

Solving the system ((7.25),(7.27)) for the variables p1 and p2 we have




p1 =
(2− 2cA)v − 4cA

2v + v2

p2 =
8cA + 4cAv

4cA + 2cAv + v2

(7.28)

Now we have to perform the same calculation for ϕB. The derivatives are as
follows:

∂ϕB
∂p2

=
1
4
(p1 − 1)(−2 + 2cB + wq1)(2− q1 + q1q2 − q2) (7.29)

∂ϕB
∂p1

= (−2 + 2cB + wq1)(2− q1 + q1q2 − q2)p2

−4(−1 + cB + q1 + q2 − q1q2) (7.30)

We discard the possibility p1 = 1 because we know the equilibrium is not a
boundary point. In spite of this it seems we still have two possible system
that could bring us to two di�erent equilibria:





2− q1 + q1q2 − q2 = 0

−1 + cB + q1 + q2 − q1q2 = 0
(7.31)

and 



−2 + 2cB + wq1 = 0

−1 + cB + q1 + q2 − q1q2 = 0
. (7.32)

However, the �rst system leads to the equation cB = −1 which disagrees
with our assumption 0 < cb < 1. Solving the second system we �nd:





q1 =
2− 2cB
w

q2 =
−2 + 2cB + (1− cB)w

−2 + 2cB + w

. (7.33)
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So the unique Nash equilibrium of the game is



p1 p2 q1 q2

(2−2cA)v−4cA
2v+v2

8cA+4cAv
4cA+2cAv+v2

2−2cB
w

−2+2cB+(1−cB)w
−2+2cB+w


 (7.34)

As we said at the beginning of the chapter if

v, w → +∞ cA, cB → 0 (7.35)

the equilibrium goes to the fair solution
(
p1 p2 q1 q2
0 0 0 1

)
(7.36)

in which Alice prepares by herself a fair singlet and Bob never asks for a
check. We conclude the analysis of the game showing the expected payo�
for the players:

ϕA = −cA − −2cA
v

(7.37)
ϕB = −cB. (7.38)

In the limit (7.35) both of the functions are equal to 0, as one expects for
the fair situation.

7.3 The classical case
In this section we analyse the possibility of implementing fair coin tossing as
an equilibrium of a classical game (where no exchange of quantum informa-
tion is possible). Let �rst consider the following:

De�nition 7.3.1 Let Γ be a two-player extensive form game with the fol-
lowing properties

• we have only two players, Alice and Bob;

• the two players are expected only to exchange classical message never
simoultaneously

• at the end of the game, a publicly known function f produces the �nal
outcome (0 or 1), depending on the strings of bit that Alice and Bob
have produced during the protocol.

• if the �nal outcome is 0 Alice wins 1 and Bob loses −1, viceversa for
outcome 1
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It is easy to show that for such a game there exists no Nash equilibrium
which correspond to a fair coin tossing.

Theorem 7.3.1 Let Γ be a game with the properties of Def. (7.3.1). Then
there exists no equilibrium which corresponds to a random �nal outcome.

Proof. A game Γ as outlined by Def. (7.3.1) is an example of perfect information game;
indeed Alice and Bob produce their bit string one after the other, so there is no hidden
information. Then we can apply Th. (5.2.5) and state that Γ as at least one equilibrium in
pure strategies. However Γ is a two person zero sum game too. Thanks to Th. (5.1.2) we
know that all possible Nash equilibria of Γ are payo� equivalent; So all the equilibria must
be payo� equivalent to the one in pure strategy which produces payo�s 1 and −1 because
there are no chance node. However, a generic random outcome will produce outcomes a
and −a with a < 1. So all possible equibria of Γ cannot be random because must have 1

and −1 as �nal payo�. ¤

Now we try to sketch an analysis of a more general case, in which we
consider the possibility of involving a third party. Let consider a generic
extensive form game Γe. We make the following request

• each player at his decision nodes can:

� produce one of the possible string of bits expected by the game
(siA(B)) and show it publicly;

� ask to a relied third party (the �police�) to produce this string
instead of doing it by himself;

� ask to a relied third party to randomly produce the �nal outcome
of the protocol 0 or 1; in this case the game ends.

• Turns of the players are not simultaneous. It means that a player,
before making his choice, knows which string of bits has been produced
by the other party (or by the police: he just does not knows who
prepared the string )

• The game has no chance node in except for the ones in which the police
is requested to produce the �nal outcome.

• The �nal outcome of the protocol (when it was not determined by the
police) is produced by a publicly known function f and depends on the
bit strings produced during the game: f : (s1A, s

1
B, ..., s

n
A, s

n
B) 7−→ {0, 1}

• Outcome 0 corresponds to �nal payo�s 1 for Alice (or Bob) −1 for Bob
(or Alice); outcome 1 gives the opposite situation.

Let begin our analysis without considering the possibility of having a
�police�. Because the players' moves are never simultaneous this is a perfect
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information game. It is also a two person zero sum game and so we have only
one Nash equilibrium in pure strategies. Thia means that for all strategies of
Bob (or Alice) there exists a strategy of Alice (or Bob) which guarantees her
(him) to win the game. Let now add this game the possibility of players who
can ask the police to produce their bits strings. However this simply means
that the player whose the decision node is, decides to randomize his choice.
Obviously the player who has a winning strategy for the game has no interest
in randomizing a choice; on the other hand, the other player is known to lose
whatever strategy he follows: if he makes a random choice it does not a�ects
the outcome of the protocol. Now we consider the last possibility, asking the
police to produce the �nal outcome. Again, the winning player will never
take this way; the other one instead, will always choose this alternativewhich
is more convenient than losing the game for sure (expected payo� 0 instead
of −1). The equilibrium of this kind of game is the one in which the police
always decides the outcome.

In this section we have given only some intuitive reasons which lead us to
argue that there is no possibility of having a classical game which implements
a fair coin at the equilibrium. The seems to lie on the possibility, in the
quantum case, of checking the honesty of the two players.
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Conclusion

In this work we started analysing in a canonical way two quantum crypto-
graphic protocols. Then we dealt with quantum coin tossing from a game
theoretical point of view. We illustrate in the last chapter of the work, the
main features of this approach; as regards practical applications, we can
imagine two player that want to play a gamble on the internet.

We proved that at the equilibrium the game is fair, and the third party
(say the manager of the on-line casino) is involved an arbitrarily small num-
ber of times. We performed the calculation of the equilibrium in a simpli�ed
version of the game, that is without considering the whole Alice's space of
strategies. However, intuition suggests that the result must hold even in the
general case; this will be explicity proved in a future paper. Another interst-
ing consideration regards the classical case of a coin tossing game. We gave
a sketchly proof of the impossibility of implementing a classical analogue
of the quantum coin tossing game; this result points out how quantum me-
chanics can bring some innovation when applied to game theory. However,
the impossibility proof for a classical coin tossing game is not as rigourous
as it should be; a more formal result, together with the general case of the
quantum game, will be the objective of a future paper.

Results obtained with coin tossing suggest to apply the game theoretical
formalism to other situations. For example we can imagine to study bit com-
mitment from this perspective; Alice wants to commit a forecast of certain
event to Bob in such away that Bob cannot read it until the openenig phase
(which will be after the event above-mentioned event takes place). Alice is
interested in proving that her forecast was right, while Bob is interested in
knowing the forecast before the event takes place and he want to be sure
that Alice cannot change the committed information. We now add a reli-
able third party which allows the players to implement a secure commitment
and which can check in some way players' behaviour, enforcing penalities if
it is necessary. Then the questions are whether this game is feasible and,
if yes, whether the equilibrium leads the players to implement secure bit
commitment without relying on a third party.

This one and many other applications can be found by linking together
game theory and quantum mechanics.
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