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Introduction

It from bit
John A. Wheeler

David Deutsch's motto �Information is physical�, utmost famous among quan-
tum information theorists, has been rightly charged of semantic naturalism
([Ti04]), or, translating the philosophical jargon, of being an attempt to
reduce meanings to facts. On the other hand, John A. Wheeler's �dual�
programme, reassumed by the quotation in epigraphe, of deriving physical
properties from information-theoretic notions (a sort of �physics is informa-
tional�), though appealing, also su�ers from conceptual ambiguity.

Despite these di�culties, the discovery of the deep connection between
Quantum Mechanics and Information Theory, and the subsequent institution
of a new �Quantum Information Theory�, has been growingly recognized as
one of the major achievements in the understanding of the physical world,
a callida iunctura capable of shedding light on both �elds by putting them
side by side, and opening new perspectives on many foundational issues.
For example, the Bayesian interpretation of probability has received new life
from Quantum Information [CFS02] [Fu02], as well as algorithmic complexity
theory and cryptography, just to name a few.
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A prominent example of the fruitfulness of this approach, has been the
progressive - but not yet concluded - clari�cation of the long-standing in-
terpretational problems of Heisenberg's Uncertainty Principle. Although the
venerable phrase �Uncertainty Principle� is never mentioned in the seminal
paper ([He27]) 1, Heisenberg hoped, at the beginning at least, that the �inde-
terminacy relation� (as he always calls it), would eventually serve as a foun-
dational basis from which the formal structure of quantum mechanics could
be derived, much like Einstein's theory is a straightforward consequence of
the relativity principle.

In his article, Heisenberg presented formal arguments, along with a bunch
of diverse physical examples, aiming at the quanti�cation of a theoretical
limit on the precision attainable in any measurement of conjugate observ-
ables, say the position q and the momentum p of a particle. He obtained the
expression

∆q∆p & h (1)

where h is Planck's constant. According to Heisenberg, the physical interpre-
tation of this inequality is the following: whenever we measure the position
of a particle with the precision ∆q, we perturb the momentum at least by
∆p ∼ h/∆q. The well-known γ-ray microscope Gedankenexperiment was
intended to be emblematic of this interpretation: the position of a particle
is reaveled by the scattering of a photon with increasing precision as the
photon's energy increases. At the same time, the impact of higher-energy
photons causes greater variations of particle's momentum.

However, as soon spotted by Bohr (see for example the comments in
[WZ83]), Heisenberg's derivation of equation (1) was sloppy and relied on
a semiclassical vision of particles and apparatuses. In the following years,

1Actually, it was coined by Ruark [Ru28].
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the mathematical part of his proof was re�ned by Kennard [Ke28], who
explicited the Fourier transform-based argument in Heisenberg's paper, and
by Robertson [Ro29] [Ro34], who generalized the proof to every pair of non-
commuting observables. Robertson's inequality

∆Aψ∆Bψ ≥ 1

2
|〈ψ|[A,B]|ψ〉| (2)

where A and B are observables and |ψ〉 is a quantum state, soon became,
and nowadays continues to be, the standard mathematical reference of the
Uncertainty Principle.

However, by this time the interpretation changed: since ∆Aψ and ∆Bψ

are the standard deviations of the result of measurements performed on a
system in the state ψ, equation (2) tells us that there is a limit in our ability
to predict the outcome of an experiment: if we know that, on some sys-
tem in the state |ψ〉 the result of the measurement of an observable A can
be predicted with precision ∆Aψ, the result of the measurement of a non-
commuting observable B cannot be predicted with precision greater than
∆Bψ. This perspectival shift towards a statistical interpretation was accepted
by Heisenberg himself in his Chicago lectures [He30], but the original �infor-
mation/disturbance� view, though incorrect, continued to be widespread.

It was not until the seminal paper by Fuchs and Peres [FP96] that this
problem was correctly addressed, this time in the framework opened by
Quantum Communication Theory. They considered the most elementary
two-party communication protocol: Alice sends a message to Bob, codifying
it on a quantum system. After receiving it, Bob can communicate with Alice
and check if he e�ectively obtained the message sent by Alice. Fuchs and
Peres showed that as an eavesdropper, �Eve�, tries to read the message (to
extract �information�), Alice and Bob can catch the intrusion, verifying that
Alice's message was di�erent from what Bob obtained. It turns out that the
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more information Eve extracts, the more Alice and Bob are likely to become
aware of the eavesdropping. In a word, the extraction of information perturbs
the system.

Many more di�erent scenarios were subsequently analyzed ([Fu98] [BD01]
[Ba00] [BS06] just to name a few), varying the kind of states, the protocols,
the number of parties, with the same qualitative result. Our work inserts
in this research line: in chapter 4 we present a simple cryptographic-like
protocol and derive the information/disturbace tradeo� curves.

Inspired by [Da03], in chapter 5 we also analyze the di�erent context of
probabilistic state transformation. Here we want to transform some states in
a prescribed way, with good probability. We will show that in this case the
probability of a transformation and its �quality� (in a sense precised in the
text) again satisfy a tradeo� relation.

As side results, we obtain the iso�delity surfaces for a qubit (chapter
3), and a proof of the Jaeger-Shimony bound, somehow di�erent from the
original one (chapter 4).
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Chapter 1

Formulation of QM

1.1 Quantum states

Every quantum mechanical system is described in terms of a separable com-
plex Hilbert space H, and of the operators acting on it. In the following the
dimension of H is always assumed to be �nite.

The state of the system is represented by a density operator.

De�nition 1.1.1 (Density operator). A density operator is trace-class
operator ρ satisfying two conditions:

1. Positivity: ρ ≥ 0.

2. Normalization: Tr(ρ) = 1.

The set of density operators is indicated with S(H).

These requirements are the quantum analogue of the conditions imposed
on a classical probability distribution p(x): p(x) ≥ 0,

∑
x p(x) = 1.

Given a set of density operators {ρi}, the convex combination

ρ =
∑
i

piρi (1.1)
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with pi ≥ 0,
∑

i pi = 1, is obviously positive and normalized. Density op-
erators, thus, constitute a convex set. The extremal points are rank-one
projectors of the form ρ = |ψ〉〈ψ| for some normalized ψ ∈ H and are called
pure states. Non-extremal points are called mixed states.

A measurement performed on a quantum system is described by the prob-
ability space Ω of possible outcomes, and a mathematical object called Pos-
itive Operator Valued Measurement (POVM).

De�nition 1.1.2 (POVM). Let Ω be a probability space and σ(Ω) its σ-
algebra of events. A POVM is a set of operators {Π∆}∆∈σ(Ω) such that

1. Π∆ is positive for every ∆ ∈ σ(Ω).

2. Π∪n∆n =
∑

n Π∆n for every countable set of pairwise disjoint events
{∆n}.

3. Π∅ = 0 and ΠΩ = I.

The probability p∆ of the event ∆, when the system is in the state ρ, is
given by the Born's statistical formula:

p∆ = Tr(ρΠ∆). (1.2)

The conditions imposed by de�nition 1.1.2 guarantee that p∆ ≥ 0 and pΩ = 1.
When the probability space is discrete (Ω = {1, 2, ...}) we can simply

assign a positive operator Πk for each atomic event k ∈ Ω, with the constraint
∑

k Πk = I. The whole POVM is then de�ned by extension through the
second condition in de�nition 1.1.2.

The particular case in which the operators Πk are orthogonal projectors,
is called PVM (Projection Valued Measurement), and corresponds to the
measurement of an observable. According to standard formulations of QM,
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an observable is an Hermitian operator A, usually constructed from some
classical quantity via the correspondence principle. Its spectral decomposi-
tion is A =

∑
n anPn, where Pn is the projector on the eigenspace relative

to the eigenvalue an. The spectrum of A gives the possible outcomes of a
measurement, with the following probability distribution:

p(an) = Tr(ρPn).

In this sense POVMs are a generalization of standard projective measure-
ments and thus are also known simply as generalized measurements.

Born's formula helps in clarifying the operational meaning of convex com-
binations like (1.1). In fact, computing a probability for some operator Π

over the state ρ we have

Tr(ρΠ) = Tr

(∑
i

piρiΠ

)
=

∑
i

pi Tr(ρiΠ).

The last member gives the same quantity computed for a mixture of states
ρi, sampled with probability pi. The mixture is therefore represented by the
convex combination (1.1).

1.1.1 Orthogonality and classicality

Quantum mechanics is an essentialy probabilistic theory and, to some extent,
it can be regarded as a �non-commutative� generalization of classical prob-
abilistic calculus, where operators have replaced probability distributions.
Classical expressions can be recovered from quantum formalism choosing
once and for all an orthonormal basis, and using only diagonal operators on
that basis.

Let {ψn}n=1...N be an o. n. basis for an N -dimensional system associated
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to H. The density operators diagonal on this basis are of the form

ρ =
∑
n

pn|ψn〉〈ψn|,
∑
n

pn = 1.

They are in bijective correspondence with theN -simplex of classical probabil-
ity distributions {pn} over theN pure states |ψn〉〈ψn|. LetA =

∑
n an|ψn〉〈ψn|

be another diagonal operator. From the trace formula (1.2) we have

Tr(ρA) =
∑
n

pnan,

i. e. the classical expectation value of the random variable A(n) := an. Of
course, since there are many di�erent o. n. bases for a given Hilbert space,
there are correspondingly many ways to embed a classical probability space
into a quantum one.

These examples, though simple, already allow one to grasp the deep rela-
tionship between orthogonality and classicality. In order to better understand
this link, it is useful to introduce the concept of distinguishability (which
will be discussed in more detail in chapter 4): given two orthogonal states
ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|, 〈ψ1|ψ2〉 = 0 and choosing, for example,
Π = ρ1 = |ψ1〉〈ψ1|, form equation (1.2) we have

Tr(ρ1Π) = 1

Tr(ρ2Π) = 0.

When the system is in the state ρ1, the outcome of the �question� formalized
with the operator Π is always positive. On the other hand, the outcome is
negative when the state is ρ2. An experimental setup can thus be designed,
which allows to perfectly distinguish between the states ρ1 and ρ2.

In the classical simplex of probability distributions, extremal points are
always orthogonal and distinguishable in principle. They constitute a discrete
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set endowed with the structure of Boolean algebra which is indipendent of
any probabilistic concern. So to speak, one can separate the �logic� structure
away from the probability space. In a quantum system, on the other hand,
pure states in general have a non-zero overlap: they always form a continuous
manifold, with no indipendent logic underlying it. In this sense, quantum
mechanics is essentialy probabilistic.

1.2 Quantum operations

Every physical evolution of a quantum system must be re�ected in a trans-
formation of the associated density operator. Formally, the transformation
is realized by a superoperator µ:

ρ 7−→ µ(ρ).

However, only a subset of all the conceivable superoperators realizes a phys-
ical transformation. The elements of this set are called quantum operations
(QOs). They include both the dynamical evolution typical of closed systems
and the discontinuous state reduction subsequent to a measurement. In the
following, we will present three di�erent ways of characterizing QOs:

1. Axiomatizing the properties required for a superoperator in order to
respect the structure of the set of quantum states S(H).

2. Isolating some fundamental operations (extension of the system, uni-
tary evolution, projective measurements, partial traces) and combining
them to build the whole set of possible transformations.

3. Exploiting the Kraus representation, more technical though extremely
useful in practical application.
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1.2.1 Axiomatic characterization

A Quantum Operation is a superoperator µ : S(H) → S(H) satisfying the
following conditions:

1. A�nity: µ (
∑

n pnρn) =
∑

n pnµ(ρn) for every convex combination of
states

∑
n pnρn.

2. Complete positivity (CP): for any Hilbert space K the map µ ⊗ I :

S(H⊗K)→ S(H⊗K), where I is the identity on S(K), is a positive
operator.

3. Trace decreasing (TD): for any operator ρ we have Tr[µ(ρ)] 6 Tr[ρ].

A�nity is needed because the QO must respect the convex structure of
the set of states S(H). Since every a�ne map can be extended to a linear map
relaxing the constraint

∑
n pn = 1, we can equivalently impose the linearity.

The complete positivity condition is needed because density operators are
positive, and positivity must be conserved after any evolution. The condition
grants that for every Hilbert space K and every bipartite state σ ∈ S(H⊗K),
the operator after the joint evolution σ′ = (µ⊗ I)(σ) is still a valid density
operator.

Since density operators have unit trace, the trace decreasing condition
becomes

Tr[µ(ρ)] 6 1, (1.3)

allowing us to interpret the trace Tr[µ(ρ)] as the probability that the quantum
operation µ wll happen, given that the system is initially in the state ρ. After
the evolution the system is left in the state

ρ′ =
µ(ρ)

Tr[µ(ρ)]
.
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This rule is known as state reduction.
A quantum operation which is also trace preserving (TP), is called quan-

tum channel, and obviously it occurs with certainty. It is the most general
deterministic (but not necessarily reversible) transformation of an open sys-
tem.

1.2.2 Ancillary extensions

There is a fundamental dilation theorem for CP maps proved by Stinespring
[St55], which makes use of C∗-algebraic formalism. We present it in a form
suited for our formalism (see for example [NC00]):

Theorem 1.2.1. A map µ : S(H) → S(H) is a quantum operation if and
only if there is an ancillary system K such that

µ(ρ) = TrK
[
U(ρ⊗ |0〉〈0|)U †P ]

(1.4)

where |0〉 is some pure state on K, U a unitary operator on H ⊗ K, P a
projector on K, and TrK the partial trace on K.

We observe that for trace preserving maps the projector P becomes the
identity I. The ancillary system K is sometimes referred to as the environ-
ment.

1.2.3 Kraus form

In order to express a quantum operation µ in a simple and explicit form, we
can use the following theorem [Kr83]:

Theorem 1.2.2 (Kraus). A map µ is CP if and only if there is a set of
operators {Mn} such that µ(ρ) =

∑
nMnρM

†
n.
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The operators Mn (known as Kraus operators) are not uniquely deter-
mined. In fact, for every rectangular matrix T satisfying the condition
T †T = I the set {Nj} given by Nj =

∑
i TjiMi is also a valid Kraus repre-

sentation of µ. The rank of the quantum operation is the minimum number
of operators needed to construct a Kraus representation.

The trace decreasing condition becomes
∑
n

M †
nMn ≤ I. (1.5)

and the equality is satis�ed if and only if the map is trace preserving.

1.3 Instrument

A single QO represents one possible evolution of the density operator; but in
a measurement process a system can undergo di�erent evolutions, depending
on the outcomes of the experiment. In order to describe these processes, we
have to assign a CP map for every possible event. This is exactly what is
done by the instrument. Given a probability space Ω and the σ-algebra of
the events σ(Ω), an instrument is a map E de�ned on σ(Ω) and taking val-
ues in completely positive superoperators on S(H), satistfying the following
conditions:

1. E∪n∆n =
∑

n E∆n for every countable set of pairwise disjoint events
∆n ∈ σ(Ω).

2. E∅ = 0.

3. EΩ is trace perserving.

The interpretation follows from what we said about QOs: the probability
of the event ∆ when the state of the system is ρ is given by p(∆|ρ) =
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Tr[E∆(ρ)], and the system is left in the state

ρ′ =
E∆(ρ)

Tr[E∆(ρ)]
. (1.6)

We can also introduce the Kraus representation for an instrument, as-
signing a set of Kraus operators {M∆,n}n∈S∆

to every CP map corrisponding
to each event ∆:

E∆(ρ) =
∑
n∈S∆

M∆,nρM
†
∆,n. (1.7)

1.4 QOs and POVMs

The formalism described in the previous sections allows us to determine the
probability of occurrence of a QO and the state in which the system is left.
The former is given by Tr[µ(ρ)], that is, exploiting Kraus representation and
the cyclic invariance of the trace,

p(µ|ρ) = Tr

[
ρ

∑
n

M †
nMn

]
. (1.8)

If we are interested only in probabilities, we see that in order to calculate
them we only need to know the operator Π =

∑
nM

†
nMn. This operator is

positive by construction, since we have, for every |ψ〉 ∈ H

〈ψ|Π|ψ〉 = 〈ψ|
∑
n

M †
nMn|ψ〉 =

∑
n

‖Mnψ‖2 ≥ 0. (1.9)

Analogously, in the case of an instrument, the probability distribution can
be rewritten as

p(∆|ρ) = Tr(ρΠ∆) (1.10)

where Π∆ =
∑

n∈S∆
M †

∆,nM∆,n.
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Again, the set of operators {Π∆} is enough to obtain the probabilities.
Consistency is granted by the σ-additivity property, inherited by the opera-
tors {Π∆} from the de�nition of instrument. Precisely, we have that

Tr [ρΠ∪n∆n ] = Tr [I∪n∆n(ρ)] = Tr

[∑
n

I∆n(ρ)

]
= Tr

[
ρ

∑
n

Π∆n

]
(1.11)

and since this is valid for every density operator ρ it follows that Π∪n∆n =
∑

n Π∆n . In the same way, we have the normalization ΠΩ = I.
This shows that QOs are compatible with POVMs. To some extent, the

path from QOs to POVMs can be reverted. Taking for example the simple
case of discrete probability space, we are given a POVM {Πk} and we want
to �nd a corresponding QO for each operator Πk. To this end, consider the
operator

Mk = UkΠ
1/2
k (1.12)

where Uk is any unitary operator. The square root of Πk always exists thanks
to positivity. We can easily see that Πk = M †

kMk and therefore each Mk is a
valid Kraus operator for the QO

µk(ρ) = MkρM
†
k (1.13)

from which we can obtain the state after the occurence of the outcome k.
Obviously, the operatorsMk are not uniquely determined, since we can freely
change the unitary Uk without a�ecting the POVM. This is due to the fact
that for a given POVM there are di�erent possible realizations of the mea-
suring apparatus, each one leaving the system in a di�erent �nal state.

1.5 Ensembles of states

Given some system Q, we will indicate with

E = {pi, ρQi } (1.14)
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the ensemble of states ρQi , distributed with probabilities pi. The correspond-
ing (unique) density operator is given by ρQE =

∑
i piρi. We note that knowing

ρQE is perfectly equivalent to the knowledge of the ensemble E, as far as we
are interested only in prediction about the behavior of Q (as follows directly
from what we said in sections 1.1 and 1.2). However, the correspondence

E −→ ρQE (1.15)

is not injective, since each decomposition of ρQE as convex combination ρQE =
∑

n qnτ
Q
n gives an ensemble F = {qn, τQn } with the obvious property ρQF = ρQE .

Thus, ρQE is not enough to identify E. This ambiguity follows from the
fact that an ensemble is an attempt to represent as perfectly distinguishable
objects which actually are not so, insofar as an ensemble is an attribution of
a classical probability distribution over a set of non classical objects. In other
words, ensembles are a semiclassical attempt to treat quantum states in a
classical way. To some extent, this amounts to think of �being in one of the
states of E� as a property of the system; but in QuantumMechanics properties
have to do with projectors and orthogonality, i.e. with observables. Of course,
this does not cause any trouble if everything is managed consistently, but it
would be nice to describe ensembles without the necessity of notations like
(1.14), which are not included in stardard quantum mechanical formalism.

In order to obtain some insights, it is useful to imagine how ensembles pop
up in real lab experiments. One can easily convince oneself that in any exper-
imental set up, an ensemble comes always from a (controlled) preparation of
some system (in our example Q) by one party A (`Alice' or `Ancilla'), which
we assume to be a classical object. After the preparation, the compound
system A+Q is in a state of the following form:

ρAQ =
∑
i

piP
A
i ⊗ ρQi . (1.16)
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Here PA
i is the state represented by the projector PA

i = |i〉〈i|, where {|i〉}i is
a set of orthogonal states of A. Consistently, we have that

TrA(ρAQ) = ρQE , (1.17)

so the state ρAQ is indeed an extension of ρQE . The classicality of A is re�ected
in the orthogonality of the her possible states PA

i .
Moreover, the probability distribution for the outcomes of the projective

measurement on A given by the orthogonal projectors PA
i is exactly the

ensemble probability distribution:

pi = TrA(PA
i ρ

A), (1.18)

where ρA = TrQ(ρAQ). This can be interpreted as �Alice is in the state
labelled with i� or �Alice decided to prepare Q in the state labelled with i�.

The introduction of an ancillary system used to express the implied �or-
thogonality� of the ensemble may appear as a gratuituous formal trick and,
actually, such an explicit characterization is seldom needed. Anyway, a simple
but interesting phenomenon can be illustrated resorting to this representa-
tion.

Suppose we succeded in applying some quantum operation E on Q. It is
tempting now to apply Bayes' theorem to `upgrade' our `knowledge' of the
ensemble. This leads directly to the following formula:

p′i = p(i|E) =
p(E|i)pi
p(E) . (1.19)

Interestingly, this upgrade is re�ected exactly in the probability distribution
of the PVM {PA

i } on A after the state reduction:

ρAQ
′
=

(I ⊗ E)(ρAQ)

Tr[(I ⊗ E)(ρAQ)]
=

∑
i piP

A
i ⊗ E(ρQi )

Tr[E(ρQE )]
. (1.20)
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In fact, posing as usual ρA′ = TrQ(ρAQ
′
), which we can easily obtain

Tr(PA
i ρ

A′) =
Tr[E(ρQi )]pi

Tr[E(ρQE )]
=
p(E|i)pi
p(E) , (1.21)

and, consistently with the naïve application of Bayes' theorem (1.19), p′i =

Tr(PA
i ρ

A′). This analysis shows that to some extent dealing with an ensemble
on Q actually amounts to deal with properties of its preparer A.

It is worth noting that we needed to enlarge the system, including degrees
of freedom from an ancillary system, which we suppose our initial system Q

had interacted with. This appears to be a general fact: whenever we need to
consider the whole context of a given system, we have to extend its state in
order to take into account correlations which could have been generated in
past interactions.

For example, this happens when we try to �nd out conditions guarantee-
ing the reversibility of some quantum channel. The solution to this problem
([SN96]) can be roughly stated as follows. A channel T acting on system Q

is perfectly invertible on the support of some density operator ρQ if and only
if

I(A′ : E ′) = 0 (1.22)

where A is a system introduced to purify ρQ and E is the environment ex-
ploited to realize the unitary dilation of T (see theorem 1.2.1). I(A′ : E ′) is
the quantum mutual information (see for example [NC00]) between A and
E after the action of T . It measures the total degree of correlation between
the two systems.

As before, we need to extend Q with an ancilla A, but this time we have
to use the �strongest� extension represented by the puri�cation of ρQ instead
of the mixed state (1.16). This happens because error correction is required
to be perfect on all the states in the support of ρQ. On the other hand, when

19



we are treating an ensemble E, we are concerned only with the particular
states in the support of ρQE which compose E.
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Chapter 2

Projective spaces and QM

In the classical formulation of QM, a state is de�ned to be a vector ψ in the
Hilbert space, with unit norm

‖ψ‖ = 1.

Normalization is required for a consistent probabilistic interpretation of the
vector. Since every observable quantity is ultimately computed with an ex-
pression of the form

〈ψ|A|ψ〉,

where A is an Hermitian operator (see Born's formula 1.2 for pure states), it
follows that vectors di�ering only by a phase factor give the same predictions.
This is usually phrased as �overall phases are unobservable�.

The conditions imposed on elements of a Hilbert space (normalization, ir-
relevance in the choice of the phase) are elegantly accounted for by projective
spaces 1.

1For a general reference on the topics discussed in this chapter see [BZ06].
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2.1 Projective Hilbert spaces

The action of the multiplicative group C∗ = C− {0} on H de�nes an equiv-
alence relation:

ψ ∼ φ⇐⇒ ∃λ ∈ C∗, ψ = λφ. (2.1)

De�nition 2.1.1. The projective Hilbert space is the quotient space of H
with respect to the relation ∼:

PH :=
H
∼ =

H
C∗
. (2.2)

The quotient de�nes a natural projection π∼:

π∼ : H −→ PH (2.3)

ψ 7−→ [ψ].

The elements of PH are called rays.

Equivalently, PH is de�ned to be the set of one-dimensional subspaces of
H 2.

Since subspaces of a vector space V can be put in bijective correspondence
with projection operators

W ⊆ V ←→ PW ,

rays in PH can be naturally identi�ed with one-dimensional projectors ρ =

|ψ〉〈ψ|, ‖ψ‖ = 1. The projective space PH is thus embeddable in an operator
space, whose linear structure is inherited by PH. This structure grants the

2This is the simplest example of more general constructions known as Grassmannians.
The Grassmannian G(n, k) is the collection of k-dimensional subspaces of Cn. Grass-
mannians are homogeneous spaces of unitary groups and thus have a natural structure of
di�erentiable manifold.
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possibility of forming convex combinations, thus allowing to recover the whole
set of states.

A projective space can be endowed with a metric in the following way.
Let Rψ = [ψ] and Rφ = [φ] be rays in PH. Since the expression given by

Rψ · Rφ :=
|〈ψ|φ〉|
‖ψ‖ · ‖φ‖ (2.4)

is indipendent of the choice of the vectors representing the rays, it yields a
well-de�ned real-valued product on PH. From this product we can de�ne
the Fubini-Study distance DFS as follows

DFS(Rψ,Rφ) := arccosRψ · Rφ. (2.5)

Computing this expression with |φ〉 = |ψ+ δψ〉 and keeping only the leading
terms yields the Fubini-Study metric

ds2 =
〈δψ|δψ〉
〈ψ|ψ〉 −

〈δψ|ψ〉〈ψ|δψ〉
〈ψ|ψ〉2 (2.6)

which endows PH with the structure of Riemannian manifold.

2.2 Projective groups

In the passage from the Hilbert space to its projective version, the behavior
of the operators acting on H is also a�ected. Let A be any such operator

A : H → H. (2.7)

Clearly ψ ∼ φ⇒ Aψ ∼ Aφ and thus the action on PH

A : PH −→ PH (2.8)

[ψ] 7−→ [Aψ]
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is well-de�ned. However, two operators A, B, di�ering by a complex factor

A = λB, λ ∈ C∗ (2.9)

induce the same transformation on PH

A[ψ] = [Aψ] = [λBψ] = [Bψ] = B[ψ], ∀[ψ] ∈ PH. (2.10)

To remove this ambiguity from the action of a group of operators, the action
of C∗ needs to be quotiented away. The most general case is the general
linear group of H

H GL(H)//H
which is replaced by it projective version PGL(H) = GL(H)/C∗:

PHPGL(H)// PH.

Since in QM we are especially interested in unitary groups, we have to
specialize the previous considerations to the n-dimensional Hilbert spaceH =

Cn and analyze the group U(n) ⊂ GL(Cn).
We premise the following result:

Lemma 2.2.1. Let G be a group, H a subgroup of G and K a normal
subgroup of G. Then the following diagram is commutative

H //

²²

G

²²
H/(H ∩K) // G/K.

Proof. It is a consequence of the homomorphism theorem (see for example
[Her75]) applied to the compound homomorphism

H ↪→ G→ G/K,

whose kernel is easily seen to be H ∩K. In fact, an element of H is mapped
to the identity of G/K if and only if it also belongs to K.
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This lemma shows how the quotient is re�ected on a subgroup. Pos-
ing G = GL(Cn), H = U(n) and K = C∗ (identifying C∗ with the scalar
operators multiple of identity λI, λ ∈ C∗) the lemma yields

U(n) //

²²

GL(Cn)

²²
U(n)/(U(n) ∩ C∗) // PGL(Cn).

Groups of the form

PU(n) :=
U(n)

U(n) ∩ C∗ =
U(n)

U(1)
∼= SU(n)

Zn
(2.11)

are known as projective unitary groups and constitute the natural action on
a projective space induced by unitary transformations. The quotient by the
group of phases U(1) is again interpreted as irrelevance of overall phases.

2.3 The projective qubit

The two-dimensional case H = C2 deserves a particular attention because
the projective objects introduced in previous sections become quite simple
and allow a straightforward geometrical interpretation.

2.3.1 Bloch sphere representation

Let {|0〉, |1〉} be a o. n. basis. Any unit vector |ψ〉 can be represented as

|ψ〉 = eiλ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

)
(2.12)

with φ ∈ [0, 2π) and θ ∈ [0, π]. In the corresponding density operator the
global phase factor disappears

ρ = |ψ〉〈ψ| = 1

2


 1 + cos θ e−iφ sin θ

eiφ sin θ 1− cos θ


 . (2.13)
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Introducing real parameters x = sin θ cosφ, y = sin θ sinφ, z = cos θ we have

ρ =
I + r · σ

2
(2.14)

where r = (x, y, z) is a unit real vector and σ = (σx, σy, σz) is the vector of
Pauli matrices

σx =


 0 1

1 0


 , σy =


 0 −i

i 0


 , σz =


 1 0

0 −1


 . (2.15)

The set of pure states is thus represented by the unit sphere S2 = {r ∈
R3, |r| = 1}, which is known as Bloch sphere3. It is an explicit representation
of the projective space

PC2 = S2. (2.16)

Since the eigenvalues of ρ are

λ± = 1± |r| (2.17)

the positivity constraint ρ ≥ 0 becomes |r| ≤ 1. Inner points of the sphere
are thus valid density operators. They constitute the convex hull of the points
in S2 and represent mixed states.

We note that the determinant of ρ is

det(ρ) =
1− |r|2

4
. (2.18)

The norm of r is thus a function of det(ρ)

|r| =
√

1− 4 det(ρ). (2.19)
3Riemann sphere in mathematical literature.
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2.3.2 Unitary transformations

In this case the projective group acting on the Bloch sphere is

U(2)

U(1)
∼= SU(2)

Z2

∼= SO(3). (2.20)

In the following we give an explicit representation of the action of SU(2) on
the Bloch sphere. The transformation

ρ 7−→ ρ′ = UρU † (2.21)

preserves the determinant. By equation (2.19) it also follows that the norm
of the Bloch vector is preserved. The map induced by U is therefore an
orthogonal transformation O(3) of the Bloch sphere, and it could be shown
that actually it is a SO(3) rotation. The explicit homomorphism

SU(2) −→ SO(3) (2.22)

can be obtained as follows. SU(2) matrices are in bijective correspondence
with traceless self-adjoint matrices via the exponential relation

U = eiA. (2.23)

Since Pauli matrices are a basis for traceless self-adjoint matrices, we can
write

U(θ) = ei
θ
2
·σ, θ ∈ R3. (2.24)

The SO(3) transformation associated to U(θ) is the rotation R(θ) ∈ SO(3)

around the axis directed along θ, with angle given by |θ|

U(θ) 7−→ R(θ). (2.25)

This is a surjective homomorphism. From equation (2.24) we have that the
kernel of the homomorphism is given by Z2

∼= {±I}. Via homomorphism
theorem, one obtains equation 2.20.
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2.4 Wigner's theorem

We present here an important theorem, without proof, obtained by Wigner
[Wi31]. We premise that a transformation T : PH → PH which preserves
the projective product

T Rψ · T Rφ = Rψ · Rφ (2.26)

is called a symmetry because it does not change observed expectation values
(again, in force of Born's rule). Since this is equivalent to the preservation of
the Fubini-Study metric, it turns out that a quantum mechanical symmetry
is precisely an isometry of PH as a Riemannian manifold.

Theorem 2.4.1 (Wigner). Any surjective symmetry T : PH → PH ad-
mits an operator U which is unitary or antiunitary and makes the following
diagram commutative:

H U //

²²

H

²²
PH T // PH

The lifting operator U is unique up to a phase factor.
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Chapter 3

Distance measures between states

The notion of �closeness� between a pair of states is important in many areas
of quantum information, but there is no unique formal de�nition of this intu-
itive concept. In fact, there are several ways to quantify the distance between
two density operator, and each one has proved useful in some applications.

The most common measures employed in quantum information are the
trace distance and the �delity (which is related to the Fubini-Study distance).
Since they will be used in following chapters, we present them along with their
main properties.

Hereafter, complex vectors ψ ∈ H are always assumed to be normalized.

3.1 Trace distance

The trace distance is the the Lp-distance between operators, computed for
p = 1, with an addictional factor 1

2
:

dtr(ρ, σ) :=
1

2
‖ρ− σ‖1 =

1

2
Tr |ρ− σ|. (3.1)

It enjoys many interesting properties (see for example [NC00]):
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1. 0 ≤ dtr(ρ, σ) with equality if and only if ρ = σ.

2. dtr(ρ, σ) ≤ 1 with equality if and only if ρ and σ have orthogonal
supports.

3. Symmetry: dtr(ρ, σ) = dtr(σ, ρ).

4. Triangle inequality: dtr(ρ, σ) ≤ dtr(ρ, τ) + dtr(τ, σ).

5. Unitary invariance: dtr(ρ, σ) = dtr(UρU
†, UσU †).

6. Monotonicity: dtr(ρ, σ) ≥ dtr(E(ρ), E(σ)), where E is a trace preserving
CP map.

The operational meaning of the trace distance is related to the problem
of distinguishing two density operators with a single experiment. This is
precisely the content of the following theorem. We remind that d1(xi, yi) is
the trace distance of the vectors xi and yi:

d1(xi, yi) :=
1

2

∑
i

|xi − yi|. (3.2)

Theorem 3.1.1. Let pi = Tr(Eiρ) and qi = Tr(Eiσ) for some POVM {Ei}.
Then

dtr(ρ, σ) = max
{Ei}

d1(pi, qi) (3.3)

where we maximize over all POVMs.

Proof. We give the proof only for projective measurements. Indicating with
N+ and N− the positive and the negative part of the operator ρ − σ, we
observe that

dtr(ρ, σ) =
1

2
Tr(N+ +N−) = TrN+ = TrN− (3.4)
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because the di�erence N+ − N− is a traceless operator. Then, if P is any
projector,

TrP (ρ− σ) = TrP (N+ −N−) ≤ TrPN+ ≤ TrN+ = dtr(ρ, σ). (3.5)

The equality holds if and only if P is the projector on the support of N+.
We have that

Tr |Ei(ρ− σ)| = Tr |Ei(N+ −N−)| ≤ TrEi(N+ +N−) = TrEi|ρ− σ|, (3.6)

and therefore

d1(pi, qi) =
1

2

∑
i

Tr |Ei(ρ− σ)| ≤ 1

2

∑
i

TrEi|ρ− σ| = dtr(ρ, σ) (3.7)

and the equality holds if we choose as POVM the projective measurements
{P±} consisting of projectors on the supports of N+ and N− respectively.

We also give the proof of monotonicity.

Proof. From the �rst part of the proof of theorem (3.1.1) we can �nd a
projector P such that

dtr(E(ρ), E(σ)) = TrP (E(ρ)− E(σ)). (3.8)

Since E is trace preserving we have that Tr E(N+) = Tr E(N−) (where N± is
the usual decomposition of ρ− σ in positive and negative part). Then

dtr(ρ, σ) =
1

2
Tr(N+ +N−) =

1

2
Tr(E(N+) + E(N−)) = (3.9)

= Tr E(N+) ≥ TrPE(N+) ≥ TrP (E(N+)− E(N−)) =

= TrP (E(ρ)− E(σ) = dtr(E(ρ), E(σ)).
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3.2 Fidelity

The classical �delity of two probability distributions pi, and qi is

F (pi, qi) =
∑
i

√
pi · √qi. (3.10)

The quantum generalization is de�ned as

F (ρ, σ) := Tr
√√

ρσ
√
ρ = Tr |√ρ√σ|. (3.11)

The �delity was originally introduced by Uhlmann [Uh76] but its use be-
came widespread in Quantum Information only after Jozsa reintroduced it
in [Jo94]. In Jozsa's de�nition the quantum �delity is the square of (3.11):
FJ = F 2. For this reason the quantity (3.11) is sometimes referred to as root
�delity and is indicated with

√
F . Anyway, we stick to Uhlmann's de�nition.

We note that when one of the states is pure, say ρ = |ψ〉〈ψ|, the �delity
becomes

F (|ψ〉, σ) = |〈ψ|σ|ψ〉| 12 (3.12)

and, when also the other state is pure σ = |φ〉〈φ|

F (|ψ〉, |φ〉) = |〈ψ|φ〉| (3.13)

Since this expression coincides with the product (2.4) introduced on PH, the
Fubini-Study distance could also be de�ned starting from the �delity

DFS(|ψ〉, |φ〉) = arccosF (|ψ〉, |φ〉). (3.14)

Among the properties of the �delity we have ([NC00]):

1. 0 ≤ F (ρ, σ) with equality if and only if ρ and σ have orthogonal sup-
ports.

2. F (ρ, σ) ≤ 1 with equality if and only if ρ = σ.

32



3. Symmetry: F (ρ, σ) = F (σ, ρ).

4. Unitary invariance: F (ρ, σ) = F (UρU †, UσU †).

5. Monotonicity: F (ρ, σ) ≥ F (E(ρ), E(σ)), where E is a trace preserving
CP map.

The symmetry is not obvious from the de�nition, but it is an easy con-
sequence of Uhlmann's theorem [Uh76], which gives a very useful character-
ization of �delity in terms of puri�cation of the density operators ρ and σ.
We present the theorem and the proof, preceded by a simple lemma.

Lemma 3.2.1. Let A be an operator and U a unitary operator. Then

|Tr(AU)| ≤ Tr |A|. (3.15)

The equality is obtained choosing U = V †, where V is the unitary part of the
polar decomposition A = |A|V .

Proof. We have

|Tr(AU)| = |Tr(|A|V U)| = |Tr(|A| 12 |A| 12V U)| ≤ (3.16)

≤
√

Tr |A|
√

Tr(U †V †|A|V U) = Tr |A|

where we have applied the Cauchy-Schwartz inequality to the Hilbert-Schimdt
scalar product.

Theorem 3.2.2 (Uhlmann). Let ρ, σ be density operators for some system
Q. Then

F (ρ, σ) = max
|ψσ〉
|〈ψρ|ψσ〉| (3.17)

where |ψρ〉 and |ψσ〉 are puri�cation of ρ and σ respectively, on a common
ancillary system R, identical to Q.
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Proof. We indicate with |ω〉 the (non normalized) maximally entangled bi-
partite state for the compound system R +Q:

|ω〉 =
∑
i

|i〉R ⊗ |i〉Q, (3.18)

where {|i〉} is a basis for R and Q. Then, a puri�cation of ρ can be written
as

|ψρ〉 = (
√
ρ⊗ I)|ω〉. (3.19)

Analogously, for σ one has

|ψσ〉 = (
√
σVR ⊗ VQ)|ω〉 (3.20)

for some other unitary operators VR and VQ. Taking the absolute value of
the scalar product we have

|〈ψρ|ψσ〉| = |〈ω|√ρ
√
σVR ⊗ VQ|ω〉| = (3.21)

= |Tr(
√
ρ
√
σVRV

T
Q )| ≤ Tr |√ρ√σ|,

using the identity Tr(ABT ) = 〈ω|A⊗B|ω〉 and lemma (3.2.1). The equality
is attained posing VQ = I and VR = V †, where V is given by the polar
decomposition √ρ√σ = |√ρ√σ|V .

Monotonicity is also an immediate consequence of Uhlmann's theorem.

Proof. We can �nd puri�cation |ψρ〉 and |ψσ〉 such that F (ρ, σ) = |〈ψρ|ψσ〉|.
Let U a unitary realization of the CP map E , with ancillary system in some
pure state |0〉. Then

F (E(ρ), E(σ)) ≥ |〈ψρ|〈0|U †U |ψσ〉|0〉| = |〈ψρ|〈0|ψσ〉|0〉| = F (ρ, σ) (3.22)

where inequality follows from Uhlmann's theorem.
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For a two-dimensional system, we have the following explicit expression
for the �delity ([Hü92]):

F (ρ, σ) =

(
1 + rρ · rσ +

√
(1− |rρ|2)(1− |rσ|2)

) 1
2

√
2

(3.23)

where rρ is the Bloch vector of the state ρ.

3.3 Iso�delity surfaces

We want to address the following question: given a mixed state ρ and a real
number f , 0 ≤ f ≤ 1, determine the set

Lρ,f = {σ, F (ρ, σ) = f}.

In other words, for every ρ we want to identify the level surfaces of the
real-valued function 1

Fρ(σ) : S → R

σ 7→ F (ρ, σ).

This function is de�ned on the set S of density operators of a n-dimensional
system, which is a (n2 − 1)-dimensional manifold 2. Its level surfaces, thus,
are (n2 − 2)-dimensional manifolds.

The explicit representation of Lρ,f is in general hard to �nd, because an
explicit formula for the �delity would be needed, which is known only in the
qubit case. However, some insights about the shape of Lρ,f can be obtained
simply by symmetry arguments.

1To avoid clumsiness of notation, in this section we pose S = S(H).
2The space of self-adjoint operators on a n-dimensional complex vector space has dimen-

sion n2. The condition Tr(ρ) = 1 required for density operators diminishes the dimension
by one.

35



Let Gρ be the group of all the unitary transformations U which have ρ
as a �xed point

UρU † = ρ (3.24)

The action of Gρ on S is given by

Gρ × S → S (3.25)

(U, σ) 7→ UσU †.

Two unitary operators di�ering by a phase factor induce the same transfor-
mation on S. The phase factors are exactly the scalar elements of Gρ (i.e.
the multiples of the identity), forming the central subgroup U(1) ⊂ Gρ. In
order to eliminate this ambiguity we can �quotient away� the center of Gρ

and obtain the e�ective action of Gρ/U(1) given by ([U ], σ) 7→ UσU †, which
makes the following diagram commutative

Gρ × S //

²²

S

Gρ

U(1)
× S

<<yyyyyyyyy

The action of Gρ induces a quotient structure S/Gρ (the set of the orbits
of Gρ), along with the natural projection π : S → S/Gρ, which takes each
density operator to its orbit. We have the following

Proposition 3.3.1. Each Gρ-orbit is entirely contained in one of the level
surfaces of Fρ.

Proof. Since the �delity is invariant under any unitary transformation of
both states,

F (ρ, σ) = F (UρU †, UσU †), (3.26)

we have that, for every U ∈ Gρ,

Fρ(UσU
†) = F (UσU †, ρ) = F (UσU †, UρU †) = F (σ, ρ) = Fρ(σ). (3.27)
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Therefore, under the action of the group Gρ the points of S are transformed
into points belonging to the same level surface.

This means that each level surface Lρ,f is obtained �gluing� together some
of the orbits of Gρ. Moreover, the proposition implies that the function
fρ : S/Gρ → R given by

fρ(π(σ)) := Fρ(σ), (3.28)

is well-de�ned, making the following diagram commutative

S Fρ //

π
²²

R

S/Gρ

fρ

<<zzzzzzzz

Thanks to the factorization Fρ = fρ ◦ π the problem is reduced to the de-
termination of the level sets lρ,f of the function fρ, which is de�ned on the
smaller space S/Gρ. After obtaining lρ,f , we can recover Lρ,f by taking the
inverse image of lρ,f under the projection map π

Lρ,f = π−1(lρ,f ). (3.29)

The de�ning condition UρU † = ρ for the elements of Gρ can be expressed
as the commutation relation [ρ, U ] = 0. The following proposition gives an
explicit characterization of these elements in terms of the eigenspaces of ρ,
thus providing the structure of Gρ.

Proposition 3.3.2. Let ρ be a self-adjoint operator whose (distinct) eigen-
values are λ1, . . . , λn, and the corrisponding eigenspaces are Vλ1 , . . . , Vλn. Let
U be a unitary operator. Then the following conditions are equivalent:

(1) [ρ, U ] = 0
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(2) U decomposes as
U = U1 ⊕ . . .⊕ Un, (3.30)

where Ui is a unitary operator acting on Vλi
.

Proof. (1)⇒(2). If ψ is any λ1-eigenvector then

ρUψ = Uρψ = λ1Uψ. (3.31)

Therefore, also Uψ is a λ1-eigenvector, implying that Vλ1 is U -invariant

U(Vλ1) ⊆ Vλ1 . (3.32)

The restriction U|Vλ1
is a unitary operator acting on Vλ1 and thus there must

be some U1 such that
U|Vλ1

= U1. (3.33)

Indicating with P the projector on Vλ1 and with Q the projector on the direct
sum of the remaining eigenspaces, U can be written as

U = PUP ⊕QUQ = U|Vλ1
⊕QUQ = U1 ⊕QUQ. (3.34)

The same argument can be applied to the remaining eigenvalues to obtain
the required decomposition.

(2)⇒(1). Follows readly from the representation

ρ = λ1I1 ⊕ . . .⊕ λnIn, (3.35)

where Ii is the identity on Vλi
.

WhenGρ is known, the shape of the orbits can be easily obtained analysing
the e�ective action of Gρ/U(1) on the space of states. In the subsequent sec-
tions we give some details for the qubit.

38



3.3.1 The qubit case

For a two-level system, the problem can be completely solved since we have
the explicit formula for the �delity (3.23). The sets Lρ,f are simply two-
dimensional surfaces.

If ρ has equal eigenvalues (i.e. it is the maximally chaotic state ρ = I/2),
Gρ consists of all the unitary operators Gρ

∼= U(2), and thus

Gρ

U(1)
∼= U(2)

U(1)
∼= SO(3). (3.36)

Each orbit is a sphere centered in the origin and, being a two-dimensional
manifold, it exhausts one of the level surfaces Lρ,f .

If the eigenvalues are di�erent (i.e. the state is anything but the maxi-
mally chaotic) we have Gρ

∼= U(1)⊕ U(1). Hence

Gρ

U(1)
∼= U(1)⊕ U(1)

U(1)
∼= U(1) ∼= SO(2). (3.37)

and the orbits are circles. In this case we can exploit equation (3.23) and
carry on the calculation of the sets lρ,f . The quotient space S/Gρ can be
identi�ed with any half-disk whose diameter passes through rρ. Each point
rσ of the half-disk is a representative of its own orbit [σ]. We can conve-
niently introduce real coordinates (x, y) chosen in such a way that the x-axis
lies along the diameter and the y-axis lies along the ray orthogonal to the
diameter. Thus, the coordinates of ρ are rρ = (α, 0) for some α, |α| ≤ 1,
whilst a generic point has coordinates rσ = (x, y), y ≥ 0, x2 + y2 ≤ 1. The
�delity formula (3.23) becomes

fρ([σ]) =

(
1 + αx+

√
(1− α2)(1− (x2 + y2))

) 1
2

√
2

. (3.38)

Imposing the condition fρ = f and introducing the parameter k = 2f 2 − 1,
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Figure 3.1: Some of the truncated ellipses, representing states which have the
same �delity with respect to ρ. Rotating the arcs around the x-axis we obtain the
whole iso�delity surfaces for the Bloch ball.

after some rearrangements we obtain

(x− αk)2

(1− α2)(1− k2)
+

y2

(1− k2)
= 1, αx ≤ k. (3.39)

This equation represents the family lρ,f parameterized by k. It consists of arcs
of ellipses (the truncation is given by the condition αx ≤ k). The iso�delity
surfaces are partial ellipsoids obtained rotating the arcs around the diameter.
When α = ±1 ρ is pure and the ellipsoids degenerate into planes orthogonal
to the diameter.

40



Chapter 4

Quantum State Discrimination

Having gathered the formal tools needed to describe in full generality quan-
tum measurements, we can now face the speci�c issue of quantum state dis-
crimination.

Strictly speaking, the state of a quantum system cannot be measured be-
cause it is not even a real unknown quantity. It simply represents a summary
of everything we know about the system.

A state discrimination actually refers to the following two-party scenario:
Alice prepares a system in some state, drawing arbitrarly, but with de�nite
probabilities, from a given ensemble. Subsequently she sends the system
to Bob, whose task is to perform a measurement on it in order to gain
information about the preparation chosen by Alice.

There are two main strategies we can employ to accomplish this job.
The �rst is the quantum hypothesis testing (QHT). Here, we are given an
unknown state chosen from some �nite ensemble, and we have to guess with
the minimum error probability which of these states it is. In this approach,
we are always required to choose, and we cannot say `don't know'. But
when such inconclusive answers are allowed, one can show that sometimes
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another strategy is possible, which determines the correct state every time
it does not end up with an inconclusive result, and therefore it is called
unambiguous state discrimination (USD). In the following sections we will
discuss these two strategies.

4.1 Quantum hypothesis testing

Suppose we know that the ensemble from which Alice picks up the state
is represented by the set of N density operators {ρi}i=1,...,N , whose a priori
probability distribution is {pi}i=1,...,N . Since we are required to make a choice
about what state was prepared by Alice, we perform an experiment described
by a POVM {Πi}i=1,...,N , and interpret the outcome j as the detection of
the state ρj. We want to minimize the average probability pE of incorrect
identi�cation, given by

pE = 1−
∑
i

pi Tr(ρiΠi). (4.1)

The necessary and su�cient conditions that the POVM must satisfy in order
to achieve minimum pE are [Ho73]

Πj(pjρj − piρi)Πi = 0 (4.2)
∑
j

pjΠjρj − piρi ≥ 0 (4.3)

but general solutions are hard to �nd. It is possible to show ([Ken73], [El03])
that for mixed linearly indipendent states, the optimal POVM is simply a
PVM. In the following we will focus on the particular case of two mixed
states, and then, further specializing to pure states, we will obtain the value
of pE originally found by Helstrom in [Hel76].
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Let us indicate the two mixed states with ρ±, and let p± be their respective
probabilities. For a generic POVM {Π±} the error probability is

pE = p+ Tr(ρ+Π−) + p− Tr(ρ−Π+). (4.4)

Remembering that Π+ + Π− = I we can rewrite it as

pE = p+ − Tr[Π+(p+ρ+ − p−ρ−)] = p− + Tr[Π−(p+ρ+ − p−ρ−)]. (4.5)

Taking the sum of these expressions and dividing by two we �nally have

pE =
1

2
{1− Tr[(p+ρ+ − p−ρ−)(Π+ − Π−)]} . (4.6)

This expression attains the minimum when Π± are projectors on the support
of, respectively, the positive and the negative part of the operator p+ρ+ −
p−ρ−. Hence we have

pE =
1

2
(1− ‖p+ρ+ − p−ρ−‖1) (4.7)

where ‖ · ‖1 is the trace-norm of its argument.
When ρ± are pure they can be written as ρ± = |ψ±〉〈ψ±| where |ψ±〉 are

suitable normalized vectors in H. Choosing an orthonormal basis |±〉 for the
space spanned by |ψ±〉 we can �nd some angle θ such that

|ψ±〉 = cos θ|+〉 ± sin θ|−〉. (4.8)

From the matrix representation of the operator p+ρ+−p−ρ− in the basis |±〉

 ∆ cos2 θ sin 2θ

2

sin 2θ
2

∆ sin2 θ


 , (4.9)

where ∆ = p+ − p−, one can easily obtain the eigenvalues

λ± = (∆±
√

1 + (∆2 − 1) cos2 2θ)/2 (4.10)
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and verify that the (orthonormal) eigenvectors are

|ω±〉 =
1√
2

(√
1± ξ|+〉 ±

√
1∓ ξ|−〉

)
, (4.11)

where ξ = ∆ cos 2θ/
√

1 + (∆2 − 1) cos2 2θ. Since |ω±〉 are relative to the pos-
itive and the negative eigenvalue, respectively, it follows that the projectors
we are looking for are precisely

Π± = |ω±〉〈ω±|. (4.12)

Inserting this PVM for example in equation (4.6) we obtain, after some al-
gebra, the optimal error probability as found by Helstrom:

pE =
1

2

(
1−

√
1− 4p+p−|〈ψ+|ψ−〉|2

)
= (4.13)

1

2

(
1−

√
1− 4p+p− cos2 2θ

)
.

4.2 Unambiguous state discrimination

If we admit the possibility of getting inconclusive outcomes, i.e. outcomes
that do not corrispond to any possible states, one can show that in some
cases it is possible to design a measurement which correctly identi�es the
state every time it does not give such an inconclusive result.

Here we address the simple case of two pure states, |ψ±〉, as de�ned in
equation (4.8). Introducing two further states

|ψ⊥±〉 = sin θ|+〉 ± cos θ|−〉, (4.14)

which have the property 〈ψ⊥+|ψ−〉 = 0 and 〈ψ⊥−|ψ+〉 = 0, we can de�ne the
following POVM:

Π± = c±|ψ⊥±〉〈ψ⊥±|
Πinc = I − Π+ − Π−

(4.15)
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where the coe�cients c± are constrained by the positivity conditions of the
operators Π+, Π−, Πinc.

Since it is obvious that

〈ψ−|Π+|ψ−〉 = 0 (4.16)

〈ψ+|Π−|ψ+〉 = 0 (4.17)

we will never get the outcome `+' when the state is |ψ−〉 and vice versa.
Thus, obtaining one of these two results permits us to tell what the initial
state was. However, we pay this error-free identi�cation with the fact the
sometimes the result of the measurement will be the inconclusive outcome,
whose total probability is

pinc = 1− c+p+|〈ψ⊥+|ψ+〉|2 − c−p−|〈ψ⊥−|ψ−〉|2 (4.18)

= 1− (c+p+ + c−p−) sin2 2θ

where p± are, as usual, the a priori probabilities of |ψ±〉.
One can ask how the coe�cients c± should be tuned in order to minimize

this probability, recalling that the operator Πinc must remain positive. This
problem has been addressed and solved for equal a priori probabilities p± =

1/2 by Ivanovic [Iv87], Dieks [Di88] and Peres [Pe88], whose work established
that the optimum value of pinc is

pinc = |〈ψ+|ψ−〉| = cos 2θ. (4.19)

The general solution for unbalanced probabilities is also known, though its
expression is more involved (Jaeger and Shimony [JS95]). All these deriva-
tions try to reach the limit by building an explicit ancillary extension and
subsequently performing a suited projective measurement. In the next sec-
tion we provide an alternative proof, directly based on the POVM formalism,
which does not require extra ancillas.
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When we get an inconclusive outcome we do not gain any information
about the initial state, but this does not mean that it is not a�ected by
the measurement. In fact, quite the opposite is true: in general, as the
probability pinc decreases, the states after the measurement become more and
more closer (in term of their overlap), and eventually become equal when pinc
reaches the Ivanovic-Dieks-Peres bound. Performing an unambiguous state
discrimination is therefore a sort of gamble: when it succeeds, we achieve
perfect discrimination; but if it fails, the states become less distinguishable
than before. Since the success probability ps = 1− pinc can be thought of as
an indicator of the average information gain due to the measurement, this is
an example of the information/disturbance tradeo�.

4.2.1 The Jaeger-Shimony bound

We want to minimize the function

pinc(c+, c−) = 1− (c+p+ + c−p−)(1− ω2) (4.20)

where ω = cos 2θ, subject to the positivity constraints Π+ ≥ 0, Π− ≥ 0,
Πinc ≥ 0. The �rst two conditions immediately give

c+ ≥ 0

c− ≥ 0
. (4.21)

The constraint on Πinc can be expressed imposing the positivity of its mini-
mum eigenvalue λ−

λ−(c+, c−) ≥ 0. (4.22)

In the basis |±〉 the operator Πinc has the following matrix representation

Πinc =


 1− (c+ + c−) sin2 θ (c− − c+) sin θ cos θ

(c− − c+) sin θ cos θ 1− (c+ + c−) cos2 θ


 (4.23)
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Figure 4.1: The values of c+ and c− inside the area delimited by black lines de�ne
a valid POVM. The limiting cases ω = 1 (parallel states) and ω = 0 (orthogonal
states) are shown with dashed lines.

The eigenvalues are

λ±(c+, c−) =
1

2

(
2− c+ − c− ±

√
c2+ + c2− + (4ω2 − 2)c+c−

)
. (4.24)

The area de�ned by inequalities (4.21) and (4.22) is depicted in �gure 4.1,
delimited by black lines. The dashed lines represents the limiting cases ω = 1

and ω = 0.
The function that we are minimizing is linear, and the extremal points

of a linear function can lie only on the frontier of the region in which it is
de�ned. Since pinc(c+, c−) clearly diminishes along the segments −→OA and
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Figure 4.2: c+ and c− plotted for 2θ = π/4. Here p = p+.

−−→
OB, the minimum must lie on the curve de�ned by the equality in equation
(4.22)

λ−(c+, c−) = 0. (4.25)

The constrained minimization problem can now be addressed employing the
Lagrange multipliers method. The new equation to be solved is

∇pinc(c+, c−) = k∇λ−(c+, c−) (4.26)

where k is the Lagrange multiplier. After some algebra we obtain the system





(1−R)(2− c+ − c−) = R[2c+ + (4ω2 − 2)c−]− [2c− + (4ω2 − 2)c+]

1− c+ − c− + (1− ω2)c+c− = 0
,

(4.27)
where we have posed R = p+/p−. The solutions c̃±, taking into account
conditions (4.21), are





c̃+ = 0, c̃− = 1 R ≤ ω2

c̃+ = 1−ω/√R
1−ω2 , c̃− = 1−ω√R

1−ω2 ω2 ≤ R ≤ 1
ω2

c̃+ = 1, c̃− = 0 R ≥ 1
ω2

. (4.28)
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Figure 4.3: pinc plotted for 2θ = π/j with j = 2 . . . 8. Here p = p+. We note
that for orthogonal states, 2θ = π/2, pinc vanishes, while it approaches 1 as θ
diminishes.

The corresponding optimal value for pinc is



ω2 + (1− ω2)p+ p+ ≤ ω2

1+ω2

2ω
√
p+p− ω2

1+ω2 ≤ p+ ≤ 1
1+ω2

1− (1− ω2)p+ p+ ≥ 1
1+ω2

. (4.29)

The optimal POVM corresponding to c̃± will be indicated with {Π̃±, Π̃inc}.
We note that when odds ratio of a priori probability is greater than the
treshold value 1/ω2 or lesser than ω2 the POVM becomes a Projective Mea-
surement on the most probable state between |ψ±〉 and its orthogonal sub-
space.

4.3 Information/disturbance tradeo�

In order to express the tradeo� quantitatively, we have to choose suitable
variables representing information and disturbance in this speci�c setting.
We have already seen that the total probability of obtaining a conclusive
answer ps = 1 − pinc is a good choice for the estimation of information. To
quantify the disturbance, we imagine to be in the following scenario: Alice

49



prepares one of the two states |ψ±〉 with a priori probabilities p±, then she
sends the system to Bob, who performs the optimal USD derived in the
previous section.

Alice
|ψ?〉

−→ Bob
{Π̃±, Π̃inc}

If nothing happens during the transmission of the system we already
know that Bob will identify the state with probability pBobs = 1 − pBobinc .
Now, suppose that an eavesdropper, say Eve, intercepts the system and,
after performing some kind of measurement, she resends it to Bob. Being
unaware of the intrusion, he tries the same USD as before, but clearly this
time the result he obtains could be wrong, because the eavesdropping attempt
tampered with the state. Precisely, he could obtain as conclusive answer `+'
even if the state was |ψ−〉, and vice versa.

Suppose that Eve's measurement is a suboptimal USD, i.e. a measure-
ment whose POVM Π is given by equation (4.15) where c± are constrained
only by positivity.

Alice
|ψ?〉

−→ Eve
{Π±,Πinc}

−→ Bob
{Π̃±, Π̃inc}

The information extracted by Eve can be quanti�ed by her probability
pEves of correct identi�cation

I = pEves = 1− pEveinc = (c+p+ + c−p−) sin2(2θ) (4.30)

which of course depends only on the POVM: I = I(Π). The disturbance,
on the other hand, will depend crucially on how the states are transformed
after Eve's measurement, that is, on the instrument {E±, E inc} realizing the
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POVM: D = D(E). As precise de�nition of disturbance, we can take the
total probability pBobe that Bob would wrongly identify Alice's preparation

D = pBobe = p+ Tr(Π̃−Einc(|ψ+〉〈ψ+|)) + p− Tr(Π̃+Einc(|ψ−〉〈ψ−|)). (4.31)

Each instrument yields a point in the I/D plane, and the information-
disturbance tradeo� is the optimal frontier which delimits the area corre-
sponding to all the possible instruments.

Eve obtaines the maximum information Imax when she performs the opti-
mal USD, and in force of (4.29) this maximum value is �xed by the separation
between the states |〈ψ+|ψ−〉| = cos 2θ and the a priori probabilities p±.

Imax = 1− 2 cos(2θ)
√
p+p− (4.32)

In order to derive the optimal frontier, for every �xed value I ≤ Imax we
minimize the disturbance D over all the instruments realizing a POVM of
the form (4.15) which gives the information I. In this way we obtain a family
of tradeo� curves D = D(I) parametrized by θ and p±.

The minimization is a two-step process: for every POVM Π, we have to
minimize D over the set I of instruments E realizing Π; then, we minimize
over the set P of POVMs giving infomation I.

D(I) = min
P

min
I
D(E) (4.33)

Step 1 We observe that for the conclusive outcomes Π± the corresponding
optimal quantum operations are always the pure contractions M± leaving
the system in the initial state:

E±(ρ) = M±ρM
†
± (4.34)

with
M± =

√
c±|ψ±〉〈ψ⊥±|. (4.35)
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Thus, we only need to worry about the quantum operation corresponding
to the inconclusive outcome Πinc. Here we assume that, again, a single Kraus
operation is optimal. The assumption is reasonable, since the classical mixing
added by a many-Kraus QO always makes the states less distiguishable. Thus
we have

Einc(ρ) = MincρM
†
inc (4.36)

with
Minc = UΠ

1/2
inc (4.37)

where U is unitary. Equation (4.31) becomes

D = p+〈ψ+|Π1/2
incU

†Π̃−UΠ
1/2
inc |ψ+〉+ p−〈ψ−|Π1/2

incU
†Π̃+UΠ

1/2
inc |ψ−〉 (4.38)

and �nally, using the identities Π̃± = c̃±I − c̃±|ψ∓〉〈ψ∓|,

D = c̃−p+〈ψ+|Πinc|ψ+〉 − c̃−p+|〈ψ+|UΠ
1/2
inc |ψ+〉|2+ (4.39)

+c̃+p−〈ψ−|Πinc|ψ−〉 − c̃+p−|〈ψ−|UΠ
1/2
inc |ψ−〉|2 =

= c̃−p+〈ψ+|Πinc|ψ+〉

1−

∣∣∣∣∣〈ψ+|U Π
1/2
inc |ψ+〉

‖Π1/2
inc |ψ+〉‖

∣∣∣∣∣

2

 +

+c̃+p−〈ψ−|Πinc|ψ−〉

1−

∣∣∣∣∣〈ψ−|U
Π

1/2
inc |ψ−〉

‖Π1/2
inc |ψ−〉‖

∣∣∣∣∣

2

 .

Our task is to minimize this expression varying the unitary U . We observe
that, in order to maximize the ovarlaps appearing in equation (4.39) we can
search only among unitaries of the form U = R(β)V , where R(β) is a rotation
of angle β on the plane individuated by |ψ±〉, while V is the unitary which
moves the normalized pair Π

1/2
inc |ψ±〉/‖Π1/2

inc |ψ±〉‖ to the con�guration |ξ±〉
complanar with respect to |ψ±〉 and with the same symmetry axis. Thus,
ignoring the part of equation (4.39) which does not depend on U , we obtain
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the function

f(β) = − (
c̃−p+〈ψ+|Πinc|ψ+〉|〈ψ+|R(β)|ξ+〉|2+ (4.40)

+ c̃+p−〈ψ−|Πinc|ψ−〉|〈ψ−|R(β)|ξ−〉|2
)

to be minimized over β. The separation angle 2θ′ between |ξ±〉 is given by

cos(2θ′) = |〈ξ+|ξ−〉| = |〈ψ+|ψ−〉|√
〈ψ+|Πinc|ψ+〉〈ψ−|Πinc|ψ−〉

. (4.41)

Introducing the parameters A± = c̃∓p±〈ψ±|Πinc|ψ±〉 and ∆θ = θ − θ′, after
some algebra we have

f(β) = −A+ + A−
2

− 1

2
[(A+ + A−) cos(2∆θ) cos(2β)+ (4.42)

+(A+ − A−) sin(2∆θ) sin(2β)] .

whose minimum is attained when

tan 2β =
A+ − A−
A+ + A−

tan 2∆θ. (4.43)

In this way we have obtained the minimum disturbance for a �xed POVM:

D(Π) = D(c+, c−) = min
E⇒Π

D(E). (4.44)

Step 2 The dependence of the disturbance on the coe�cients c± is much
more complicated and the minimization can be carried on numerically. The
values of c±, with 2θ = π/4, are plotted in �gure 4.4 for various a pri-
ori probabilities. Each curve interpolates between the totally uninformative
measurement c± = 0 and the optimal POVM Π̃.

For uniform probabilities p± = 1/2 we can provide the analytical solu-
tion. In this case, by symmetry of the con�guration, the coe�cients in Eve's
POVM are equal c± = c. Thus A+ = A− and β = 0, and the disturbance
becomes

D =
1

2
[1− cos(2θ)]

(
1− c+

√
c2 sin2(2θ)− 2c+ 1

)
. (4.45)
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Figure 4.4: The coe�cients c± of the minimum disturbing POVMs for 2θ = π/4.
Each curve is obtained with �xed R = p+/p− and the bisectrix corresponds to
R = 1. When R reaches the threshold 1/ cos2(2θ) = 2 the POVM becomes a
projective measurement and the corresponding curve is represented by the segment
connecting the origin with the point (1, 0).
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Figure 4.5: Balanced probabilities p± = 1/2.

By equation (4.30) information is I = c sin2(2θ) ≤ Imax = 1 − cos(2θ) and
thus

D(I) =
1

2
[1− cos(2θ)]

(
1− I

sin2(2θ)
+

√
I2

sin2(2θ)
− 2

I

sin2(2θ)
+ 1

)
.

(4.46)
The curves are plotted in �gure 4.5 for various angles θ. The rightmost curves
correspond to nearly orthogonal states, while the leftmost to nearly parallel
states.

We note that as the orthogonality increases, the tradeo� becomes more
and more favourable to the eavesdropper, because she can extract a good
amount of information while generating little disturbance. This gets along
with the intuitive notion that orthogonal states are classical, and thus rep-
resent accessible, `public' information. On the other hand, nearly parallel
states are so poorly distinguishable that there is no way to extract from
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them information about the choice of the preparer.
The unbalanced case p+ 6= p− can be treated numerically. In �gure 4.6 we

plot the curves for `mutually unbiased' states 2θ = π/4, for various a priori
probabilities. The uppermost curve represents again symmetric probabilities.
Here we note that as one of the states becomes more probable, the informa-
tion becomes more accessible (because, in a sense, it is already `public') and
the eavesdropper can extract it more easily. In the same way, the disturbance
diminishes because the measurement performed by Bob is more and more `fo-
cused' on the most probable state. Eventually, when the odds ratio of the a
priori probabilities exceeds the threshold value derived in section 4.2.1 Bob's
measurement can no longer detect with certainty an eavesdropping attempt
and the tradeo� curves �atten down on the horizontal axis. The threshold
odds ratio R = 1/ cos2(2θ) corresponds to p+ = 1/(1+cos2(2θ)), which gives
the maximal information

Imax =
1− cos2(2θ)

1 + cos2(2θ)
(4.47)

The bell-shaped curves corresponding to the extremal points of the trade-
o� curves are plotted in �gure 4.8, for various a priori probabilities. We
observe that uniform probability distribution corresponds to higher distur-
bance, while unbalanced distributions yield curves that are more and more
`squeezed' towards the bottom-right corner of the plot (favourable to the
eavesdropper).
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Figure 4.6: Unbalanced probabilities p+ 6= p− for 2θ = π/4

57



0.2 0.4 0.6 0.8 1
I

0.02

0.04

0.06

0.08

D

Figure 4.7: Extremal tradeo� points. Each curve is obtained plotting the ex-
tremal points of the tradeo� curves for a �xed separation angle 2θ and varying the
ratio R = p+/p−. Rightmost curves correspond to nearly orthogonal states, while
leftmost curves to nearly parallel states.
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Figure 4.8: Extremal tradeo� points. Each curve is obtained plotting the extremal
points of the tradeo� curves for a �xed R = p+/p− and varying the separation angle
2θ. The uppermost curve corresponds to the uniform distribution p± = 1/2.
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Chapter 5

State transformations

5.1 Probabilistic transformation of a pair of states

We are given an ensemble E = {q±, |ψ±〉〈ψ±|} of two pure states |ψ±〉 with
uniform a priori probabilities q± = 1/2, and a pair of (generally mixed) states
ρ±. We want to �nd a quantum operation which realizes the transformation

|ψ±〉 −→ ρ± (5.1)

maximizing the mean probability of success over the ensemble.
For pure �nal states ρ± = |φ±〉〈φ±| the problem has been essentially

solved in [CB98]

Proposition 5.1.1. Under the aformentioned hypotheses, the maximum mean
probability is

p = min

{
1− |〈ψ+|ψ−〉|
1− |〈φ+|φ−〉| , 1

}
. (5.2)

Moreover, this probability is achieved with a balanced transformation, i.e. a
transformation occuring with equal probability on both initial states.
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Proof. If |〈φ+|φ−〉| ≥ |〈ψ+|ψ−〉| we can always extend the system with an
ancilla whose initial state is some pure state |0〉, and �nd a pair of ancillary
states |α±〉 such that

〈ψ+|ψ−〉 = 〈φ+|φ−〉〈α+|α−〉. (5.3)

Thus, the transformation

|ψ±〉|0〉 −→ |φ±〉|α±〉 (5.4)

is isometric and can be obtained with a unitary operation on the compound
system. This realizes the required trace preserving quantum operation on
the original system.

Now, suppose that |〈φ+|φ−〉| ≤ |〈ψ+|ψ−〉|. A general quantum operation
realizing this transformation can be described by a set of Kraus operators
{Ak} (see theorem 1.2.2) such that

Ak|ψ±〉 = µk±|φ±〉 (5.5)

where µk± are complex numbers satisfying
∑

k |µk±|2 ≤ 1. These are exactly
the success probabilities ps± =

∑
k |µk±|2. The mean probability is therefore

ps =
1

2

∑

k

(|µk+|2 + |µk−|2
)
. (5.6)

A bound for ps can be found imposing on the positive operator Πs =
∑

k A
†
kAk

the condition Πs ≤ I, which can be expressed as a constraint on its eigenval-
ues λ1,2:

λ1,2 ≤ 1. (5.7)

Consider any state which is a superposition of |ψ±〉:

|ψ〉 =
1√
N

∑
r=±

cr|ψr〉 (5.8)
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where the normalization factor is N =
∑

r,r′ c
∗
r′cr〈ψr′|ψr〉. The condition

〈ψ|Πs|ψ〉 ≤ 1 can be written as
(
c∗+ c∗−

)

 ps+ Qβ − α

Q∗β∗ − α∗ ps−





 c+

c−


 ≤ 1, (5.9)

where Q =
∑

k µ
∗
k+µk−, α = 〈ψ+|ψ−〉 and β = 〈φ+|φ−〉. The condition (5.7)

becomes a condition on the eigenvalues of the matrix in equation (5.9)

(1− ps+)(1− ps−) ≥ |α−Qβ|2. (5.10)

We observe that
(1− ps)2 ≥ (1− ps+)(1− ps−) (5.11)

and the equality is satis�ed only when ps± = ps. From the triangle inequality
we have

|α−Qβ| ≥ |α| − |Q||β| (5.12)

where the equality is obtained only when α and Qβ have the same phase.
Moreover, the Cauchy-Schwartz inequality gives

|Q| ≤ √ps+ps− ≤ ps (5.13)

Here, the �rst inequality is satis�ed when µk+ is proportional to µk−. Toghether
with (5.11) it gives µk+ = µk−eiθ for some angle θ. Combining this inequality
with (5.12) we obtain

|α| − |Q||β| ≥ |α| − ps|β| (5.14)

and �nally
ps ≤ 1− |〈ψ+|ψ−〉|

1− |〈φ+|φ−〉| (5.15)

where the equality requires that ps± = ps and that the phases of the overlaps
between the initial states |ψ±〉 and the �nal states µk±|φ±〉 are equal. This
condition can be easily satis�ed since we can change the phase of the states
without altering their physical meaning.
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Indeed, this formula can be extended also to �nal mixed states.

Proposition 5.1.2. For generally mixed �nal states ρ± the maximum mean
probability is

p = min

{
1− |〈ψ+|ψ−〉|
1− F (ρ+, ρ−)

, 1

}
(5.16)

Moreover, the probability is achieved with a balanced transformation.

Proof. Suppose we have a quantum operation E realizing the transformation

|ψ±〉 −→ ρ±, (5.17)

with certain probabilities p±. Exploiting the dilation theorem 1.2.1 we can
represent this quantum operation in the following way

E(ρ) = Tr2(Uρ⊗ |0〉〈0|U †P ) (5.18)

where U is unitary operator and P is a projector. Since unitaries and pro-
jectors cannot turn a pure state into a mixed one, the quantum operation E ,
when applied the our initial states |ψ±〉, will have the form

E(|ψ±〉〈ψ±|) = p± Tr2(|ϕ±〉〈ϕ±|) (5.19)

where |ϕ±〉 are suitable normalized states and p± are the success probabilities.
We note that |ϕ±〉 are actually puri�cations of the �nal states ρ±.

In this way we have proved that every transformation |ψ±〉 → ρ± can
be realized with a corresponding trasformation between pure states |ψ±〉 →
|ϕ±〉. Thus, in order to maximize the probability of |ψ±〉 → ρ± it is not re-
strictive to scan only those transformations which take |ψ±〉 into puri�cations
of the �nal states ρ±.

From Uhlmann's theorem 3.2.2 we have that

|〈ϕ+|ϕ−〉| ≤ F (ρ+, ρ−), (5.20)
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for all the puri�cations of ρ±, and thus

1− |〈ψ+|ψ−〉|
1− |〈ϕ+|ϕ−〉| ≤

1− |〈ψ+|ψ−〉|
1− F (ρ+, ρ−)

. (5.21)

From the previous proposition we already know that the maximum proba-
bility for |ψ±〉 → |ϕ±〉 is (5.2) and thus there is the upper bound

p ≤ min

{
1− |〈ψ+|ψ−〉|
1− F (ρ+, ρ−)

, 1

}
. (5.22)

This bound can be achieved by choosing the puri�cation which gives the
equality in equation (5.20). Since, by the previous proposition, the transfor-
mation happens with the same probability on both states, the proposition is
proved.

5.2 Probability/�delity tradeo�

Taking advantage of the results obtained in the previous sections, we can
derive an interesting tradeo� for the transformation

|ψ±〉 −→ |ϕ±〉, |〈ϕ+|ϕ−〉| ≤ |〈ψ+|ψ−〉| (5.23)

if we allow it to be approximate, that is, if we admits quantum operations
which transform |ψ±〉 into some states ρ±

|ψ±〉 −→ ρ± =
E(|ψ±〉〈ψ±|)

p±
, p± = Tr(E(|ψ±〉〈ψ±|)) (5.24)

close to |ϕ±〉, though not exactly equal. In this case there are two incompat-
ible parameters of quality: the probability of success and the �delity between
the target states and the states actually obtained. Intuitively, the more we
try to `stretch' the pair |ψ±〉 towards the target states, the less the transfor-
mation is likely to happen.
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In order to quantify the tradeo�, we choose as precise parameters the
minimum probability and the minimum �delity over the two states (in other
words, a worst case criterion):

p = min {p+, p−} (5.25)

F = min {F (|ϕ+〉, ρ+), F (|ϕ−〉, ρ−)} . (5.26)

An immediate consequence of this choice is that, looking for the optimum
frontier, without loss of generality we can search among the operations whose
�nal states have Bloch vectors rρ± complanar with respect to the Bloch vec-
tors of the target states r|ϕ±〉, and with the same symmetry axis. In fact,
if the initial states are taken to a position which is not complanar to the
target states, the transformation is surely non-optimal, since one can always
bring the states to be complanar (and thus closer to the target) perform-
ing a unitary operation which, being deterministic, does not diminish the
probability.

Moreover, for each operation E realizing a certain transformation

E(|ψ±〉〈ψ±|) = p±ρ±, (5.27)

where ρ± are complanar to |ϕ±〉, we can construct an operation E ′ acting in
the following way

E ′(|ψ±〉〈ψ±|) =
1

2
(p±ρ± + p∓σzρ∓σz), (5.28)

where σz is the rotation around the symmetry axis of the pair |ϕ±〉. The sec-
ond term in r.h.s. is simply the �mirror image� of E . This new quantum opera-
tion is symmetric since σzE ′(|ψ±〉〈ψ±|)σz = E ′(|ψ∓〉〈ψ∓|) = E ′(σz|ψ±〉〈ψ±|σz)
and behaves better than the original one with respect to both the quality pa-
rameters:

Tr(E ′(|ψ±〉〈ψ±|)) =
1

2
(p+ + p−) ≥ min{p+, p−} (5.29)
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Figure 5.1: The section of the Bloch ball containing the initial pair |ψ±〉 and
the target pair |ϕ±〉. The shadowed area embraces all the states ρ± with �delity
F (ρ±, |ϕ±〉) ≥ |〈ξ±|ϕ±〉|.

and

F (|ϕ±〉, E ′(|ψ±〉〈ψ±|)) ≥ min{F (|ϕ+〉, ρ+), F (|ϕ−〉, ρ−)}. (5.30)

Having proved that the frontier is made up of symmetric transformations,
we move on to its explicit calculation. We notice that we can assume the
initial states |ψ±〉 to be in the symmetric con�guration complanar to |ϕ±〉, be-
cause this position can always be reached via a unitary operation which, being
deterministic, does not a�ect the probability. In the p/F plane this con�gu-
ration corresponds to the point (1, f0), where f0 := |〈ψ+|ϕ+〉| ≡ |〈ψ−|ϕ−〉|.

Now, let f , f0 ≤ f ≤ 1 be the �delity we want to achieve. Then, the set
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of possible �nal states ρ± compatible with the constraint F (ρ±, |ϕ±〉) ≥ f

is the shadowed area depicted in �gure 5.1, where |ξ±〉 are pure states such
that |〈ξ±|ϕ±〉| = f . This follows from the fact, proved in section 3.3, that the
iso�delity surfaces for the pure state |ϕ+〉 (or |ϕ−〉) are planes orthogonal the
Bloch vector r|ϕ+〉 (respectively, r|ϕ−〉). We claim that the most probable at-
tainable con�guration is the pair |ξ±〉. We need to prove that the probability
as obtained by proposition 5.1.2

p =
1− |〈ψ+|ψ−〉|
1− F (ρ+, ρ−)

(5.31)

where ρ± is any symetric pair inside the area, reaches the maximum for the
pair |ξ±〉. This would follow easily provided that the �delity F (ρ+, ρ−) has
its maximum for the pair |ξ±〉. To prove the claim, thus, we only need to
compute the �delity F (ρ+, ρ−) for states of the form ρ± = 1

2
(I ± βσx + γσz);

but, relying on Hübner's expression (3.23), one can immediately obtain

F (ρ+, ρ−) =
√

1− β2. (5.32)

This clearly shows that the optimal states are those which minimize β, a task
very well accomplished by the pair |ξ±〉.

The remaining part of the optimal tradeo� curve can now be completed
quite easily; we only need to sweep along the pure states comprised in the
arc between |ψ±〉 and |ϕ±〉 to obtain the points connecting (1, f0) and (p0, 1),
where p0 = (1− |〈ψ+|ψ−〉|)/(1− |〈ϕ+|ϕ−〉|). The explicit expression for this
part of the curve is

F (p) = cos


arccos |〈ϕ+|ϕ−〉| − arccos

(
1− 1−|〈ψ+|ψ−〉|

p

)

2


 . (5.33)
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Figure 5.2: Tradeo� curves F (p) for |〈ψ+|ψ−〉| = 0.6 and for |〈ϕ+|ϕ−〉| =
0, . . . , 0.6, at intervals of 0.1
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Figure 5.3: Tradeo� curves F (p) for |〈ψ+|ψ−〉| = .9 and for |〈ϕ+|ϕ−〉| = 0, . . . , 0.9,
at intervals of 0.1
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Figure 5.4: Tradeo� curves F (p) for |〈ψ+|ψ−〉| = .99 and for |〈ϕ+|ϕ−〉| =
0.09, . . . , 0.99, at intervals of 0.1

5.3 Tradeo� in the inversion of a contraction

In quantum information theory an important question is to �nd out whether
a given transformation E can be inverted deterministically on some subspace
L ⊆ H, in other words whether there is a quantum channel R such that

ρ −→ ρ′ =
E(ρ)

Tr(E(ρ)) −→ R(ρ′) = ρ (5.34)

for every ρ, such that supp(ρ) ⊆ L.
Necessary and su�cient conditions for this inversion have been proved by

Knill and La�amme [KL96], while Schumacher and Nielsen [SN96] provided
an equivalent condition based on information-theoretic quantities such as
entropy and coherent information.

If the transformation is not invertible, or the inversion is not required to
be perfect, it is still possible to perform an approximate correction which
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brings ρ′ close to ρ. This �closeness� have been quanti�ed by Schumacher
and Westmoreland [SW02], whenever E is a channel, and by Buscemi et al.
[BHH07] for general quantum operations.

Approximate or not, all these inversions are deterministic; the operation
R is always required to be a channel. If we expand the set of possible oper-
ations, including probabilistic ones, a wider and largely unexplored scenario
emerges. For example, we could be interested in an exact inversion, even
if we are not guaranteed that it would happen with certainty; or in any
kind of inversion interpolating between the latter and the best approximate
deterministic one.

Unfortunately, these situations become soon quite awkward and very hard
to manage, because of the mathematical complexity of the calculations in-
volved. However, the prominent qualitative features are already visible in
some simple cases, which can be worked out quite easily.

In the following we will focus on a two-level system, being acted upon by
an operation E consisting of a single contraction M . Since every operator M
can be decomposed as the product of a unitary operator and a positive one
M = UP , and the unitary part can always be removed at no cost, we will
assume M to coincide with its positive part, which has the following matrix
representation:

Mβ =


 1 0

0 β


 (5.35)

where β, 0 ≤ β ≤ 1, is the smaller singular value. The largest singular value
is �xed at 1 because every contraction is equivalent toMβ for some β up to a
rescalement, which a�ects its output only by an overall factor, constant for all
the states. This amounts to a global rescalement of the probabilities, which
becomes unimportant, since we always take for granted that the operation
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has happened.
We will consider two case-studies of the following form: there is some

set of density operators D (not necessarily a subspace) consisting of all the
possible initial states of the system. After the transformation represented by
Mβ has happened, we want to invert it choosing among a set Q of quantum
operations. Suppose that the the system was initially in the state ρ ∈ D.
After the �rst transformation the state becomes

ρ′ =
MβρMβ

Tr(ρM2
β)
. (5.36)

A subsequent quantum operation R ∈ Q leaves the system in the state

ρ′′ =
R(ρ′)

Tr(R(ρ′))
. (5.37)

The quality of this inversion is determined by two parameters: the probability
of success

p(R; ρ) = Tr(R(ρ′)) (5.38)

and the �delity between the initial state and the corrected one

f(R; ρ) = F (ρ, ρ′′). (5.39)

If we want the probability of success never to drop under some threshold
value p, we can consider only the subset Q′ ⊂ Q whose elements satisfy the
constraint:

p(R; ρ) ≥ p, ∀ρ ∈ D. (5.40)

In a worst case criterion we have to choose the inversion R ∈ Q′ that maxi-
mizes the minimum �delity over the set D

R = arg max
R∈Q′

min
ρ∈D

f(R; ρ). (5.41)

This gives the point (p, F ), with F = minρ∈D f(R; ρ), in the p/F plane. The
tradeo� curve is obtained varying p in the interval [0, 1].
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In this way we obtain a curve F = F (p) which, for every p, gives the
minimum guaranteed �delity over the set of possible initial states, achievable
with a QO whose probability of success is at least p for all such states.

5.3.1 Semiclassical case

The �rst case is semiclassical. The set of states D consists of all the density
operators jointly diagonal with the contraction

ρx =


 x 0

0 1− x


 , 0 ≤ x ≤ 1. (5.42)

In the same way the set of possible inversions Q is made up of the diagonal
single-contraction operations

Nγ =


 γ 0

0 1


 , β ≤ γ ≤ 1. (5.43)

The extremal case Nβ is the matrix inverse of Mβ, rescaled in order to be a
contraction, Nβ = M−1

β /‖M−1
β ‖. Obviously, it realizes the exact inversion.

Though de�ned by single-contraction elements, the set Q is more encom-
passing than it seems. Since its elements are bound to act only on diagonal
states, it is actually closed under convex combinations

qNλρxNλ + (1− q)Nλ′ρxNλ′ = Nλ′′ρxNλ′′ , (5.44)

with λ′′ =
√
qλ2 + (1− q)λ′2, as well as under coherent sums

(qNλ + (1− q)Nλ′)ρx(qNλ + (1− q)Nλ′) = Nλ′′ρxNλ′′ , (5.45)

with λ′′ = qλ+ (1− q)λ′.
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Figure 5.5: Tradeo� curves for the semiclassical case, far various β. Each curve
gives the minimum guaranteed �delity in the inversion of Mβ , as a function of
the minimum probability p of success over all the initial states. Upper curves are
obtained for β close to 1, lower curve for β approaching 0.

The states ρ′x and ρ′′x are easily computed

ρ′x =
1

x+ β2(1− x)


 x 0

0 β2(1− x)


 , (5.46)

ρ′′x =
1

γ2x+ β2(1− x)


 γ2x 0

0 β2(1− x)


 , (5.47)

and so are the probability and the �delity

p(Nγ; ρx) =
γ2x+ β2(1− x)
x+ β2(1− x) , (5.48)

f(Nγ; ρx) =
γx+ β(1− x)√
γ2x+ β2(1− x) . (5.49)

By inspection of these expressions one can see that the set Q′ is

Q′ = {
Nγ, γ2 ≥ p

}
(5.50)
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and that
arg max

Nγ∈Q′
min
ρx

f(Nγ; ρx) = N√
p (5.51)

The corresponding tradeo� curves are plotted in �gure 5.5 for various β.
The uppermost curves are obtained when β approaches 1, i.e. when Mβ is
nearly the identity. Clearly, in this case there is almost no need of inversion
and we have always a high �delity. On the other hand, as β goes to zero Mβ

is closer and closer to be a projector which, in a worst case criterion, cannot
be inverted with �delity greater than zero.

5.3.2 Quantum case

In the second case we consider a set of two non-orthogonal states D = {|ψ±〉},
meanwhile allowing the inversion to be any quantum operation. The states
after the �rst transformation are

|ψ′±〉 =
Mβ|ψ±〉
|Mβ|ψ±〉| . (5.52)

The required inversion is
|ψ′±〉 −→ |ψ±〉 (5.53)

so this case is simply a rephrasing of the results obtained is sections 5.1 and
5.2.
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Summary of results

In chapter 3 we addressed the problem of deriving the iso�delity surfaces of
some state ρ. These surfaces are constituted by all the states σ having the
same �delity with respect to ρ. In the general case we have shown how to
simplify the problem exploiting symmetry arguments, while for the qubit we
have provided the analytical solution, resorting to Hübner's formula (3.23).

In chapter 4 we studied a communication protocol inspired by Quantum
State Discrimination. We have discussed operational criteria to de�ne the
information and the disturbance in this setting, and computed the tradeo�
curves in the symmetric case p+ = p−. The tradeo� curves in the asymmetric
case have been plotted numerically, while the extremal points (corresponding
to maximal information) are obtained analitycally.

In chapter 5, following an idea proposed in [Da03], we analyzed the prob-
abilistic transformation of states. For two pure states we give a slight gener-
alization of a known result ([CB98]), and apply it to derive a tradeo� curve
between the probability and the �delity of the transformation. We also stud-
ied the probabilistic inversion of a single-contraction QO, varying the set of
possible initial states.
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Concluding remarks

Information is a di�erence which makes a di�erence
Gregory Bateson

. . . and disturbance, too! Joking aside, in this work we decided to turn our
attention to a QSD scenario and analyze the protocol discussed in section
4.3, not only because it is a paradigmatic example of the problem, but also
because in this case there are easy-to-grasp operational de�nitions of infor-
mation and disturbance, directly motivated by a communicational and cryp-
tographical set. The presence of �agents�, typical of these scenarios, helps in
identifying the relevant operational notions for the problem under examina-
tion: �Eve� learns what is the state or not, �Alice� and �Bob� catch or don't
catch her, etc. In other words, we can always tell the �di�erence�.

However, there are other possible vistas on the information/disturbance
problem, which are mainly concerned about the original question posed
by Heisenberg: how the measurement of some observable in�uences non-
commuting observables? This is related, for example, to the well-known
problem of the Standard Quantum Limit, vexata quaestio of quantum mea-
surement theory originated by the debate around the possibility of measuring
small classical forces like gravitational waves.
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Addressing these topics, di�culties often arise because of the lack of
a clear-cut de�nition of disturbance. There are a couple of resolutive pa-
pers by Ozawa [Oz03] [Oz04], where these problems are carefully analyzed
(although some isolated voices have recently questioned them, for example
Busch [Bu07], where Ozawa's notion of �noise� is rejected as non-operational).

The main teaching that we want to underline is the following: the dis-
turbance on some system Q provoked by some agent - say �Eve� - can be
quanti�ed only if we decide what kind of checks can or can not be performed
on Q by someone else - �Alice�. It would be an interesting research line to
take advantadge of what we learned in the non-controversial QSD setting,
and try to apply the same perspective in other cases.
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