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Introduction

The original results we achieved in this thesis — which are collected in Chapter
— consist in the realisation of two quantum protocols in order to program dis-
positions or permutations of N unitary quantum channels according to the state
of a control register and resorting in the first case to an ordinary quantum circuit
[3, 29] and then to a dynamic computational network, namely a quantum network
in which one is allowed to use a particular oracle that is a prior: admissible in
quantum mechanics and yet unfeasible through the quantum computing model
devised by Deutsch: the Quantum Switch Oracle [6l, 31].

In particular, we will firstly conceive an ordinary quantum circuit which is able
to program all the possible dispositions of N unitary channels and superpositions of
them according to the state of a control register in the most efficient way, estimating
its complexity. Then it will be considered the possibility of programming all the
possible permutations of N unitary channels and superpositions of them according
to the state of a control register through a dynamic computational network. The
required computational resources will be estimated in both cases and we will prove
that one can efficiently accomplish the second task resorting to a single call of each
channel but paying the price of a little greater control register in respect to the
first task. Nevertheless the number of the required elementary operations is of the
same order of magnitude in both cases.

The topics we will deal with in the first two chapters are instead preparatory
to the comprehension of the third one. In Chapter [I| we will sum up some results
of ordinary quantum computation, giving an account of elementary operations
in quantum circuits and identifying the subset of higher-order maps which are
both admissible according to quantum mechanics and feasible through Deutsch’s
quantum computers [8, 32, 28] 29)].

In the second chapter we will analyse those maps that cannot be realised
through an ordinary quantum circuit, even if they are admissible according to
quantum mechanics. A capital example of them is the aforementioned Quantum
Switch Oracle [0, 131].

Finally, some useful mathematical and notational prerequisites following on
from Refs. [29, B1] and necessary for the comprehension of this work are reported
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in Appendix [A]



Introduzione

Le parti originali del presente lavoro di tesi, raccolte nel terzo capitolo, sono
volte alla realizzazione di due protocolli quantistici con cui programmare dispo-
sizioni o permutazioni di N canali unitari in modo controllato, ricorrendo in un
primo momento ad un circuito quantistico ordinario [3,29] ed in seguito ad una rete
computazionale dinamica, ovvero una rete quantistica in cui € consentito 1'utilizzo
di un oracolo particolare, ammissibile in meccanica quantistica, ma non realizzabile
mediante il modello di computer quantistico concepito da Deutsch: il Quantum
Switch Oracle [0, 131].

Progetteremo anzitutto un circuito quantistico in grado di programmare in
modo controllato tutte le possibili disposizioni di NV canali unitari e loro sovrappo-
sizioni nel modo piu efficiente consentito dalla computazione quantistica ordinaria,
valutandone la complessita. Verra poi considerata la possibilita di programmare
tutte le possibili permutazioni controllate di N canali e loro sovrapposizioni me-
diante una rete computazionale dinamica. In particolare si dimostrera che cio ¢
realizzabile in maniera efficiente ricorrendo ad una singola chiamata dei canali in
input, ma richiedendo un registro di controllo con un numero di qubit ancillari
leggermente maggiore rispetto alla situazione precedente. Tuttavia, il numero di
operazioni elementari richieste ¢ dello stesso ordine di grandezza in entrambi i casi.

Nei primi due capitoli vengono invece trattati argomenti propedeutici alla com-
prensione del terzo. Nel primo si riassumono alcuni risultati di computazione
quantistica ordinaria, riportandone le operazioni elementari ed individuando il
sottoinsieme di mappe di ordine superiore che siano allo stesso tempo ammissi-
bili secondo la meccanica quantistica e realizzabili mediante il modello teorico di
computer quantistico proposto da Deutsch [8] 32] 28] 29].

Nel secondo capitolo si analizzeranno quelle mappe che, pur essendo ammissibili
secondo la meccanica quantistica, non possono essere realizzate implementando un
circuito quantistico ordinario, tra quali rientra anche il Quantum Switch Oracle
6], 131].

Da ultimo, in Appendice [A] sono riportati alcuni prerequisiti matematici e no-
tazionali stabiliti nelle referenze [29] [31] necessari per la comprensione del presente
lavoro.



Chapter 1

Achievable transformations
through ordinary quantum
circuits

1.1 The Quantum Circuit Model

Quantum computation and quantum information theory are research fields that
deal with the study of the information processing tasks that can be accomplished
using quantum mechanical resources.

In the early 80’s two works were published independently by Manin [I] and by
Feynman [2], who conjectured that quantum computers could simulate quantum
systems in a more efficient way than classical computers. The first model of quan-
tum computation was established in 1985 by Deutsch [3]. Deutsch tried to define
a computational device that would be capable of effectually simulating an arbi-
trary quantum computational process and named it Quantum Turing Machine, in
analogy with the Classical Turing Machine introduced by Turing in 1936 [4].

Unfortunately Quantum Turing Machines are not simple devices to deal with.
Indeed the analysis of Quantum Turing Machines is complicated by the fact that
not only the data, but also the control variables (e.g. head position) can exist
in a superposition of classical states. To compensate this inconvenience, Deutsch
himself conceived in 1989 the Quantum Circuit Model, which is the natural quan-
tum generalization of acyclic combinational logic circuits studied in conventional
computational complexity theory [5]. Quantum circuits are built up by quantum
gates, interconnected by quantum wires complying with the following

Prescriptions (Quantum Circuit Model)

1. Qubits are represented by wires;
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2. A box on a single wire represents a transformation on the corresponding
system, whence a box on multiple wires generally describes an interaction
between the corresponding systems;

3. Input/output relations proceed from left to right and there are no loops in
the circuit;

4. Each box represents a single use of the corresponding transformation.

In order to have reversible quantum computation, each gate has the same
number of inputs as outputs and a gate with n inputs performs an unitary operation
belonging to the group of the rotations in a 2"-dimensional space U(2"). Instead
each wire represents a quantum system associated to a 2-dimensional Hilbert space,
namely a qubit.

Describing a computational process with a Quantum Turing Machine or with
a quantum circuit was proven by Yao to be equivalent for a class of computation
that can be described as processing of input qubits [7]. Working with a quantum
circuit is definitely easier than dealing with a Quantum Turing Machine, since the
control variables (e.g. the wiring diagram) can be thought as classical while the
data in the wires and the logic gates are obviously quantum. One can also better
evaluate the amount of computational resources required by any algorithm (e.g.
number of oracle calls, number of qubits, length of the computation, etc.).

As Ref. [6] suggests, it is worth stressing that a quantum circuit is a computa-
tional circuit and not a physical one: While in a physical circuit we can have loops
(for example when a system passes twice through the same physical device), in a
computational circuit there are no loops (when we apply twice a transformation to
the same system we just draw two times the same box). A computational circuit
represents the actual flow of information during the run of a program. It is also im-
portant to make clear the distinction between program and computational circuit,
the former being a set of instructions to build up the latter. In a computational
circuit, wires can never go backward, because this would mean to go backward
in time, whereas, on the contrary, in its program code we can have commands
pointing back to previous instructions.

There are many more choices for the set of universal gate(s) in reversible quan-
tum computation than in its classical analogue, as remembered in Ref. [§]. DiVin-
cenzo [9] proved that two-qubits universal quantum gates are possible; Barenco [10]
extended this to show that almost any two-qubits gate (within a certain restricted
class) is universal; Lloyd and Deutsch et al. independently showed that almost any
two-qubits or n-qubits (n > 2) quantum logic gate is also universal; Barenco et al.
showed that a non universal classical two-qubits gate (the CNOT gate) in conjunc-
tion with quantum single qubit gates is also universal, also exhibiting a number
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of efficient schemes aimed to build up certain classes of n-qubit operations only
employing the set of gates they proved to be universal.

Regarding controlled operations, we want to report three fundamental results
contained in Ref. [§] due to their importance:

Lemma 1.1.1. For any unitary 2 x 2 matriz U, a C™Y(U) gate can be simulated
by a network of the form:

(1.1)

S S .
—Ul-= 4—% [vi] Vi
(illustrated for n = 9), where V' is unitary.

Corollary 1.1.1. For any unitary U, a C"=V(U) gate can be simulated in terms
of ©(n?) basic operations.

Lemma 1.1.2. Any simulation of a nonscalar C"~V(U) gate (i.e. where U #
Ph(d) - I) requires at least n — 1 basic operations.

The quantum circuit framework has been a fertile ground for the development
of quantum algorithms. Over the years many situations have been detected where
quantum computers reveal themselves more powerful than the classical ones [3], 11}
12, T3] 14]. Roughly speaking, this can be understood via the following argument
[8]: While reversible classical computation is contained within quantum mechanics,
the first is only a small subset of the latter, since the time evolution of a classical
reversible computer is described by unitary operators whose matrix elements are
only zero or one, arbitrary complex numbers being not allowed. Unitary time
evolution can of course be simulated by a classical computer (e.g. an analog optical
computer governed by Maxwell’s equations)[15], but the dimension of the thus
attainable unitary evolution operator is bounded by the number of classical degrees
of freedom — i.e. roughly proportional to the size of the apparatus. By contrast a
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quantum computer with m physical bits can perform unitary operations in a 2™-
dimensional space, which is exponentially larger than its physical size. Moreover,
unlike the classical situation, quantum mechanics allows one to program the state
of a qubit in a superposition of two Boolean states and to entangle the qubit with
the states of other qubits.

Some quantum algorithms were found accomplishing their task requiring a
polynomial number of elementary operations, unlike the more complex classical
analogous ones. This is e.g. the case of the celebrated factoring and discrete log
algorithms by Shor [16]. There also exist other algorithms that solve a specific
problem with fewer computational steps in respect to the classical case, although
they belong to the same complexity class, as it happens for Grover’s search algo-
rithm [17), 18].

1.2 From quantum channels to higher-order quan-
tum maps

States, POVMs and quantum operations constitute the elementary objects of
any ordinary quantum circuit. The development of the mathematical formalism
of quantum mechanics led to a deeper understanding of which physical transfor-
mations are in principle admissible according to the theory itself. In particular, a
complete characterisation of the transformations involving quantum systems has
been stated in terms of linearity, complete positivity and (in the deterministic
case) trace preservation [19, 20, 21} 22l 23, 24]. Overall, this research field has
clarified that the essence of quantum mechanics lies in its probabilistic structure
and that the mathematical constraints that guarantee the admissibility of a quan-
tum map are exactly those required in order to allow a consistent probabilistic
interpretation.

Channels and POVMs provide an efficient description of elementary circuits
that transform or measure quantum states. One can obviously combine elemen-
tary circuits in a larger quantum networK'] taking care of the aforementioned rules
requested by the Quantum Circuit Model, thus broadening the variety of possible
tasks that one can perform. For example, quantum computing networks can be
used as programmable machines, which implement different transformations on
input data depending on the quantum state of the program. In some cases the
program itself can be a quantum channel, rather than a state: During computation
the network could call a variable channel as a subroutine, so that the overall trans-
formation of the input data is programmed by it. Even more generally, the action

!This kind of networks should not be confused with Dynamical Computational Networks,
which will be introduced in Chapter
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of the network can be programmed by a sequence of variable states and channels
that are called at different times, that is, at different steps of the computation. A
similar situation arises in multiple-rounds quantum games [20], where the overall
outcome of the game is determined by the sequence of moves (state-preparations,
measurements, and channels) performed by different players. For example, in a
two-party game Alice’s strategy can be seen as a particular quantum network in
which Bob’s moves act as variable subroutines. Of course, the subroutines corre-
sponding to Bob’s moves are in turn parts of Bob’s network, so that the whole
protocol can be seen as the interlinking of two networks corresponding to Alice’s
and Bob’s strategies.

What we just explained reveals that quantum networks can be definitely used
in a number of different ways, each of them corresponding to a different kind of
transformation achievable with them, e.g. transformations from states to channels,
from channels to channels, and from sequences of states or channels to channels.
Luckily enough, an efficient treatment of quantum networks is possible, despite
the infinity of different transformations associated to them if one tackles a mathe-
matical characterisation of the so called higher-order quantum maps, namely maps
that transform other maps compatibly with the structure of quantum mechanics.

In the following sections of this chapter, we will discuss two equivalent ap-
proaches intended to characterise quantum maps of every order. The first is a
constructive one: It is the one sketched by Kretschmann and Werner to encom-
pass causal automata [25] and later exploited by Gutoski and Watrous to establish
a general theory of quantum games [26]. A clear satisfying treatment thereof can
be also found in Ref. [29] by Chiribella, D’Ariano and Perinotti. The second one
makes its moves from an axiomatical point of view, providing the definition of
quantum combs satisfying only one causal structure and quantum maps with a
definite causal structure thereof |27, 28| 29]. Further investigations — which will
be treated in Chapter [2] — tackled the problem of characterising combs satisfying
more than one causal structure and admissible quantum maps thereon [30, 31]. As
we will see, the feasibility of the latter manifests some open problems up to now.

1.3 Constructive approach to quantum maps

We devote this section to an excursus about the fundamental objects char-
acterising the constructive approach of quantum networks, also discussing their
mathematical properties, for which a physical interpretation in provided in Refs.
[26], 28], 29, [39]. In the following, we will extensively use the notation introduced
in Appendix [A]
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1.3.1 Deterministic Choi-Jamiotkowski operators

In the general description of quantum mechanics, quantum states are described
through density matrices on Hilbert space H of the system, i.e. positive semidefi-
nite operators p € L£(H) with Tr[p] = 1.

Deterministic transformations of quantum states are the so-called quantum
channels, a quantum channel C from states on H, to states on H; being a trace-
preserving completely positive map, with diagrammatic representation

—{c (1.2)

According to Lemmas[A.1.1, [A.1.2] [A.1.3] the Choi-Jamiotkowski operator cor-
responding to C is a positive semidefinite operator C' € L(H; ® Ho) satisfying
Try, [C] = Iy, -

It is immediate to see that a density matrix is a particular case of Choi-Jamiotkowski
operator of a channel with one-dimensional input space Hg: in this case the condi-
tion Try, [C] = I, becomes indeed Tr[C] = 1. This reflects the fact that holding
a quantum state is equivalent to having at one’s disposal one use of a suitable

preparation device. Thus a state is represented by
1

a= (13)

The application of a channel C to a state p is equivalent to the composition
of two channels, and is indeed given by the link product of the corresponding
Choi-Jamiotkowski operators

Clp) = C % p, (1.4)

which agrees both with Eq. (A.9) and Theorem m This situation can be
represented through the following diagram:
1 0 1

Clp) = = - (1.5)

The opposite example is the completely demolishing trace channel T(p) =

Tr[p], which transforms quantum states into their probabilities (of course, nor-

malised density matrices give unit probabilities): This channel has one-dimensional

output space H;, and, accordingly its Choi-Jamiotkowski operator is 7" = I5,. We
picture this channel as 0

— 1. (1.6)

Notice that the normalisation condition of the Choi-Jamiotkowski operator C' €
L(H1 ® Ho) of a channel C can be also written in terms of concatenation with the
trace channel as

C*]'Hl = I’Ho
(1.7)
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1.3.2 Probabilistic Choi-Jamiolkowski operators

In addition to the Choi-Jamiotkowski operators of deterministic quantum de-
vices, with which we have dealt in the previous subsection, one can consider their
probabilistic versions. A complete family of probabilistic transformations from
states on Hg to states on Hi, known as quantum instrument, is a set of CP maps
{C; | i € I} summing up to a trace-preserving CP map C = Y., C;. The corre-
sponding Choi-Jamiotkowski operators {C; | ¢ € I} are positive semidefinite op-
erators summing up to a deterministic Choi-Jamiotkowski operator C' = ., C;
with C x I3, = Ij,. For families of probabilistic transformations, the index ¢ has
always to be intended as a classical outcome, that is known to the experimenter,
and heralds the occurrence of different random transformations.

For one-dimensional input space Hg, a complete family of probabilistic Choi-
Jamiotkowski operators {p; | ¢ € I'} with ), p; = p, Tr[p] = 1 describes a random
source of quantum states. Applying the trace channel 7 after the source gives the
probability of the source emitting the i-th state: p; = Tr[p;] = p; * I, (of course
pi > 0and Y . p; =1).

For one-dimensional output space Hi, a complete family of probabilistic Choi-
Jamiotkowski operators is instead a POVM {P; | i € I}, Y. P, = I,

Measuring the POVM on a state p is equivalent to applying the random de-
vice described by {P;} after the preparation device for the state p, producing as
outcomes the probabilities

plilp) = p* Py = Te[pP]]. (1.8)

Apart from the transpose, which can be absorbed in the definition of the POVM,
this is nothing but the Born rule for probabilities, obtained here from the composi-
tion of a preparation channel with a random transformation with one-dimensional
output space.

In conclusion, states, channels, random sources of quantum states, quantum
instruments, and POVMs can be treated on the same footing as deterministic and
probabilistic transformations, which in turn can be described using only Choi-
Jamiotkowski operators and link product.

1.3.3 Memory channels

As it was said in Sec. [I.2] an ordinary quantum network is obtained by properly
assembling elementary circuits, each of them represented by its Choi-Jamiotkowski
operator. One can adopt the following convention, which appears to be very con-
venient for the description of quantum networks: If an elementary circuit is run
more than once, i.e. at different steps of the computation, one has to attach a

10
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different label to each different use, so that different uses of the same circuit are
actually considered as different circuits.

To build up a particular quantum network one needs in principle to have at
disposal the whole list of elementary circuits and a list of instructions about how
to connect them. In connecting circuits there are clearly two restrictions:

i) One can only connect the output of a circuit with the input of another circuit;
ii) There cannot be cycles.

These restrictions raise from the rules stated for the Quantum Circuit Model, which
we have reported in Sec. [I.I} In particular, they ensure causality, namely the fact
that quantum information in a network flows from input to output without loops.
This implies that the connections in a quantum network can be represented with a
directed acyclic graph (DAG), where each vertex represents a quantum circuit, and
each arrow represents a quantum system travelling from one circuit to another, as
it is shown e.g. in Fig. [I.1]

L

Figure 1.1

Notice that such a graph represents only the internal connections of a net-
work, while to have a complete graphical representation one should also append
to the vertices a number of free incoming and outgoing arrows correspondingly to
quantum systems that enter or exit the network. In other words, the graphical
representation of a quantum network is provided by a DAG where some sources
(vertices without incoming arrows) and some sinks (vertices without outgoing ar-
rows) have been removed. Fig. stands for an example of this situation. The
free arrows remaining after having removed a source represent input systems en-
tering the network, while the free arrows remaining after removing a sink represent
output systems exiting the network.

The flow of quantum information along the arrows of the graph induces a partial
ordering of the vertices: We say that the circuit in vertex vy causally precedes the

11



1.3 CONSTRUCTIVE APPROACH TO QUANTUM MAPS

NN

/

\/
7N

Figure 1.2

circuit in vertex vy (v; = wy) if there is a directed path from vy to vy. A well
known theorem in graph theory states that for a DAG there always exists a way
to extend the partial ordering < to a total ordering < of the vertices. Intuitively
speaking, the relation < fixes a schedule for the order in which the circuits in the
network can be run, compatibly with the causal ordering of input-output relations.
In general, the total ordering < is not uniquely determined by the partial ordering
=<: The same quantum network can be used in different ways, corresponding to
different orders in which the elementary circuits are run. For instance, Fig.
reproduces a totally ordered quantum network obtained by arranging from left to
right the vertices of the diagram in Fig. [I.2] according to a sequential ordering
compatible with the causal ordering fixed by input-output relations.

Figure 1.3

An ordinary quantum network with a given sequential ordering of the vertices
becomes an ordinary compound quantum circuit, in which different operations
are performed according to a precise schedule. Totally ordered quantum networks
have a large number of applications in quantum information, and, accordingly, they

12
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have been given different names, depending on the context. For example, they are
referred to as quantum strategies in quantum game theoretical and cryptographic
applications [26]. Moreover, a totally ordered quantum network is equivalent to a
sequence of channels with memory, as illustrated in Fig. [I.4] [28].

%o

X
[
S

€| [En

EN-1

Figure 1.4

We now report some results about deterministic quantum networks. We
omit their generalisation to ordinary probabilistic quantum networks, which is
not difficult to obtain. First of all, exploiting the associatively property of the
link product given by Theorem [A.2.2] it is straightforward to prove that the
Choi-Jamiotkowski operator describing a deterministic network made up by N
deterministic elementary circuits described by the Choi-Jamiotkowski operators
{00, .. >CN—1 ’CO < ce < CN—I} is given by

N-1

R(N):OO*Ol*"'*ON—IZ * C] (].9)

j=0

Furthermore the following theorem applies to deterministic memory channels,
providing a characterisation of their Choi-Jamiotkowski operators [29]:

Theorem 1.3.1. Let R™) ¢ £(®§£0_1Hj) be a positive operator satisfying the
relations

Trgj_l[R(j)] - I2j—2 & RU_I)? 2 < ] < N

1.10
r[RY] = L. (1.10)

where RY) |1 < j < n—1 are suitable positive operators. Then R™N) is the Choi-
Jamiotkowski operator of a memory channel.

Eq. is not a merely mathematical property but it has an important
physical interpretation. In fact it implies that the output of circuit C; is indepen-
dent of the output of circuit C; whenever C; causally precedes C;, namely whenever
C; < C;. This reflects the fact that the causal structure of such memory channels is

13



1.4 AXIOMATIC APPROACH TO QUANTUM MAPS

fixed, thus compelling the flow of information to proceed from the input of the first
channel to the output of the last channel without temporal loops. Theorem [I.3.1]
categorically assures us that Rule 3 characterising the Quantum Circuit Model is
not violated in setting up the just outlined constructive approach.

1.4 Axiomatic approach to quantum maps

An alternative procedure to the just treated constructive one can be set up
through an equivalent axiomatic approach, as it is pointed out in Refs. [27, 28| 29
and then revised in Ref. [31]. This approach has at its root the investigation
of the requirements that a quantum maps must fulfil in principle if one wants
to preserve the probabilistic interpretation of quantum mechanics. Taking on this
task, one should contemporarily discuss the type-theoretical aspects of higher-order
quantum maps and their natural domain definition.

We begin our discussion remembering that the most general transformations of
quantum states that can be performed in quantum mechanics are quantum opera-
tions, the deterministic subset of which is the set of quantum channels. Quantum
operations satisfy the two minimal requirements of linearity and complete positiv-
ityf]

Linearity is required by the probabilistic structure of quantum mechanics. In-
deed, if we apply the transformation C to the state p = ). p;p; — corresponding
to a random choice of the states {p;} with probabilities {p;} — then the output
state must be a random choice of the states {C(p;)} with the same probabilities,
i.e. C(p) = >, piC(p;). For the same reason, we should also have C(pp) = pC(p)
for any 0 < p < 1. These two conditions together imply that C can be extended
without loss of generality to a linear map on L(Hg), Hs being the Hilbert space
of the system.

Complete positivity is supposed to hold if we want the transformation C to
produce a legitimate output C ® Z4(psa) when acting locally on a bipartite input
state pga on Hg®H 4: in this case, this means that we want the output C®Z4(pga)
to be a positive matrix for any positive input pga.

Quantum channels are also trace preserving since they are deterministic due to
their definition, namely if C is a quantum channel the equality Tr [p] = Tr[C(p)]
must hold for all input states p.

Let us raise the level from states to channels, and ask what are the admis-
sible transformations of channels. Let us consider maps S from linear maps
T : L(H1) = L(Hs) to linear maps T : L(Hg) — L(H3).

In order to have compatibility with the probabilistic structure of quantum
mechanics, two conditions are required on the map S: It must be linear and it

2See e.g. [32].

14



1.4 AXIOMATIC APPROACH TO QUANTUM MAPS

must preserve complete positivity with respect to any extension. Thus we can
state the following [27]:

Admissibility conditions for S
i) Linearity;

it) Local Complete Positivity, i.e. S it is supposed to preserve complete positiv-
ity with respect to any extension.

The property of being locally CP will be formally given in Def. In practice,
condition 7i) requires that S must preserve complete positivity, also when applied
locally on some bipartite map. More explicitly, we require that if

R:L(H) @ L(HA) = L(Hy) @ L(Hp) (1.11)
is CP, then also
R =(S®I)(R): L(Ho) @ L(HA) = L(H3) ® L(HE) (1.12)

is CP. We will come back on this tricky point in Sec. in which it will be also
proved that a locally CP map is also a CP map [31].

An equivalent characterisation of these conditions can be obtained considering
the conjugate map S of S, defined as follows:

S=¢oSoc¢™! (1.13)

which transforms the Choi-Jamiotkowski operator 1" of T into the Choi-Jamiotkowski
operator 1" of the map 7' [| The constraints that S must satisfy to be declared
admissible are analogous to the ones we stated for S [27, 29]. Since S is in one-to-
one correspondence with S, we associate the Choi-Jamiotkowski operator S of S to
both of them. In this work we will systematically work with the map & instead of
S for simplicity, however the whole construction that follows must be intended as
dealing with transformations of transformations rather than with transformations
of operators, thus generating an infinite hierarchy of higher-rank quantum maps.

We now individuate a special class of higher-order quantum maps introducing
the following

Definition 1.4.1. A quantum 1-comb on (Ho, H1) is the Choi-Jamiotkowski op-
erator of a linear CP map SW : L(Ho) — L(H1), namely

S =¢(sW). (1.14)

3The map € is formally defined in Def.

15



1.4 AXIOMATIC APPROACH TO QUANTUM MAPS

For N > 2 a quantum N-comb on (Ho,...,Han_1) is the Choi-Jamioltkowski
operator of a linear CP N-map, i.e. a linear CP map transforming (N — 1)-combs
on (Hi,...,Hon_2) into 1-combs on (Ho, Hon_1).

The set of generic N-combs defined on (Ho, ..., Han—1) will be denoted with
comb (7‘[0, . ,7‘[2]\771).

Quantum combs can be classified whether they are deterministic or probabilis-
tic:

Definition 1.4.2. A deterministic 1-comb is the Choi-Jamiotkowski operator of
a channel. A deterministic N-comb SW) is the Choi-Jamiotkowski operator of a
deterministic N-map, i.e. a map SW) that transforms deterministic (N —1)-combs
into determanistic 1-combs.

Definition 1.4.3. An N-comb R™) on (Ho, ..., Han_1) is probabilistic if there
is a deterministic N-comb SW) such that R&Y) < SN,

From a type-theoretic point of view Def. generates an infinite hierarchy
of types via the following procedure:

e A quantum 1l-comb is the type of a quantum channel;

e A quantum (M + 1)-comb is defined as a map from M-combs to quantum
channels.

These types are called N-maps. As we will see in Chapter [2, N-maps do not cover
all the admissible maps one can define in quantum mechanics.

We now state some theorems that outline the set of quantum N-combs pro-
viding some properties of them [29]. The first one is a capital characterisation

theorem:
Theorem 1.4.1. A positive operator SN) on ®i£gl Hy is a deterministic N -
comb if and only if the following identity holds:

Tr2j71[8(j)] =l 2 ® SUTD 2L <N

1.15
TI'l[S(l)] = I(), ( )
where {SYW|j =1,..., N — 1} are deterministic j-combs. Equivalently:
SWslyy =80 Vsl o, 2<j<N
2j—1 2j—2 J (1.16)

S(l)*ll = Io.

In the proof of Theorem the following Lemma plays a crucial role:
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1.4 AXIOMATIC APPROACH TO QUANTUM MAPS

Lemma 1.4.1. The set of positive operators R™) such that RN < SWN) for some
SN satisfying Eq. (1.15) generates the positive cone in L( i]io_l Hy)-

Lemma is also important since it shows that the cone generated by
probabilistic N-combs in L( i]lo_ ! Hy) is the whole cone of positive opera-
tors.  Thus Theorem proves that the deterministic N-combs SW) ¢
comb(Hy, ..., Hon_1) form a convex set Ky which is the intersection of the cone
of positive operators with the hyperplanes defined by Eq. (L.15]), which is the
mathematical translation of causal ordering. Indeed this equation reflects the
semicausality property [34] for transformations occurring at teeth j and 4, with
J < 1, namely the independence of the j-th transformation from the i-th transfor-
mation for j < ¢. In other words a system j can transmit information only to that
systems ¢ such that ¢ > 7, while other possibilities are excluded.

From the comparison of Theorem with Theorem we straightfor-
wardly derive the following equivalence theorem:

Corollary 1.4.1. A deterministic N-comb is also the Choi-Jamiotkowski operator
of an N -partite memory channel.

A realisation scheme for any admissible N-map is provided by the following

Theorem 1.4.2 (Realisation of admissible N-maps). For all N, any deterministic
N-map SN can be achieved by a physical scheme corresponding to the memory
channel whose deterministic N-comb is S™. Let TW=Y be any (N — 1)-comb in
comb(Hi, ..., Hon_2). The transformation

S0 4 O 1y ) = S0 (7)) (1.17)

can be achieved by connecting the two memory channels represented by SN and

TW=1 as in Fig. .

Y WN—2

< | I||||J

10 " VN—2

N—-1

|
|||||J

Figure 1.5

It is worth noticing that, within this axiomatic framework, N-partite memory
channels are derived from the recursive construction of admissible higher-order
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1.4 AXIOMATIC APPROACH TO QUANTUM MAPS

maps, rather than being assumed as a particular type of channels with addi-
tional causal structure. In the axiomatic approach, the quantum memory channel
emerges in the Russian-dolls construction of maps on maps and the causal struc-
ture is generated by the map-recursion.

We will see in the following chapter that does exist other maps that are ad-
missible according to quantum theory, but that they cannot be traced back to
N-maps, thus being not achievable through implementing any memory channel.
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Chapter 2
Admissible (N — M)-maps

In this chapter we will pursue the study of another class of admissible quantum
maps, namely those maps which take as input an N-comb and output an M-
comb without violating the theoretical structure of probability theory. As we will
see in Sections [2.1] and the treatment of this argument requires a particular
attention. Indeed from Refs. [631] one clearly evinces that some simple maps can
be doubtless defined, nevertheless they cannot be realised resorting to Theorem
This fact implies that memory channels are not universal for higher-order
computation. A further consequence is the fact that the Quantum Circuit Model
would not be the ultimate computational model for higher-order quantum maps.

The prototype of those maps that cannot be simulated through resorting to
the procedure given by Theorem is the Quantum Switch Oracle (from now
shortened in QS0), viz. the extension by linearity on the ancillary qubit of the gate

that takes as input a control qubit |z) and two quantum operations and

—@— and outputs

_ if - fo) =)
S(|x>,,—@—)—{ S & - (2.1)

We will investigate the physical grounds of this impossibility in Sec. and
we will provide a probabilistic simulation of the switch of two channels via post-
selected teleportation in Sec.

2.1 The Currying Theorem

In Sec. [I.4 we dealt with maps of type N — 1, whose Choi-Jamiotkowski oper-
ator is a quantum comb by definition, can be realised through a memory channel
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2.1 THE CURRYING THEOREM

via an isomorphism relation. Besides N — 1 maps, one can also consider admis-
sible (N — M)-maps, i.e. maps transforming N-combs into M-combs and tackle
their type-theoretical characterisation along with a suitable realisation procedure
thereof. In concert with what we just declared we give the following

Definition 2.1.1. An (N — M)-map S¥=M is an admissible map transforming
N-combs into M-combs. We say that SN7M is deterministic if it sends determin-
istic N-combs into M -combs.

In this way we are introducing new types N — M, which generally are not
reducible to types N — 1 unless we impose some other constraint, as it was made
in Ref. [29]. We will come again on this remarkably point in the following of
the section. The admissibility condition of a S¥?M will be studied in the case
N =M =1 in Sec. 2.2.2

We also give the following

Definition 2.1.2. The product type N x M 1is the type of the tensor product
operator R™) @ T where R™) is an N-comb and T™) is an M-comb.

We now report the Currying Theorem which states the following type isomor-
phism among higher-order quantum maps:

N—-(M-—-1)=NxM-—1 (2.2)

Theorem 2.1.1 (Currying). Let S¥7M*+! be q (N — M+1)-map. Then SN7M+1
is in one-to-one correspondence with a CP map SN*M=1 that transforms ten-
sor product operators RN @ OM) of N- and M-combs into 1-combs. Moreover
SN=M+L s deterministic if and only if SY*M=1 transforms tensor product of de-
terministic combs into channels.

Proof. Suppose that SN+ maps an N-comb R™) into an (M + 1)-comb
RWMHD) — SIN=MA1)(R(N)Y Tn term of Choi-Jamiotkowski operators we have

The map R+ associated to R™M*1 acts on a generic M-comb O™) ag

R/(M+1)(O(M)) — Q_I(R/(M+1))(O(M)) — R/(M—H) % O(M) —
= ¢(SW=MHDy 4 RV 5 OM) — (2.4)
_ Q:(S(N%MJrl)) % (R(N) ® O(M))

Thus the map SY=M+D induces a map SN*M=1 from tensor product operators
into 1-combs defined as

S(NxMﬂ)(R(N) 2 O(M)) - €(S(NHM+1)) " (R(N) Q O(M))- (2.5)
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2.1 THE CURRYING THEOREM

This map sends tensor product operators into a 1-comb, which is deterministic if
NxM—1)

R™) and OW) are deterministic. On the other hand, given a map S , we
can define

S(N—>M+1)<R(N)) - €(£(N><M—>1)) % R(N). (26)
Clearly, if SNV *M=1) sends tensor product of deterministic combs into deterministic

1-combs, then SN=M+1 ig deterministic. W

The theorem can be easily generalized to (N — (M — P))-maps. Indeed,
the essential part of the proof is the associativity of the link product of three
Choi-Jamiotkowski operators, written for the special case in which the two opera-
tors R™) and O™) have no spaces in common]

(Q: (S(N%(MﬁP))) % R(N)) «OM — ¢ (5(N%(MHP))) " (R(N) Q O(M)) (2.7)
which immediately leads to
N—(M-—P)=ZNxM-—P. (2.8)

An N x M pair has globally N + M teeth, so that every admissible map on
N x M pairs accepts as input an object with N + M teeth. However, from an
accurate reading of Theorem [2.1.1] it was realised in Ref. [31] that maps admissible
on pairs are not maps of type N — 1 for any NV, since they are in correspondence
with higher-order types. The hierarchy of higher-order quantum maps collapses
on the comb level only if one states the hypothesis of compatibility with remote
connections [29], accordingly to which one must fix the causal order of the teeth
constituting the N x M pair before inputting the pair itself into an admissible map.
Indeed, under this hypothesis, any uncurried N — M map must be a map of type
(N + M —1) — 1 for some ordering of the (N + M — 1) teeth belonging to the
input comb. These maps can be performed resorting to Theorem by linking
the (N + M —1) input comb with an appropriate (N + M )-comb. In conclusion, we
can say that the hypothesis of compatibility with remote connections guarantees
that the hierarchy of quantum maps collapses on the comb level. Nevertheless, if
one introduces the hypothesis of compatibility with remote connections, then one
prevents a genuine treatment of higher-order quantum maps.

What we have just said implies that we are not allowed to simulate those maps
of type N — M that are not in correspondence to a map of type P — 1 through
an ordinary quantum circuit — namely a circuit satisfying the four prescriptions
required by the Quantum Circuit Model of computation. We will provide in Sec.
[2.3] a significant example of a map that cannot be achieved through an ordinary
quantum circuit. This map is the switch of two quantum channels.

'In this case the link product operator coincides with the tensor product operator, as a

consequence of Eq. (A.22)).
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2.2 THE LARGEST NATURAL DOMAIN OF UNCURRIED (1 — 2)-MAPS

2.2 The largest natural domain of uncurried (1 —
2)-maps

We now desire to individuate the largest natural domain on which uncurried
(1 — 2)-maps maps can be defined. Thanks to some results proved in Refs.
[30), B1] we will see that uncurried (1 — 2)-maps are well defined on deterministic
and probabilistic quantum no-signalling channels. This set will also turn out to be
the largest natural domain on which uncurried (1 — 2)-maps are well defined.

Broadly speaking, what we have just claimed will be proved stating firstly
the admissibility conditions of uncurried (1 — 2)-maps on factorizable channels
and then providing suitable theorems implying that such admissibility conditions
guarantee the admissibility of uncurried (1 — 2)-maps on no-signalling channels.

Before taking on this domain characterisation problem, we have to provide a
formal definition of factorizable, localizable and no-signalling channels, along with
some properties of them which are essential to achieve our goal.

2.2.1 Factorizable, separable, localizable and no-signalling
channels

Definition 2.2.1. A bipartite quantum channel C : LIA)RL(B) — L(A)QL(B') is
factorizable if it can be realised by local independent operations on A and B, namely
if there exist two quantum channels Ga : L(A) — L(A) and Gg : L(B) — L(B')
such that C = Go ® Gg. Pictorially:

A A
A A’ Ga
B|C|B = . (2.9)

- Yap

The Choi-Jamiotkowski operator of a bipartite factorizable channel as in Def.
is a factorizable operator in L(A’® B’ ® A® B). This is easy proved ex-
ploiting the identity |I) ({|ags aep = |I){({|aa @ |I){(I|s 5 in the definition of
the Choi-Jamiotkowski operator of the channel itself.

We also notice that the set of bipartite factorizable channels is not closed under
linear combination. This will forbid us to choose it as a well defined domain for
any linear map.

Definition 2.2.2. Separable channels are convex combination of bipartite quan-
tum operation, namely channels whose Choi-Jamiotkowski operator is separable

with respect to LIA' ® A) ® L(B' @ B).
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2.2 THE LARGEST NATURAL DOMAIN OF UNCURRIED (1 — 2)-MAPS

Definition 2.2.3. A channel C : L(A) ® L(B) — L(A") ® L(B') is localizable if
it can be realised by local operations on A and B with a shared entangled ancilla
on a couple of d-dimensional systems Ea,Eg in a generic state |V)) but without
communication: A A/

A/ Ea| Ga
clp = [|) |Es . (2.10)
B Op | B

A
B

Definition 2.2.4. A bipartite quantum channel C : L(A)®@ L(B) — L(A") ® L(B’)
is A -» B’ no-signalling if

Tra [Rc] = Ipn ® Spp'. (2.11)

where Spp' is the Choi-Jamiotkowski operator of some channel S : L(B) — L(B').
We say that C is no-signalling if it is both A -» B’ no-signalling and B - A’
no-signalling.

Unlike the set of factorizable channels, the set of no-signalling channels is a
closed set under linear combination. This property is enjoyed thanks to the lin-
earity of the trace operation. In fact if £ : L(A) ® L(B) — L(A") @ L(B') is
no-signalling and £ : L(A) ® L(B) — L(A’) ® L(B') is also no-signalling we have
the following

Tra/[Re] = Ix ® Sewr N Tra[Re + Rl = Ia ® Spp + Ix ® Shp
Trar[Re] = I ® Sgp = 1a®(Sep + Spp) -
(2.12)
A characterisation of no-signalling channels is given in Ref. [31] [33] by:

Theorem 2.2.1. The following are equivalent:
1. The channel C : L(A) @ L(B) — L(A") ® L(B’) is no-signalling

2. There are equivalent d-dimensional quantum systems Ea, Eg, instruments
{C ) sex and {DS}pex with outcome space X, and channels CY) and DY
for each x € X with

CY): L(A) ® L(Ex) — L(A)
(@) /
CB( | L(B) ® L(Ep) — L(B) (2.13)
DY : L(B) ® L(Ep) — L(B')
DY 1 L(A) @ L(Ex) — L(A)
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such that
c=> ¢ oCd (dI) (e x,)

reX

x) . (2.14)
=> "DV o DY (A 1) (Il k)
zeX
namely, C has the two equivalent circuital realisations
A A’
Eal ¢V | X
L) [Ep ol (2.15)
Cp
B B’
A A’
B (2)
1 Dy
78|I>> Eg X : (2.16)
B DY’ B

The set of localizable channels is a proper subset of the set of no-signalling
channels. This is proven through Theorem itself, which shows that the most
general no-signalling channel differs from a localizable channel because it also ad-
mits a single round of classical communication, with the constraint that it must be
possible to implement the channel exploiting communication in either directions.

For a multipartite channel satisfying two different no-signalling conditions, an
analog of Theorem holds. In fact, let us consider a a channel C with input
systems labelled by a set of indices | and output systems labelled by a set O.
Suppose that C satisfies the following no-signalling conditions

Tro/ [Rc] = I|/ X Sa v

, (2.17)
TrO// [RC] == I|// X TO”UV’

for certain subsets I,1” C 1 and O’,0” C O, where S represents the set complement
of S, and for suitable Choi-Jamiotkowski operators S and 7. Following the proof
of Theorem [2.2.1] we can show that two circuits realising C are

v o 0’
Ca
1) = (Iny Pl e
’ o Dy o”
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In general the subsets I',I” are not a partition of I. In this case we have that
the circuits cannot be realised partitioning the systems between the two local
parties A and B. In particular the input systems in I’ 017 are always assigned
to the party which sends the classical message, and input systems in I' 01”7 are
assigned to the party which receives the classical message (and similarly for output
systems). One can also consider more complex scenarios, i.e. channels with more
than two no-signalling conditions of the kind in Eq. , or channels with
nested conditions, for example when the Choi-Jamiotkowski operators S and 7" in
Eq. satisfy no-signalling conditions on their own. However the analysis of
the classical communication required in these cases is complicated, and it is an
open problem.

We also report that there exists a simple crucial example of a separable
no-signalling channel which is not a localizable operation, which has been reported
in Ref. [36]. This is an implementation of the PR box introduced in Ref. [35].

Furthermore we can provide an example of a channel A : L(A;, ® B;,) —
L(Aput @ Boyt) that is both separable and signalling. In fact let { P;} be a complete
family of Choi-Jamiotkowski operators with one dimensional output space, {p;}
be a complete family of Choi-Jamiotkowski operators with one dimensional input
space and « € [0,1]. The Choi-Jamiotkowski operator of the claimed channel is
given by

A= Z (P,®p;) @ (Py@p) + (1 —a) (P p) @ (P;@p)). (2.19)

The pictorial representation of A is

A ZOZ in out +(1_OZ) Bm
@ B

It clearly follows from Eq. (2.19) that A is separable. Nevertheless A does not
satisfy the property in Eq. (2.11)) or an analogue thereof changing the roles of A;,
with B;, and of A,,; with B,.

No-signalling and localizable channels also enjoy the remarkable property ex-
pressed in the following [31]

B, (220)

Theorem 2.2.2 (Semigroupoid property). Consider bipartite channels

S € LIL(Ho®Hi), L(Ho @ H3)),

T € ﬁ(ﬁ(?‘[g ® Hg), ,C('H4 ® 7‘[5)) (2.21)

If they are both no-signalling (localizable), then their composition T o S is
no-signalling (localizable).
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We used the term semigroupoid instead of semigroup because a in a semigroup
we require the every pair of elements are composable. Maps, on the other hand,
can be composed only if input and output spaces match.

2.2.2 Admissibility constraints for uncurried (1 — 2)-maps

We now come to individuate the constraints that deterministic uncurried (1 —
2)-maps must satisfy to be compatible with quantum mechanics. Theorem m
states that deterministic uncurried (1 — 2)-maps are nothing but deterministic
(1 x 1)-maps, namely maps that send two bipartite factorizable channels in one
deterministic channel. The set of bipartite factorizable channels is not a closed
set under linear combination, the latter being a fundamental property that a valid
domain of every higher-order quantum maps is supposed to satisfy, as it will be
soon pointed out.

The smallest set which contains all the bipartite factorizable channels and which
is contemporarily closed under linear combination is clearly the span of the same
channels. We now discuss the admissibility conditions for the elements of that
span.

A deterministic map S transforming bipartite factorizable channels into chan-
nels is required to be linear on the span of bipartite factorizable channels, in order
to be compatible with the probabilistic structure of quantum mechanics. This
follows from these two properties:

e If we apply the map to the channel € = . p; A; ® B; — corresponding to
a random choice of bipartite factorizable channels — the output must be a
random choice of bipartite factorizable channels with the same probabilities,

i.e. S(C) =), pi S(A; ® By);
e It must hold S(pC) = pS(C).

Another admissibility requisite for a deterministic (1 x 1)-map is to be locally
completely positive, whose meaning is set forth by the following general definitionP}

Definition 2.2.5. A map S"*M=1 . L(H1 @ Ho) — L(H3z, Ha) is locally CP if
S®Z is positive on positive tensor product operators Ry ® Ry with Ry € L(H1 @ K4)
and Ry € ﬁ(?‘[g & ]Cg)

The property in Def. is required if we want S to produce a legitimate
output channel when applied locally on an extended input, as it was discussed
in Sec. and in Ref. [27, [3I]. A bipartite factorizable map that enjoys this
property is trivially CP too.

2In Def. the Hilbert spaces on which the N- and M-combs are defined are to be intended
to possess their natural tensor product structure, namely H = ®i]i617-[i and H = ®f£0_17-[i.
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The third and last admissibility property for a deterministic (1 x 1)-map is
normalisation preserving, namely if S . L(Ho, H3)QL(Hy, Hs) — L(Ha, Hp)
is deterministic, then it must hold

where S is the Choi-Jamiotkowski operator of S [29]. We now prove that if a deter-
ministic map S'*!7! is normalisation preserving then it preserves normalisation
also when applied locally on an extended input.

Lemma 2.2.1. Consider a deterministic map S 171 L(Ho, H3) @ L(Hy, Hs) —
E(HA, HB) Then SQT : ﬁ(?‘[o R Ho, H1 ® Hg) & ﬁ(H4 ® Heg, Hs ® H7) —
L(Ho®@ Ha @ He, H1 @ Hp @ Hy) is normalisation preserving if S is normalisa-
tion preserving.

Proof. Let us define S = Q:(S), Rl = Q:(Rl), RQ = Q(Rg), CQAG,LB? = S*Rl *RQ,
where Ry : L(Ho @ Ha) — L(H1 @ H3z) and Ry : L(H4 @ He) — L(Hs @ Hy) are
two quantum channels. After having traced on the output spaces Hi, Hp, Hr, the
Choi-Jamiotkowski operator of the network is

X=CxIlixIgxI;

= (Sx1Ip)*x(Ry*x11)® (Ry* I7). (2.23)

Since S, Ry, Rs are deterministic Choi-Jamiotkowski operators, Eq. (2.23]) becomes

X =14%1yx I (2.24)
= L 406- '

This completes the proof. W
We synthesise the discussion we formulated up to now in this section stating
the following

Admissibility conditions for deterministic (1 x 1)-maps

A deterministic (1 x 1)-map is admissible if it is
1. Linear;
2. CP;

3. Normalisation preserving.

We now move on to the admissibility conditions for probabilistic (1 x 1)-maps.
These conditions are not difficult to find, because they coincide with the ones
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required by a deterministic (1 x 1)-map to be admissible, except obviously nor-
malisation preserving. This is straightforward to understand remembering that

since the higher-order map J = % ® % is factorized and deterministic, then every
Choi-Jamiotkowski operator X of a bipartite higher-order map X can be re-scaled
to a probabilistic one through a proper coefficient A\ < Wl)ar(){)’ where a,.(X)
is the greater eigenvalue of X. Thus we can enunciate the following:

Admissibility conditions for probabilistic (1 x 1)-maps
A probabilistic (1 x 1)-map is admissible if it is

1. Linear;

2. CP.

2.2.3 Individuation of the largest natural domain of un-
curried (1 — 2)-maps

We begin this section observing that the set of factorizable channels is a subset
of localizable channels. Hence, they are obviously no-signalling. This proves that
every map which is admissible on no-signalling channels is automatically admis-
sible on pairs of factorizable channels. This is true both for probabilistic and for
deterministic types of maps.

Moreover it holds the converse too, namely that every map which is ad-
missible on factorizable channels is also admissible on no-signalling channels.
One can become aware of this exploiting Theorem 14 of Ref. [30], in which
it is proven that if A : £(®,X;) — L(®",A;) is a no-signalling operation,
then its Choi-Jamiotkowski operator J(A) belongs to ®T;Q;, where each set
Qi € H(A; ® X;) denotes the subspace of Hermitian operators J(®) for which
o . L(X;) — L(A;) is a trace-preserving super-operator, or a scalar multiple
thereof. We now present a slightly different form of that theorem, that can be
found in [31].

Theorem 2.2.3. Consider a Hermitian preserving map
XeLLA®B®C), LA @B «C)) (2.25)

along with its Choi-Jamiolkowski operator X = €(X). Then the following are
equivalent

1.
X € comb(A, A") ® comb(B, B’, C, C') N comb(ABC, A'B'C’) (2.26)
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X €comb(A, A", B,B',C,C") N comb(B,B, A, A", C,C")N (2.27)
Ncomb(B,B’,C,C', A, A). '

Proof. (1) = (2) Obvious.

(2) = (1)

Let {E'};ey be an operator basis for £(A ® A’). Then one can find operators
X" such that

X = Z EAA/ ® X]i?)B’CC’ (228)

1€]

Let us consider a dual set of operators E7, such that
E? % E' = 6;k; (2.29)
for some real numbers £;. Exploiting the normalisation of X we have that
(X xIor) * Ef = (Ic @ Yanmw) * EAy = Ic ® (Yaams * EXy), (2.30)

for some operator Y. On the other hand, by the properties of link product we can
also write

(X*EJAA/) *]C/ = (Z E;/\A’ ®X}7:3B’CC/> *EA‘ZAA/ *.[C’ —
i€l (2.31)
=Y Eaw * By © Xipoo * lo = kiXf oo * Lo
i€l
Posing R{;B, = k’j_l(YAA/BB/ * E/J'X ) we can conclude that
Xhpoo * Lo = Ic @ Rl (2.32)

with R%B, * I proportional to Ig. Thus we have proved that each X7 is propor-
tional to an element in comb(B, B, C, C’). Now, choosing J' C J such that {X7},cy
is a maximally linearly independent subset, we can write

X =) Za® Xdpoo (2.33)
jev

for suitable operators Z7. The same argument proves that each Z7 is proportional
to an element in comb(A, A’). W

Thanks to what we have shown up to now in this section, we are in position to
assert the following
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2.3 THE NO-SWITCH THEOREM

Lemma 2.2.2. The span of factorizable channels coincides with the span of
no-signalling channels.

We now state the following

Theorem 2.2.4. Let S be an admissible map on the span of bipartite factorizable
channels. Then S is also admissible on the span of no-signalling channels.

The proof of Theorem becomes straightforward if we show that a SV*M=1
map being locally CP on no-signalling channels is also a CP map on the same, as
stated in the following

Lemma 2.2.3. Consider a map SN*M=1 . L(H, @ Hy) — L(Hz,H4) as in Def.
[2.2.3, Then SN*M=1 js also a CP map.

Proof. The Choi-Jamiotkowski operator of SV*M=1 g
§ = SV @ T (ID) (e kroxs ) (2.34)

Since | 1) (Tssens o = 11T @ [T, the Tocally CP property of
SN*M=1implies that the Choi-Jamiotkowski operator S is positive, hence the map
is also CP. H

Proof of Theorem From Lemmal[2.2.2]it comes that linearity of S on one
of that spans implies linearity of S on the other. Instead, combining Lemma [2.2.2
with the linearity of the trace one has that if S is normalisation preserving, then a
normalised map on one of that spans is also normalised on the other. If S is locally
CP on one of that spans, then S is also locally CP on the other span. We noticed
in Sec. that a map being locally CP on the span of bipartite factorizable
channels is also a CP map. Lemma states that the same holds for a map
defined on the span of no-signalling channels. Thus a map which is linear, CP
and normalisation preserving on the span of factorizable channels enjoys the same
properties on the span of no-signalling channels. This proves the thesis of the
theorem. W

2.3 The No-Switch theorem

We pointed out in Sec. that maps admissible on pairs are not maps of
type N — 1 for any N, unless one postulates the hypothesis of compatibility with
remote connections. We now provide a notable example of map which is admissible
on no-signalling combs and yet cannot be traced back to a N — 1 map. This is the
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2.3 THE NO-SWITCH THEOREM

switch map W, which takes as input a no-signalling comb and outputs a bipartite
channel

W : comb(A, A", B,B’) N comb(B, B, A, A") — comb(XC, X'C’), (2.35)

where X and X’ are qubit systems. Pictorially we have

(2.36)

In the simplest version of the switch, A, A’, B, B’, C,C’ are quantum systems with
the same dimension. The map W is defined as follows: on a pair of combs (F, G)
representing channels (F,G) (i.e. on an object of pair type), it gives the com-
position €(F o G) or €(G o F), depending whether the control qubit is |0) or |1)
respectively. The map is then extended by linearity to every state [) = a|0)+5 |1)
on the control qubit. If the switch map is fed with the following input

0 1 2 3

Nk gl , (2.37)

then the Choi-Jamiotkowski operator of the switch map is

WIEF®G) = [I){I]2* (2.38)
% (100) o3 @ To1,23 + [11) 4 g @ Eor,23) (Fo1 @ Gaa)
((00] 45 ® To1,23 + (11| g5 ® Eo1.23) ,

where Ey; 93 is the Choi-Jamiotkowski operator that describes the mutual exchange
of the two teeth F' and G.

This map is clearly admissible on pairs, according to the admissibility condi-
tions that we stated in Sec. [2.2.2] Thus the switch map is well-defined also on the
set of no-signalling channels too, as it was proved in Sec. 2.2.2] Nevertheless, the
switch cannot be implemented as quantum comb, as it is proved in the following

[6]

Theorem 2.3.1 (No-switch of boxes). The map W is not realisable as determin-
istic quantum comb.
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2.3 THE NO-SWITCH THEOREM

Proof. Suppose by absurd that W is realisable as deterministic quantum comb,
1.e. it admits a circuital realisation as follows

C/
X/ (2.39)

Then, we can apply it to a couple of linked swap gates as follows:

(2.40)

C E E c’
X | W Wy W5 | X/

and obtain a properly normalised quantum channel. But, for |¢)) = |0), the defi-
nition of the switch map leads to

C E E C L L »
> BBl 0 % |
W, W, W C D), @4

@ ' C (4

(where the control qubit X’ has been traced away). The right hand side of this
equation does not satisfy the normalisation conditions for an admissible quantum
comb. This contradiction implies that no such realisation as Eq. (2.39)) exists. W

Theorem shows that the set of admissible maps on the span of no-signalling
channels is strictly larger then the set of quantum combs. It is not known how to
characterise this set of maps in terms of a universal set. It is proposed that the
following holds:

Conjecture 1. The set of admissible transformations on bipartite no-signalling
channels is generated by the switch map W and the quantum combs.

More generally, we can ask whether there is a universal set which generates
every possible higher-order map, including all maps which are admissible on various
sets of no-signalling combs. If Conjecture [1] is true, it is established a broader
computational model than Deutsch’s ordinary Quantum Circuit Model, whose set
of universal gates is given e.g. by the set single qubit transformations, the CNOT
gate and the QS0, namely the gate which implements the switch function.

Apart from the validity of Conjecture [T}, we will refer to a quantum network in
which any QS0 is contained with the name dynamical computational network, to
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2.4 SWITCHING CHANNELS THROUGH POST-SELECTED TELEPORTATION

distinguish it from an ordinary quantum circuit. This definition was chosen since
a simplified version of the QS0 could be intuitively implemented by a machine with
two slots [6], in which the user can plug two variable boxes | f | and @ at his choice,
as in the following figure:

0
[a

The machine is programmed with the following code:

Program 1 (SWITCH)

if |z) = |1 do—{ f H9}—
if ) =[0) do—{g}f}—

We can imagine that the machine has movable wires inside, that can connect
the boxes | f | and @ in two possible ways depending on the state of the qubit |z),
thus implementing the SWITCH function. Ordinary quantum circuits, however, do
not have such movable wires. They can have controlled swap operations, but once
a time-ordering between and @ has been chosen in the circuit, there is no way
to reverse it.

2.4 Switching channels through post-selected tele-
portation

Let us now focus our attention on the computational rules that characterise
the Quantum Circuit Model — which were listed in Sec. — and let us try to
understand which are the constraints that prevent the feasibility of the QS0 through
an ordinary quantum circuit.

The first limitation arises from the fact that the two channels inputting the QS0
are restricted to be called once, so that the circuit must contain boxes | f | and
only once (due to Rule 4) and in a definite time order (due to Rule 3). Indeed, a
computational circuit that produces the same output of Program [I] actually exists,
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2.4 SWITCHING CHANNELS THROUGH POST-SELECTED TELEPORTATION

but it requires two calls to both oracles and @ as follows:

|z)

) 7 L (2.42)
S S

0) UHIH

The circuit in Eq. (2.42) achieves the desired transformation over the qubit in
_’_

the state |¢)) depending on the state of the control qubit |z). Here — st is a

control-swap gate, which exchanges the two input qubits depending on the state
of the control qubit. Nevertheless, if the input are two black boxes , @, the
possibility of achieving two uses from a single one is ruled out by the no-cloning
theorem for boxes [37]. Again, the limitation due to the single call constraint is
strictly related to the “physical” nature of the unknown black boxes and @ If

we knew what and @ are, we would be able to duplicate them, thus making

possible the computation of the function S <|:17> ,, @) through the circuit in Eq.
(2.42).

Another factor that forbids the implementation of Program [I] as a compu-
tational circuit is the requirement that the program succeeds deterministically.
Indeed, the prescriptions embedded in the Quantum Circuit Model do not hinder
to achieve the same output of the QSO probabilistically. In particular, a compu-
tational circuit that uses post-selected teleportationﬂ succeeds in the task with
probability 1/4 is the following

[X] (2.43)
S S
-
ot E
Here - is a maximally entangled state of two qubits — i.e. an element of

q)Jr

the Bell basis — and denotes the projection on |®*)), which is an outcome

of a Bell measurement. The gate represents the Pauli ox operation on the

3See e.g. Refs. [38, 39, [40] for particular details on this protocol.
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2.4 SWITCHING CHANNELS THROUGH POST-SELECTED TELEPORTATION

control qubit. When the outcome E occurs in this circuit, we may say that the
third qubit from the top has been teleported from the future back to the past. In
this case it is easy to see that if the control qubit is in state |1) one obtains the

sequence “ followed by @” acting on the second input qubit, while if the control
qubit is in state |0) one obtains the other sequence “@ followed by ”. What

is more, if one puts the control qubit in the superposition % |0) + |1), then one
would get the superposition of the two orderings of the boxes, namely the output
of the circuit is proportional to UsUy |¢) ® |1) + U,Uy 1) ® |0), where [¢)) is the
input state of the qubit in the middle wire, and U; and U, denote the unitary
operators corresponding to boxes and @ respectively. Note, however, that

the probability of achieving the controlled switch of and @ transforming N

qubits goes to zero exponentially as 4=V versus the number N of input qubits for
each box. In fact, for each to be teleported qubit, Bob will hold the state that
Alice wants to teleport only if Alice makes a projective measurement on the same
entangled state she shares with Bob itself, that happens with probability 1/4.
Revising the post-selected teleportation scheme, we devise that the switch of

two boxes with an ordinary quantum circuit may be deterministically accomplished
introducing a loop in the circuit, as it is showed in Eq. ([2.44).

4‘)7
S (2.44)

C D

Nevertheless the loop represents a qubit that travels backward in time, thus vio-
lating causality as expressed by Rule 3.

In a certain sense, this simple example is complementary to the results of Ref.
[41], whose authors showed that closed time-like curves do not improve tasks of
first-order computation, like state discrimination. Here we have instead an impos-
sible higher-order computation that would become reliable by a quantum circuit
if a closed time-like curve were available. Note however, that the teleportation-
based model of time travel considered here is different from the nonlinear model
by Deutsch [42], which provided the framework for the results of Ref. [41].

=) =]
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Chapter 3

Programming dispositions and
permutations of channels

We evaluate in this chapter the possibility of programming controlled dispo-
sitions and permutations of N unitary channels and their superposition through
both an ordinary quantum circuit and a dynamical computational network.

We will start showing that the task of preparing all the possible disposition of
N arbitrary unitary channels {U;|i =0,...,(N — 1)} and superpositions of them
acting on a qubit system is efficiently achievable implementing an ordinary quan-
tum circuit made of two registers (the ancillary one that tallies NV log N qubits and
the fundamental one that tallies N qubits), in which O(NN?) elementary operations
are performed and each channel is utilised /N times.

We will then establish graphical rules to represent a dynamical computational
network and we will build up a network which efficiently programs controlled
permutations of N arbitrary unitary channels and superpositions of them. To
accomplish this task, it will be proved that one should have at disposal an ancillary
register made of N (N — 1) qubits and as many QSOs. Unlike the previous case,
here each input channel will be utilised once.

3.1 Programming dispositions of channels through
ordinary quantum circuits

It is given the following task:

Task 1. Let W = {U;|i = 0,...,N — 1} be a set of N unitary channels defined
on the space H of a qubit system. Build an efficient quantum circuit that lets the
state [1) of a generic qubit undergo one of the N possible dispositions of the N
above introduced channels, depending on the state of a control register.
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We will show in Section [3.1.2) that Task [I] has a straightforward solution if one
can solve the following

Task 2. Let U ={U;|1=0,...,N —1} be a set of N unitary channels defined on
the space H of a qubit system and let |1)) be a generic state of a qubit. Build an
efficient quantum circuit whose output is one of the N states U; 1), once again
according to the state of a control register.

We will solve Task |2 in the following section.

3.1.1 The C™(9) gate

We now outline the circuit that realises Task [2] in an efficient way, observing
the prescriptions that characterise an ordinary quantum circuit, which were listed
in Sec. .

Let us define a bijective function 8 : {U;} — {0,1}", with n = log N, which
assigns to each unitary channel U; the binary representation of its labelling number
1, preceded by as many Os as required to fill the string to n digits.

Now consider a circuit composed by two registers:

1. In the first one, made of n control qubits, the programmer inputs the desired
control state, whose representation in the standard basis of H®™ is given by
3(Us);

2. The second one is made of N qubits, initially prepared in the state |¢) ®
00" € H®N| where |¢) is the input state and |0) is a reference state
of H. In the following we will denote the jth wire of this register by W;
(j=0,...,N —1) or, alternatively, by Wg(,).

Our task can be achieved if one could efficiently implement an n-controlled
swap gate (from now on: C™(S) gate). Indeed, it would be sufficient to send the
system state from the wire Wy to the wire W; entering the desired unitary channel
U; and then to swap back the wires W; and W, using the C(")(S ~1) gate once the
state |¢) has undergone the channel U;, eventually obtaining the wire Wy in the
state U; [¢). This protocol is sketched in Eq. (3.1)).
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3.1 PROGRAMMING DISPOSITIONS OF CHANNELS THROUGH ORDINARY
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n
CONTROL REGISTER {
1
( 3.1
) — vy GV
W, [0}
SYSTEM REGISTER S S Dol st
Whn-1 Un-1

\

Such a gate can be realised resorting to (N — 1) single-controlled swap gates
(also known as Fredkin gates), carrying out this program:

Program 2 (C®™-SWAP)

e Put a Fredkin gate controlled by the first control qubit, which swaps the wire

WO...O with the wire WIO.A.O;
—— ——

n n—1

e for (k=1, k=n-1, k++)
Insert 2% Fredkin gates controlled by the (k + 1)th control wire that swap
each system register’s wire W ; (..o with the wire W 0...0 for every

s 1
N~ —— ~N ——
kE n—k—1 k. n—k—1

k-bit string s.

The circuital representation emerging from the first steps of Program [2| is de-
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picted in Eq. (3.2) for a generic value of n.

n

Let us count the number of Fredkin gates required to implement Program [2}

e the first step employs only one Fredkin gate;

e the kth step of the FOR cycle employs 2F Fredkin gates.

So the whole program needs

n—1
22’“ = 2" 1
. = N-1

Fredkin gates to perform the C™(S) gate.
Knowing that the following decomposition holds:

——

= (3.3)

and that the optimal implementation of the Toffoli gate requires 6 CNOTs and 9
single qubit operations [43] we conclude that one needs 17(N — 1) elementary
operation to set up a quantum circuit that performs the C™(S) gate.

'We remember that the set of single qubit operations in conjunction with the CNOT gate
constitutes an universal set of elementary operations [g].
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Having explained how one can implement a C™(S) gate in an efficient way
using O(N) elementary operations, we can exploit this resource to build the circuit
shown in Eq (3.2), which accomplishes Task [2| resorting to 34(N — 1) elementary
operations, viz. CNOT gates and single qubit operations.

Case N =8, n=3

We now illustrate as an example how Task [2]is achieved when NV = 8, n = 3.
Program [2] states that the C®(S) gate is obtained placing 7 Fredkin gates,
ordering them as they appear reading the second column of Table [3.1}

Table 3.1

Step of PROGRAM "C®™ -SWAP"

Fredkin gates to be placed in the circuit

Control wire

1st SWO,W4 1St
FOR cycle k = 1 SWo, W Swy W 2ne
k=2 SWQ,WU SW27W37 SW47W57 SW67W7 3rd

The circuit that realises the C®(S) gate when N = 8 is eventually depicted in

Eq. :

[\]
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Writing down for every i = 0,...,7 a Gray code that connects the string 8(U))
to the string §(U;) always starting to flip the appropriate digits from left to right,
one reconstructs for every i = 0, ..., 7 the path that the system state follows before
entering each box U;. Table synthesises all the possible cases.

Table 3.2

U; | 8(U;) | Gray code linking §(Up) to 8(U;) | Fredkin gates acting on [)
Uy | 000 000 None
U, | 001 000

001 S
Us | 010 000

010 S100.103
Us | 011 000

010 S100.103

011 Sw,, Wy
Us | 100 000

100 S
Us | 101 000

100 S

101 Svo, 9,
Us | 110 000

100 SWo, Wy

110 S
U | 111 000

100 S0,

110 SR

111 S

3.1.2 The dispositions-programming circuit

Let us define a bijective function T : D(U) — {0, 1}V &N which assigns one
and only one binary string of length Nlog N to each possible disposition of the
unitary channels belonging to the set U. In particular, 7 maps each disposition
Uiy - - - Uiy, to the string obtained juxtaposing 8(Uy, ) - - - 8(Uiy, )-

We are now in position to carry out Task [I| providing the circuit depicted in
Eq. , which is structured as follows:
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1. A control register, made of N log N control qubits, into which the program-
mer inputs a desired state whose representation in the standard basis of
HENeN g oiven by T(U; Ui,,)

Ny

2. A system register made of N qubits, initially prepared in the state |¢) ®
1YY" € HON | where [¢)) is the relevant state and |0) is a reference state of

H.

Let us define the sets of wires {C;|i = 1,..., N} by grouping n neighbouring
control qubits at times starting from the first one. The following property char-
acterises the circuit of Eq. (3.5)): for every k the set C; composed by n control
qubits regulates Uy, , namely the kth channel that the system state undergoes.

It is easy to see that one needs 34 N(IN — 1) elementary operations in order
to implement circuit , as the latter is built up by N Eq.——like juxtaposed
circuits.

What we said since now allows us to conclude that Task [I|is achievable by an
ordinary quantum circuit made of N log N ancillary qubits plus N system qubits
(whose first one is the relevant one and the other are garbage qubits) and resorting
to O(N?) elementary operations.

Cn (3.5)
¢
Wo |1/)> ] @ T @ — Ui(N)"'Ui(l) |¢>
S S-1 S St
Wyt [0) — ——Un-1[— — 1 Un-1— —

Case N=2,n=1

The resolution of Task [I| for NV = 2 is given by the circuit depicted in Eq (3.6).
The control register is made by two wires and our goal is accomplished resorting
to 34 - 2(2 — 1) = 68 elementary operations and utilising each channel twice.
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2 (3.6)
1
Wo |¢> ] — Ui(z) Ui(1) W})

Wi [0) —

S—l

We want to stress that if one feeds the control register with a non classical
state (i.e. a superposition state) then one gets an entangled state at the end of the
computation. We report two particular situations to the reader’s attention:

e The control register’s state is |®;) o< [01) + |10). The state of wire Wy will
consequently be |¥g) o [01) @ Uy Uy [¢) + |10) ® Uy Uy |tb) at the end of the
computation. Thus we find all the permutation without repetitions of Uy
and U; in the final entangled state.

e The control register’s state is |®3) o< |00) 4 [01) + |10) + |[11). The state of
wire Wy will consequently be |¥;) o [00) ® Uy Uy |¢) + |01) @ Uy Uy |¥0) +
110) @ Uy Uy [¢) + |11) @ Uy Uy |¢) at the end of the computation. Thus we
find all the possible dispositions of Uy and U; in the final entangled state.

As it happens in many other well-known quantum algorithms, what we have
just written displays in detail how the power of quantum computation allows one
to recover in the final state more than one (and potentially all the) possible outputs
of the circuit, each one entangled with the related control qubit.

3.1.3 Optimality

Can we claim that the circuit we provided in Eqs. (3.1) and (3.5) reach their

goal employing the minimum number of elementary operations or there is a more
efficient strategy with which one can achieve Tasks [2| and The following two

theorems ensure that in Sections|3.1.1] and |3.1.2] we gave the optimal solutions to

the aforementioned tasks, within the frame of the ordinary quantum circuitry.

Theorem 3.1.1. The circuit sketched in Eq. reaches its goal in the most
efficient way within the frame of ordinary quantum circuitry.
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Proof. Let X = {Xy,..., Xy} be a set of N elements. The minimum number of
yes-no questions that one must answer to univocally determine an element of the
set is given by the row bit content of the set X: rx = log|X|. Thus the minimum
number of yes-no questions that one must answer to single out an element of the
set U introduced in Task [2] is given by ry = n. This exactly corresponds to the
number of ancillary wires belonging to the control register of circuit in Eq. (3.2),
which we presented as a solution for Task [2]itself. Thus we can conclude that we
solved Task [2] using the minimum number of ancillary wires.

Let us now analyse whether the number of Fredkin gates we employed to as-
semble the circuit in Eq. is the minimal one. The best coding algorithm
whose goal is to single out an element of a generic set X made of N elements is
the following:

e Partition the set X in two halves X, = {XO,...,X%_l} and X; =
{X%7""XN—1};

e Answer the following question: “Which of the two halves Xq and X; does the
element X; belong to?” and retain the subset X; that contains the sought
element;

e Fork=1,...,n—1

- Partition the subset you retained in the previous step in two halves:
X s oand X 1, likewise it was made in the first step. Here s denotes
~~ ~~

k k
a string made o of k digits.

- Answer the following question: “Which of the two halves X ; ¢ and
~~
k
X s 1 does the element X; belong to?” and retain the subset X; that
~~
k
contains the sought element.

It is easy to verify that the strategy we adopted in writing Program [2| consists in
implementing the best coding algorithm we have reported just before, by encoding
the answer of the kth yes-no question in the kth digit of 8(U;) for every k and for
every ¢ and by inserting in the circuit appropriate Fredkin gates that let the state
|4) reach the desired wire Ws ().

In particular, the minimal number of Fredkin gates that one must put in the
circuit is clearly N — 1, as the number of wires that the state |1)) must be able
to reach from the starting wire Wy is indeed N — 1. Thus we can also claim that
circuit of Eq. provides us a solution of Task [2] resorting to the minumum
number of Fredkin gates.
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From what we pointed out in Sec. [3.1.1] it comes that the minimum number
of elementary operations one requires to fulfil Task [2is O(N). W

Theorem 3.1.2. The circuit sketched in Fq. reaches its goal in the most
efficient way, within the frame of the ordinary quantum circuitry.

Proof. The proof of this Theorem follows straightforwardly from Theorem [3.1.1]

In fact, since the elements of the string U; o - - - Uiy, are independent, the circuit
that accomplishes Task [I] in the most efficient way must be build juxtaposing N
circuits that optimally achieves Task [2| which is nothing but the circuit sketched
in Eq. (3.2)), as proved in Theorem [I]

This is just the way we devised in Section to build up the circuit outlined
in Eq. (3.9]), which we provided as a solution for Task [I] Thus the the minimum
number of elementary operations required to achieve Task [1|is O(N?). W

3.2 Programming permutations of channels through
dynamical computational networks

This section is devoted to establish a graphical scheme that suitably describes
dynamical computational networks and to solve a task whose requirement is similar
to the one of Task [I], in order to see whether dynamical computational network
are more powerful than ordinary quantum circuits in programming all the possible
permutations of N unitary channels.

3.2.1 Graphical representation of dynamical computational
networks
Let us now pick out the main rules that characterise a network in which one or
more QS0s are displaced. As we have pointed out in Chapter [2 the QS0 computes
a function which is not of type N — 1, thus being not performable through an
ordinary quantum circuit.
In order to overcome this drawback, we should devise a new graphical scheme

aimed to describe dynamical computational networks.
An effective circuital representation for the QSO is provided by the following

graph:
(A (BY

(3.7)
(A By
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Three kinds of vertexes appear in the graph of Eq. (3.7)):

e A;-kind vertexes with no input arrows and one output arrow, representing
the teeth of the no-signalling channel inputting the QSO;

e [B;-kind vertexes with one input arrow and no output arrows, representing
the teeth of the no-signalling channel outputting the QSO;

e The S-kind vertex with two input arrows and two output arrows, that repre-
sents the device performing the function whose Choi-Jamiotkowski operator

was given in Eq. (2.38)).

For sake of simplicity in the representation, we missed out in Eq. (3.7)) the wire
associated to the control qubit that rules the functioning of the QS0. We stress
that the arrows in Eq. (3.7) do not denote qubits, but they stand for channels.

3.2.2 Assemblage of the most efficient permutations-
programming network

We now investigate the possibility of programming all the possible permu-
tations of N unitary channels and superpositions of them through a dynamical
computational network, exploiting the graph representation we have settled on in
the previous subsection. More precisely, we try to achieve the following:

Task 3. Let U= {U;|i=0,...,N —1} be a set of N unitary channels defined on
the space H of a qubit system. Buwild an efficient dynamical computational network
which is able to program one of the N! permutations without repetitions of the N
above introduced channels, depending on the state of a control register.

We now provide a constructive solution to Task [3, which will also be proven
to be the efficient one. The graph whose sequence of output vertexes {B;|j =
0,...,N — 1} is ordered as one of the possible permutation without repetition of
the channels U; is assembled according to the following program:

Program 3 (PERMUTATIONS-PROGRAMMING NETWORK)

e Take the graph in Eq. 1) with { ﬁo i go and name Sfl) the only S-kind
1=Up

vertex. Let it be controlled by the wire sgl).

e FOR (k = 2, k = n-1, k++)

- Introduce the k QS0s Sl(k), .. ,Slik)§
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Substitute the vertexes :

I

Establish the connections Sl(f)l — Si(k) (t=1,...,k—1) and let each
(k).

)

vertex Si(k) be controlled by the wire s

Introduce the k B;-kind vertexes By, ..., By;

( ka) — By
Sik) — B

Establish the further connections Sék) —

Let us now tally the number of QS0Os that one needs to reach its goal when
|U| = N. Only one QS0 is needed in the first step of Program [3| whereas k of them
are required in the kth step of the FOR cycle. Thus Program |3| needs overall

N-1 1
1

3
Il

QS0s to reach its goal if U] = N.

The graphs emerging in the cases N = 3 and N = 4 are reported in Eqgs.
(3-8) and ([3.9), in which the control wires are omitted on the same aforementioned
grounds.
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(3.9)

Table lists all the six possible outputs of the circuit and provides for each
of them the corresponding control state(s). Notice that more than one control
register’s state can be linked to the same output.

Table 3.3
State of
BoBiBy | 1) (2 (2
51 1 S9
0) 10y ]0)
DUl o
U,U, Uy | 1) 10) 1)
Uy UgUp | |0) [1) 1)
UsU Uy | 10) 10) |1)
1) 10y [0)
VB0 o)
U, U0y | 1) 1) |1)

Program (3| reaches its goal in the more efficient way, as it will be proved in the
following

Theorem 3.2.1. Program [3 realises its goal in the most efficient way, namely
resorting to the minimum number of @S0s and to the minimum number of ancillary
control wires.

Proof. The QS0 is a computational resource which takes as input two channels and
answers the following question: “Which is the mutual ordering of the two channels
in the output string By ... By_1?7” The answer to this question is obviously a yes-
no-kind answer: either U; precedes U; or vice versa U; precedes U; in the output
string.
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The target of Program [3| consists in establishing the mutual ordering of the
input channels depending on the state of the control register, through assembling
a dynamic computational network made of QS0s. Thus the number of questions
that are supposed to be answered in that program equals the number of all the
possible couples that can be formed from the N input channels (A;, A;);;. Since
the number of different couples that can be formed from N objects is 3N (N — 1)
and this is also the number of QS0 and of ancillary wires that Program [3| requires
in order to achieve its aim when |U| = N, then the same program realises its goal
in the most efficient way. W

Unlike the situation we analysed in Sec. [3.1], the potentialities of a dynamical
computational network allow one to program any permutation of N channels with
only one use of each channel. Nevertheless a question raises comparing Theorems
[3.1.2] and [3.2.1; Why the ancillary wires required to achieve Task [l| are more
than the ones required to achieve Task [27 The answer to this question lies in
the different ways in which the circuit of Eq. and the dynamic network
emerging from Program (3| are built up for fixed N. In fact — as it was stressed
in Sec. — the circuit of Eq. is assembled resorting to N Eq.-(3.2)-like
juxtaposed independent circuits. Instead a dynamic computational network with
N inputs emerging from Program [ requires at each step of the computation items
of information about the mutual ordering of the channels that have been already
inputted in the previous steps of the computation.
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We now sum up the original results that we obtained in this thesis. The first
remarkable result is the establishment of a pictorial representation for dynamic
computational networks, namely for those networks in which any QSO0 is included.
Tackling the problem of programming dispositions and permutations of N unitary
channels and superpositions of them, we achieved the following results:

e Within the framework of ordinary quantum circuitry one can implement a
multiple controlled swap gate C(”)(S ) acting on a N qubit register resorting
to O(N) elementary operations.

e Within the framework of ordinary quantum circuitry one can program all
the dispositions of N unitary channels and superpositions of them utilising
each channel N times and resorting to O(N?) elementary operations, having
at disposal an ancillary register made up of Nlog N wires.

e Within the framework of dynamic computational networks one can program
all the permutations of NV unitary channels and superpositions of them utilis-
ing each channel once and resorting to O(N?) elementary operations, having
at disposal an ancillary register made up of %N (N — 1) wires.

What we discovered does not allow us to state whether the computational power
of dynamical computational networks is stronger than the one proper of ordinary
quantum circuits. The issue of looking for a task that is hard to solve through
an ordinary quantum computer and yet tractable implementing an appropriate
dynamical computational network still remains an open problem. Moreover we
cannot establish the truth of Conjecture [I] from our results.

Taking inspiration from Ref. [29], we wish to end the present work by posing
a question: “Can we say that any map which is in principle admissible according
to quantum mechanics is also feasible?” Put in another way, is there always any
experimental set-up with which one could realise any admissible map? If Con-
jecture [1] is true, the answer to this question will be affirmative if one is able to
experimentally implement the QS0. Some efforts to reach this last goal have been
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carrying on by Hall, Altepeter and Kumar in [44], but nowadays this is another
open problem.
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Appendix A

Mathematical preliminaries

This appendix is intended to fix the notation of the present work and to give
the reader coming from another major field of studies sufficient preliminaries about
linear maps and Choi-Jamiotkowski operators.

A.1 The Choi-Jamiotkowski isomorphism

Finite dimensional complex Hilbert spaces are denoted by H, with a label when
we need to distinguish them, as

Ho, M, ... (A.1)

A vector 1 belonging to a Hilbert space H; will be indicated with the “ket” notation
|4),. We will denote with £(#) the space of linear operator on a Hilbert space
‘H. The space of linear operators from Hy to H; will be denoted by L£(Ho, H1)-
Sometimes, especially in applications, this notation will be slightly modified, in
particular it is convenient to indicate Hilbert spaces with a roman letter (such as
AB, ...), in order to avoid the notational overburden of many numerical indices.
In the following we will always assume that any d-dimensional Hilbert space ‘H
is given with some fixed orthonormal basis [n) ,n =0,...,d — 1, such that we can
identify
H = C, (A.2)

Moreover, we can identify an operator A € L(Ho, H1) with a complex matrix
Apm = 1(n| A|m), . (A.3)
To express the well-known isomorphism

L(Ho, Hy) 2 Hy @ Ho (A.4)
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we will use the following explicit “double ket” correspondence

A€ L(Ho, Hi) < |ANo1 = (AR Ipyy) [ I3y, )

) (A5)
= (I, ® AV)|Iny))

where |I3)) = Zii:r%(m*l |n) |n), and the transposition is made with respect to the

fixed orthonormal bases.

Combining this isomorphism with the isomorphism L£(H; ® Ho) = L(H1) @
L(Ho) we also obtain a third fundamental isomorphism between the space of linear
maps from L£(Hy) to L(H1), and linear operators L(H; @ Ho):

L(L(Ho), L(H1)) = L(H1 @ Ho). (A.6)
The explicit correspondence is given by the following

Definition A.1.1 (Choi-Jamiotkowski isomorphism). The Choi-Jamiotkowski iso-
morphism is a bijection

C: L(L(Ho), L(H1)) — L(H1 ® Ho) (A.7)

which, for every map M € L(L(Ho),L(H1)) gives the following operator M €
L(H1 @ Ho)
M = M) = M & Lray) ([115)) (Lo ) (A.8)

The inverse transformation €1 defines a map €1 (M) acting on L(Hy) as follows
M(X) = CHM)(X) = Try,[(In, @ XT)M]. (A.9)

Lemma A.1.1. A linear map M 1is trace-preserving if and only if its Choi-
Jamiotkowski operator enjoys the property

Trg, [M] = I, (A.10)

Proof. The trace preserving condition is Tr[M(X)] = Tr[X]. Since
THM(X)] = Trl(B, © XTYM] = Toyg (X7 Trn [M]], (A1)

and Tr[X] = Tr[XT], the trace-preserving condition is satisfied for arbitrary X if
and only if Try, [M] = I,. B

Lemma A.1.2. A linear map M is Hermitian preserving if and only if its Choi-
Jamiotkowski operator M is Hermitian.
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Proof. A map M is Hermitian preserving if M(H)" = M(H) for any Hermitian
operator H. Equivalently, if M(XT) = M(X)' for any operator X. We have that

M(X)T = Try (T, @ X*)MT] = Tryy, (I, @ XT)MT). (A.12)
Clearly, if M = M one has M(X)" = M(XT). On the other hand, if
Trag [(Ie, @ XTYMT) = Ty [(I, ® X)) M) (A.13)
for all X, then M = M, due to the Choi-Jamiolkowski isomorphism. W

Lemma A.1.3. A linear map M is completely positive (CP) if and only if its
Choi-Jamiotkowski operator M is positive semidefinite.

Proof. Clearly, if M is CP, by Eq. (A.8) M > 0. On the other hand, if M > 0,
it can be diagonalized as follows

M = Z ) (K51, (A.14)

and consequently, exploiting Eqgs. (A.9) and (A.5]), we can write its action in the
Kraus form [19]

=Y K XK]. (A.15)

The Kraus form coming from diagonalization of M is called canonical. On the other
hand, since the same reasoning holds for any decomposition M = >, |Fy)) (Fl,
there exist infinitely many possible Kraus forms. The Kraus form implies complete
positivity: indeed, the extended map M &® Z,y,, transforms any positive operator
P € L(Hy® H,) into a positive operator, as follows

MO Trpp(P) = (K;® Iy )P(K] @ Iy,) > 0. (A.16)
J

A.2 The link product

The Choi-Jamiotkowski isomorphism poses the natural question on how the
composition of linear maps is translated to a corresponding composition between
the respective Choi-Jamiotkowski operators.

Consider two linear maps M € L(L(Hy), L(H1)) and N € L(L(H1), L(H2))
with Choi-Jamiotkowski operators M € L(H, ® Hy) and N € L(Hy @ Hy), re-
spectively. The two maps are composed to give the linear map C = N oM €
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L(L(Ho), L(Hsz)). This can be easily obtained upon considering the action of C
on an operator X € L(Hy) written in terms of the Choi-Jamiotkowski operators
of the composing maps

C(X) = Trp, (T ® Trpg[(Ie, © XT)M]")N]
= Tr7'l1,Ho[(I'H2 ® [Hl ® XT)([Hz ® MT1)<N ® IHO)]'

Upon comparing the above identity with the Eq. (A.9) for the map C, namely
C(X) = Try, [(I, ® XT)C], one obtains

C= Tr’H,1[(IH2 ® MT1)<N ® ]’Ho)]’ (A18)

(A.17)

where M7i denotes the partial transpose of M on the space H;. The above result
can be expressed in a compendious way by introducing the notation

Nx*x M = TrHl[(IH2 @ MTl)(N ® [H0>]7 (Alg)

which we call link product of the operators M € L(H; @ Ho) and N € L(Hay ® H1).
The above result can be synthesized in the following statement.

Theorem A.2.1 (Composition rules). Consider two linear maps
M € L(L(Ho), L(H1)) (A.20)

and

N € LIL(H), L(Hs)) (A.21)

with Choi-Jamiotkowski operators M € L(H1 ® Ho) and N € L(Hs ® Hq), re-
spectively. Then, the Choi-Jamiotkowski operator C € L(Hs @ Ho) of the compo-
sition C = N o M € L(L(Ho), L(H2)) is given by the link product of the Choi-
Jamiotkowski operators C' = N x M.

In the following we will consider more generally maps with input and output
spaces that are tensor products of Hilbert spaces, and which will be composed
only through some of these spaces, e.g. for quantum circuits which are composed
only through some wires. For describing these compositions of maps we will need
a more general definition of link product. For such purpose, consider now a couple
of operators M € L(Q),,em Hm) and N € L(Q),,cn Hn), where M and N describe
sets of indices for the Hilbert spaces, which generally have nonempty intersection.

The general definition of link product then reads:

Definition A.2.1 (General link product). The link product of two operators M €
L(Q,em Hm) and N € L(Q),,cn Hn) is the operator M + N € L(Hnwm @ Hmn)
given by

N * M = Tryen[(Inw @ MM (N @ Iww)], (A.22)
where the set-subscript X is a shorthand for Q,.x Hi, and A\B = {i|i € A,i ¢ B}
for two sets A and B.
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Examples. For MNN = (), e.g. for two operators M and N acting on different
Hilbert spaces H; and H,, respectively, their link product is the tensor product:

N«M=N@M e L(H, @ H). (A.23)

For N = M, i.e. when the two operators M and N act on the same Hilbert space,
the link product becomes the trace

Ax B=Tr[ATB]. (A.24)

Theorem A.2.2 (Properties of the link product). The operation of link product
has the following properties:

1. M« N =E(NxM)E, where E is the unitary swap on Hywm @ Hmn-

2. If My, My, M3 act on Hilbert spaces labelled by the sets |1, s, |3, respectively,
and 1y Ny N3 =0, then My x (My* M3) = (M * My) x Ms.

3. If M and N are Hermitian, then M x N is Hermitian.

4. If M and N are positive semidefinite, then M x N 1is positive semidefinite.

Proof.  Properties 1, 2, and 3 are immediate from the definition. For
Property 4, consider the two maps M € L(L(Hwmn), L(Hmrn)) and N €
L(L(Hman), L(Hnm)), associated to M and N by Eq. (A.9). Due to Lemma
[A.1.3) the maps M and N are both CP. Moreover, due to Theorem the
link product C = N % M is the Choi-Jamiolkowski operator of the composition
C = N o M. Since the composition of two CP maps is CP, the Choi-Jamiotkowski
operator C' = N x M must be positive semidefinite. W

As it should be clear to the reader, the advantage in using multipartite opera-
tors instead of maps is that we can associate many different kinds of maps to the
same operator M € L(@),c; Hi), depending on how we group the Hilbert spaces in
the tensor product. Indeed, any partition of the set I into two disjoint sets Iy and
I, defines a different linear map from L£(Q,;, Hi) to L(Q;c;, Hi) via Eq. (A9).
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